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Abstract
Cognitive control is typically understood as a set of mechanisms that enable humans to reach goals that require integrating the
consequences of actions over longer time scales. Importantly, using routine behaviour or making choices beneficial only at short
time scales would prevent one from attaining these goals. During the past two decades, researchers have proposed various
computational cognitive models that successfully account for behaviour related to cognitive control in a wide range of laboratory
tasks. As humans operate in a dynamic and uncertain environment, making elaborate plans and integrating experience over
multiple time scales is computationally expensive. Importantly, it remains poorly understood how uncertain consequences at
different time scales are integrated into adaptive decisions. Here, we pursue the idea that cognitive control can be cast as active
inference over a hierarchy of time scales, where inference, i.e., planning, at higher levels of the hierarchy controls inference at
lower levels. We introduce the novel concept of meta-control states, which link higher-level beliefs with lower-level policy
inference. Specifically, we conceptualize cognitive control as inference over these meta-control states, where solutions to
cognitive control dilemmas emerge through surprisal minimisation at different hierarchy levels. We illustrate this concept using
the exploration-exploitation dilemma based on a variant of a restless multi-armed bandit task. We demonstrate that beliefs about
contexts and meta-control states at a higher level dynamically modulate the balance of exploration and exploitation at the lower
level of a single action. Finally, we discuss the generalisation of this meta-control concept to other control dilemmas.
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Introduction

The concept of cognitive control is generally used as a sum-
mary term for a set of processes that enable humans to flexibly
configure perceptual, emotional, and response selection pro-
cesses in accordance with superordinate goals. These process-
es are especially pronounced when goal attainment requires
novel or nonroutine action sequences, and there is competition
from otherwise stronger habitual or impulsive responses

(Botvinick and Cohen, 2014; Egner, 2017; Goschke, 2003;
Goschke, 2013; Miller and Cohen, 2001). Cognitive control
is considered essential for some of the most advanced cogni-
tive capacities of humans, such as the ability to pursue long-
term goals and to respond flexibly to changing contexts and
task demands.

However, much of the experimental research on cognitive
control has focused on relatively simple laboratory tasks, as,
for instance, interference paradigms, such as Stroop or flanker
task (Kalanthroff, Davelaar, Henik, Goldfarb and Usher,
2018; Scherbaum, Fischer, Dshemuchadse and Goschke,
2011), or paradigms assessing cognitive flexibility, such as
task switching (Koch, Poljac, Muller and Kiesel, 2018).
Many of these tasks are designed to induce conflicting internal
representations, which trigger responses that are in contradic-
tion to the instructed task goal and may lead to an incorrect
response. Such tasks have been remarkably useful as psycho-
logical “probes” into component mechanisms of cognitive
control, such as response inhibition or goal shielding, as they
enable researchers to study how the brain copes with crosstalk
between conflicting representations and competing responses.
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Accordingly, many computational models of cognitive con-
trol postulate a hierarchical mechanism (Botvinick, Niv and
Barto, 2009), where higher-level representations of goals or
task-sets serve as a biasing signal, which modulates process-
ing at a lower level, such that information congruent with
instructed goals gains higher priority in determining the selec-
tion of responses (Cohen, 2017; Goschke, 2003; Goschke,
2013; Miller and Cohen, 2001; Musslick, Jang, Shvartsman,
Shenhav and Cohen, 2018; Scherbaum, Dshemuchadse, Ruge
and Goschke, 2012). More recently, hierarchical models have
been used to establish how the brain might determine the
intensity and allocation of biasing signals to specific tasks,
based on the estimated costs and benefits of recruitment of
control (Shenhav, Botvinick and Cohen, 2013).

These approaches to study and model cognitive control
focus on a specific class of cognitive control tasks that typi-
cally require only short-term planning within a single trial.
This means that these tasks differ in a key aspect from real-
life goal-reaching scenarios in which humans typically use
cognitive control; i.e., to make an action in their everyday
environment, humans must predict the consequences of this
action over both short and long time periods and take into
account the behaviour of other agents and relevant environ-
mental dynamics. Clearly, predicting the future and planning
one’s behaviour is a critical part of cognitive control, because
it is essential for reaching desired goals. Consequently, in
recent years, an increasing number of studies have investigat-
ed the role of planning over multiple future trials using se-
quential decision-making tasks (Economides, Guitart-Masip,
Kurth-Nelson and Dolan, 2014; Kolling, Wittmann and
Rushworth, 2014; Schwartenbeck, FitzGerald, Mathys,
Dolan and Friston, 2015; Shenhav, Straccia, Musslick,
Cohen and Botvinick, 2018).

Cognitive control dilemmas and meta-control

While research in the past decades has substantially deepened
insights into the computational mechanisms and neural sys-
tems that mediate our capacity for cognitive control, the meta-
level processes that regulate complementary cognitive control
processes itself remain poorly understood. Agents with an
extended future time perspective, which pursue goal-directed
action in changing and uncertain environments, are
confronted with a set of antagonistic adaptive challenges.
These challenges can be conceived of as fundamental control
dilemmas, which require a context-sensitive adjustment of
complementary control modes and control parameters
(Goschke, 2003; Goschke, 2013; Goschke and Bolte, 2014).
For instance, while the ability to shield long-term goals from
competing responses promotes behavioural stability and per-
sistence, it increases the risk of overlooking potentially signif-
icant changes in the environment and may lead to rigid and
perseverative behaviour. Conversely, while a broad scope of

attention supports background-monitoring for potentially sig-
nificant changes and facilitates flexible goal switching, it also
increases distractibility and may lead to volatile behaviour that
is driven by every minor change in the environment
(Dreisbach and Goschke, 2004; Goschke and Bolte, 2014).
Agents must thus not only decide which action is best suited
to attain a goal, but they have to cope with meta-control prob-
lems (e.g., should one ignore an unexpected change and shield
a current goal from distraction or should one process task-
irrelevant information, because it may signal that one should
switch to a different goal?). Given that antagonistic adaptive
constraints cannot be satisfied simultaneously to an arbitrary
degree, because stable versus flexible control modes incur
complementary costs and benefits, goal-directed agents must
solve meta-control problems. This raises the questions how
the brain achieves a context-sensitive balance between com-
plementary control modes and how control parameters are
adjusted to optimize goal attainment in changing and uncer-
tain environments.

While control dilemmas arise in a range of processing do-
mains (e.g., goal shielding vs. goal shifting; focused attention
vs. background-monitoring; anticipation of future needs vs.
responding to current desires; computationally demanding
but flexible goal-directed control vs. less demanding but in-
flexible habitual control), we focused on the trade-off between
exploration and exploitation as one of the most widely inves-
tigated control dilemmas (Addicott, Pearson, Sweitzer,
Barack and Platt, 2017; Blanchard and Gershman, 2018;
Cohen, McClure and Yu, 2007). It is obviously adaptive for
agents to exploit and select those actions that maximized re-
ward in the past. However, to learn about such actions or find
better ones, agents must explore previously untried actions.
Thus, exploitation may prevent learning about task-relevant
actions and states; conversely, explorationmay return relative-
ly little reward or even lead to risky behaviour.

A widely used formulation of meta-control, i.e., of decid-
ing how to decide (Boureau, Sokol-Hessner and Daw, 2015),
is as a competition between automatic responses (e.g., habits)
and elaborate choices (e.g., planned responses) where the op-
portunity cost of assigning limited computational resources to
planned decisions is weighted against the possibility of im-
proved outcomes in the future. In other words, meta-control
between automatic and planned behaviour often is cast as a
trade-off between gains and costs (Shenhav et al., 2013).
Although this approach can link meta-control problems from
different domains (e.g., shielding-shifting, selection-monitor-
ing, or exploration-exploitation dilemmas (Goschke, 2013;
Goschke and Bolte, 2014)), in its standard formulation, it does
not account for the fact that the future is inherently uncertain
and that different behavioural policies will have different ef-
fects on that uncertainty, i.e., lead to different information gain
or loss (i.e., lead to different information gain). In practice and
independent of the task, behaviour that leads to precise beliefs
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about possible action-outcome contingencies should be pre-
ferred to the one that results in imprecise beliefs about action-
outcome contingencies, as the resulting estimates of expected
rewards and costs becomemore reliable and less computation-
ally demanding. Recent research on decision making under
uncertainty has demonstrated the importance of taking into
account information gain for understanding human choice be-
haviour (Dezza, Angela, Cleeremans and Alexander, 2017).

We will pursue a different approach and cast meta-con-
trol as an inference problem (Schwartenbeck et al., 2019).
Meta-control will appear costly when one has only vague
prior knowledge about which behavioural policy one
should follow as the future outcomes of one’s behaviour
become difficult to predict. For example, if one would
know with absolute certainty that eating sugar, in any
amount, will badly impact one’s health in the future, de-
ciding not to eat a tasty cake would become a trivial
choice. In reality, there is uncertainty on how consuming
sugar impacts our future health; e.g., occasional consump-
tion may not have negative consequences for one’s health.
Given this intrinsic uncertainty, deciding about consuming
sugar is an inference problem, where one’s beliefs about
the relationship between consuming sugar and health will
drive behaviour. Therefore, when making decisions, we
can link the perceived “costs” and an apparent “loss of
control” to uncertain beliefs about optimal behaviour, as
a consequence of vague beliefs about future outcomes.

Hence, following the idea that both perception and action
can be formulated as probabilistic (Bayesian) inference
(Botvinick and Toussaint, 2012; Friston, 2010), we will ap-
proach the question of how meta-control is computed in an
analogous fashion in terms of a single optimisation principle:
minimisation of expected surprisal about future outcomes
within a hierarchical architecture (Pezzulo, Rigoli and
Friston, 2015), that is, as hierarchical active inference
(Friston, 2010; Friston, Rosch, Parr, Price and Bowman,
2018; Pezzulo et al., 2015). In what follows, we will introduce
basic concepts of hierarchical active inference and demon-
strate the emergence of meta-control using the exploration-
exploitation dilemma as an example. Briefly, hierarchical in-
ference of external states (contexts), internal states (meta-con-
trol states), and control signals (actions) results in adaptive
arbitration between exploratory and exploitative choices,
where meta-control states at a higher level of the hierarchy
constrain prior beliefs about available policies at the level
below. The key point of this hierarchical model is that meta-
control states encode an agent’s previously acquired beliefs
how it should control its own behaviour in the current context.

Before we continue, wewould like to acknowledge the vast
literature on the exploration-exploitation dilemma in both ma-
chine learning (see e.g., Allesiardo, Féraud and Maillard,
2017; Houthooft et al., 2016; Schulz and Gershman, 2019)
and cognitive neuroscience (see e.g., Addicott et al., 2017;

Cohen et al., 2007; Daw, O'Doherty, Dayan, Seymour and
Dolan, 2006; Geana, Wilson, Daw and Cohen, 2016;
Laureiro-Martínez, Brusoni, Canessa and Zollo, 2015;
Wilson, Geana, White, Ludvig and Cohen, 2014). The focus
of previous theoretical research on the exploration-exploita-
tion dilemma is closely linked to the so-called optimal stop-
ping problem (Dubins, Savage, Sudderth and Gilat, 2014), in
dynamic environments, e.g., a restless multi-armed bandit task
(Liu, Liu and Zhao, 2012), where the exploration-exploitation
dilemma corresponds to knowing when to stop sampling for
information and switching to exploitation, and vice versa. The
best known classical algorithms for resolving the dilemma are
based either on upper confidence bounds to expected rewards
(Auer, Cesa-Bianchi and Fischer, 2002; Garivier and Cappé,
2011) or Thompson sampling applicable to belief based
(Bayesian) multi-armed bandits (Agrawal and Goyal, 2012).

The standard exploration-exploitation dilemma has also
been described within the active inference framework
(FitzGerald, Schwartenbeck, Moutoussis, Dolan and Friston,
2015; Friston et al., 2015), in which the balancing between
exploration and exploitation is driven by minimisation of ex-
pected free energy (upper bound on expected surprisal) and
resolved with local choices between rewarding and informa-
tive options. Interestingly, active inference based behavioural
models are characterised both by random and directed explo-
ration strategies (Schwartenbeck et al., 2019), similar to ex-
ploration strategies associated with human behaviour (Wilson
et al., 2014). Complementary to these related works, we will
show how hierarchical active inference can result in
supressing or boosting the local exploration drive as a function
of long-term predictions and goals. Therefore, we will focus
onmeta-control of behaviour where the agent can choose to be
exploratory or exploitative given some long-term predictions
and goals. We enabled this nonmyopic exploration by intro-
ducing temporally extended contexts at the higher level of the
hierarchy. In this way, the agent can meta-control its behav-
iour depending on both the context it believes it is in, and as
we show, the context it predicts to be in the future. Such a
setup allows the agent to inhibit itself from exploring, despite
knowing that exploration would lead to a significant gain of
information about current context and other relevant hidden
variables.

Planning, uncertainty, and a hierarchy of time scales

Although not always obvious, human planning is for many
tasks in daily life a computational feat yet unrivalled by any
machine. Research in robotics and artificial intelligence has
found that planning, in an online fashion, in our typically
uncertain environment is a hard problem for artificial agents
(Kurniawati, Du, Hsu and Lee, 2011). Even for mundane
activities, such as safely driving a car through typical traffic,
artificial planning performance is currently well below human
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routine performance (for a current review see Schwarting,
Alonso-Mora and Rus, 2018). Although there are recent find-
ings that artificial agents perform better than humans in spe-
cific planning tasks like playing the board game Go (Silver et
al., 2017), the question is what makes planning challenging in
scenarios, such as driving a car. We will focus on two of these
features, which are also probably the most relevant for ad-
dressing cognitive control research questions.

First, for a goal-directed agent, most environments are
packed with uncertainty. This uncertainty is induced by vari-
ous sources (Soltani and Izquierdo, 2019), which make plan-
ning difficult because the number of possible ways in which
the environment may develop grows massively the further
into the future one tries to plan ahead. Second, in our environ-
ment, things change at different time scales, and we are addi-
tionally confronted with uncertainty about the relevance of
different time scales and how representations at different time
scales interact with each other. In other words, learning the
relevant representations at different time scales for one’s plan-
ning and goal reaching is a problem in itself.

Recent experimental and theoretical research in the cog-
nitive neurosciences demonstrated that these multiple time
scales are a critical dimension along which the brain struc-
tures its environment (Badre and Nee, 2018; Chaudhuri,
Knoblauch, Gariel, Kennedy and Wang, 2015; Dixon,
Girn and Christoff, 2017; Kiebel, Daunizeau and Friston,
2008; Koechlin, Ody and Kouneiher, 2003). In the domain
of cognitive control, the relevance of different time scales
is well established in the context of, for instance,
intertemporal choice conflicts, where agents have to
choose between a smaller reward that can be obtained im-
mediately versus a larger reward that can be obtained only
after a delay (Dai, Pleskac and Pachur, 2018; Kable, 2014;
Scherbaum, Dshemuchadse, Leiberg and Goschke, 2013).
Hence, the conceptual backbone of the model that we de-
scribe below is that the representation of environmental
dynamics is organized as a hierarchy of time scales
(Kiebel et al., 2008). Similar modelling approaches have
been proposed in cognitive control in the context of hier-
archical reinforcement learning (HRL) (Botvinick and
Weinstein, 2014; Holroyd and McClure, 2015) and also
are naturally an increasingly relevant topic in artificial in-
telligence research (Bacon and Precup, 2018; Le, Vien and
Chung, 2018; Mnih et al., 2015; Pang et al., 2019). In
general, HRL models are based on the idea that action
sequences can be chunked and represented as a new tem-
porally extended action, the so-called option (Barto and
Mahadevan, 2003; Sutton, Precup and Singh, 1999). For
example, making tea lasts approximately 30 seconds and
requires performing a series of actions. Each of these ac-
tions (e.g., to get some water) is at a faster, more fine-
grained time scale and last only a few seconds. This prin-
cipled idea to represent behaviour as a hierarchy of

sequences also has been proposed as a way of interpreting
recent findings in fields, such as speech (Hasson, Yang,
Vallines, Heeger and Rubin, 2008), memory, and the hip-
pocampus (Collin, Milivojevic and Doeller, 2017) and de-
cision making (Hunt and Hayden, 2017).

In the psychology literature, the idea that goal-directed
control is organised as a hierarchy with elements represented
at different time scales can be traced back to concepts outlined
for example by Miller, Galanter and Pribram (1960) and pur-
sued in action control theories (Gollwitzer and Bargh, 1996;
Heckhausen and Kuhl, 1985; Kuhl and Goschke, 1994). We
will use the principle as exemplified by recent HRLmodelling
work but critically complement the resulting model by three
components, which we believe are important to explain spe-
cific meta-control phenomena. Note that all three components
have been used before in probabilistic modelling approaches
and are not novel by themselves. Our point is that the combi-
nation of these specific model components enables an agent to
learn how to balance its explorative and exploitative tenden-
cies in a context-dependent fashion.

First, as motivated above, planning in our environment
must incorporate various sources of uncertainty, which re-
quires that we formulate the hierarchical model probabilis-
tically (see Methods for details). Second, hierarchical rein-
forcement learning models previously applied in the cog-
nitive neurosciences (Holroyd and McClure, 2015) typical-
ly assume that agents aim at maximizing future return, the
so-called instrumental value (IV). This approach works
well for modelling and analysing experimental tasks,
which require participants to reach goals in an already
well-learned task environment. However, when consider-
ing cases in which an agent has not yet learned its task
environment, actions should not only serve the maximiza-
tion of reward but also the reduction of uncertainty about
task-relevant states and parameters (Ghavamzadeh, Pineau
and Tamar, 2015). To be able to model such uncertainty-
reducing, explorative actions of an agent, we will use the
expected free energy, which combines instrumental value
with the epistemic value of different actions, thereby lead-
ing to a reduction of uncertainty about the state of the
world (Kaplan and Friston, 2018). Third and most impor-
tantly, we introduce specific hidden states: the meta-con-
trol states. Meta-control states constrain the prior over be-
havioural policies on the level below and do not encode
environmental states but rather behavioural modes of the
lower level.

In what follows, we will introduce active inference and its
extension to hierarchical generative models, deep active infer-
ence. Importantly, beliefs about meta-control states will be
entrained by the beliefs about the current context and the
agent’s preferences to successfully perform the task. These
beliefs about meta-control states limit behavioural policies to
action sequences that are most likely to lead to a goal.
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Active inference

To set the scene for the proposed model, we briefly introduce
the active inference framework, which is an application of the
free-energy principle (Friston, 2010) to a sequential decision
making under uncertainty, that is, a partially observable
Markov decision process (POMDP) (Kaelbling, Littman and
Cassandra, 1998; Littman, 2009). Importantly, belief states in
active inference cover both beliefs about states and beliefs about
policies. In other words, in active inference planning is also cast
as an inference problem (Botvinick and Toussaint, 2012), with
an imperative to minimises surprise about future outcomes, that
is, the upper bound on surprise: the expected free energy.

Formally, we can express the expected free energy of a
specific behavioural policy π at some future time step τ as
(Schwartenbeck et al., 2019).

ð1Þ
where eQ ¼ Q oτ ; sτ ;Ajπð Þ ¼ P oτ jsτ ;Að ÞQ sτ jπð ÞQ Að Þ de-
notes a joint distribution over current beliefs about likelihoods
Q(A) (i.e., state-outcome contingencies; P ot ¼ ijst ¼ j;Að Þ
¼ Ai; j, and beliefs P oτ jsτ ;Að ÞQ sτ jπð Þ about states sτ and
outcomes oτ at future step τ conditioned on a specific policy
π. In the equation above, the epistemic value (EV) term cor-
responds to the expected information gain and the instrumen-
tal value (IV) term to the expected extrinsic reward, as P(oτ)
encodes prior preferences over different outcomes oτ.
Importantly, the prior preferences over outcomes do not de-
fine how likely different future outcomes are, but rather an
intrinsic incentive that the agent will follow policies that lead
to preferred outcomes. Flat prior preferences would lead to
purely exploratory behaviour (either as random or directed
exploration), whereas sharp prior preferences (centred over
preferred outcomes) lead to exploitative behaviour. In prac-
tice, modulations of prior preferences results in changing the
balance between exploratory and exploitative behavioural pol-
icies. In this work, we will introduce a hierarchical architec-
ture that enables an agent to infer its own modulation of prior
preferences to guide behaviour through different contexts.

In the context of active inference, a behavioural policy π is
defined as a specific sequence of actions or control signals u;
hence we write π = (ut,…, uT). This formulation is closely
related to options, that is, the notation of temporally extended
actions commonly used in reinforcement learning (Bacon,
Harb and Precup, 2017), which also include more sophisticat-
ed high-level actions than fixed action sequences. To mini-
mise the expected free energy, an agent should select those
policies which it expects to lead to minimal surprisal, which
corresponds to the following policy prior

p πð Þ ¼ 1

Z
e−γ∑

T
τ¼tG π;τð Þ ð2Þ

where γ denotes a free model parameter shaping prior preci-
sion, and Z the normalisation constant. Note that minimising
free energy naturally leads to a lower choice uncertainty with
decreased uncertainty about hidden states of the environment,
as the significance of different behavioural policy becomes
more evident.

Finally, we can express the full generative model, which
defines the known relations between actions, states transitions,
and outcomes, as

p OT ; ST ;A;πð Þ ¼ p πð Þp Að Þ ∏
T

t¼1
p otjst;Að Þp stjst−1;πð Þ ð3Þ

where OT = (o1,…, oT), ST = (s1,…, sT). Besides the prior
over policies, the generative model is characterised by the
prior over likelihoods p(A) (e.g., a Dirichlet distribution), the
observation likelihood p(ot| st,A), and the state transition prob-
abilities p(st|st − 1, π). As policy π denotes a specific sequence
of control states (u1,…, uT), the state transition probability at
time step t is parametrised by the corresponding control signal
ut, hence p(st|st − 1, π) ≡ p(st| st − 1, ut). Here, we will assume
that at initial time step t = 1, the state s1 is completely defined
by the control states, hence p(s1| s0, π) = p(s1| π).

We define the inversion of the generative model (eq. (3)),
that is, inference of hidden states and policies from outcomes,
as a process of minimising variational free energy F, with re-
spect to approximate posterior beliefs over hidden variables
Q(A, ST, π). Hence, we obtain the belief update equations from
an approximate inference scheme, the variational inference.We
describe the formal definition of the variational free energy and
the details of the belief update equations for the hierarchical
variant of the generative model in the Methods section.

Deep temporal models

Wewill refer to the extension of active inference to hierarchical
generative models with implicit temporal structure (deep tem-
poral models) as deep active inference (Friston et al., 2018).
Deep temporal models are defined as hierarchical generative
models with increasing levels of hierarchy capturing slower
time scales. Furthermore, different level of the hierarchy are
connected such that auxiliary outcomes at an upper level of
the hierarchy modulate prior beliefs at the lower level of the
hierarchy. This link between neighbouring hierarchical levels
allows formulating message passing algorithms between adja-
cent levels akin to the message passing algorithms used for
sequential inference within a single level of the hierarchy.

As our goal is to describe how the cognitive control and the
resolution of control dilemmas naturally emerge within deep
active inference, we denote as the meta-control state a state, at
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an upper level of the hierarchy, which imposes (via link prob-
abilities) constraints on prior beliefs (e.g., about policies,
states, or state-transitions) at the adjacent lower level.
Importantly, transitions between different realisations of me-
ta-control states are mediated with hierarchy specific control
signals, where a sequence of control signals corresponds to a
policy at a given level of the hierarchy. The model inversion
and formation of beliefs about hidden states, policies, and
meta-control states at an upper level of the hierarchy entrain
the sequential inference process on the level below. Finally,
the control signals at the lowest level of the hierarchy are
mapped to choices (actions).

We will limit the deep temporal model to a two-level hier-
archy which we will use for simulating behaviour in a toy
example below. The two-level deep temporal model presented
in Fig. 1 can be expressed with the following joint probability
distributions at different levels of the hierarchy

Lower level

p O
0
T ; S

0
T ;A

0
;π

0 jo′′k
� �
¼ p A

0
� �

p o
0
1

� ��s01;A0
�
p π

0
; s

0
1js′′k

� �
∏
T

t¼2
p o

0
t

� ��s0t;A0
�
p s

0
t

� ��s0t−1;π0
�
ð4Þ

Where s
0
t denotes hidden states at the lower level at trial t, s

′′
k

hidden states at the upper level during the current kth segment.

As before, o
0
t denotes an outcome, π′ behavioural policy and

A′ the emission probability matrix which defines likelihood of

outcomes o
0
t in different states s

0
t. We use the bar notation in

p A
0� �

to denote the dependence on the experience in past

segments, hence p A
0� � ¼ p A

0 j O
0
T

� �1:k−1� �
, where O

0
T

� �1:k−1
¼ o

0
1;…; o

0
T

� �1
;…; o

0
1;…; o

0
T

� �k−1� �
denotes the sequence

of observed outcomes.
Upper level

p o′′k ; s
′′
k ;A

′′;π′′
� � ¼ p A′′

� �
p π′′
� �

p s′′k jπ′′
� �

p o′′k js′′k ;A′′
� � ð5Þ

where p A′′
� � ¼ p A′′jO′′

k−1
� �

corresponds to an approximate
posterior estimate of state outcome mappings at the end of
the previous (k − 1)th segment. Similarly,

p s′′k jπ′′
� � ¼ ∑s′′k−1

p s′′k js′′k−1;π′′
� �

p s′′k−1jO′′
k−1

� �
, denotes the pre-

dictive probability over the hidden states s′′k in the current
segment.

Note that the full generative model is obtained by multi-
plying conditional joint distributions at different levels of the

Fig. 1 Factor graph representation of the hierarchical generative model
for the presented task. The graph consists of two types of nodes: (i)
Random variables (circles), which can be either evidence variables (red)
whose value is observed or hidden state variables (grey) whose value has
to be inferred. (ii) Factors (squares) that define the relationship between
random variables. At the upper level of the hierarchy, the agent entertains
beliefs (a probability distribution over the set of possible states) about the
current context, context duration, and its meta-control state; hence,
s
0 0
k ¼ c′′k ; d

′′
k ; i

′′
k

� �
, the c-i pair defines the observation likelihood of the

outcome ok at the end of a segment (success or failure). The duration
variable d is not linked to observations but rather modulates the context
transition probability, defining the moment of context transition. The
behavioural policy at the second level of the hierarchy π′′ selects the

appropriate meta-control state for the next segment. The link probability
Lk relates second level states to the prior beliefs about the lower level
states s

0
0 and policies π′. The lower level states factorise into the

chosen options l
0
0;…; l

0
T

� �
and auxiliary context and meta-control

states c
0
k ; i

0
k (fixed states during each segment, hence

c
0
0 ¼ … ¼ c

0
T≡c

0
k , and i

0
0 ¼ … ¼ i

0
T≡i

0
k ) which capture lower level

information about upper level states. Importantly, the auxiliary
context states c

0
k determine currently active observation likelihood, and

the auxiliary control states i
0
k set prior over policies p π′ji′k

� �
at the first

level of the hierarchy. For details see the Methods section.
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hierarchy. Hence, the complete generative distribution is de-
fined as

p O
0
T ; S

0
T ;A

0
;π

0
; o′′k ; s

′′
k ;A

′′;π′′
� �
¼ p O

0
T ; S

0
T ;A

0
;π

0 js′′k
� �

p o′′k ; s
′′
k ;A

′′;π′′
� � ð6Þ

We provide the details on the corresponding approximate
inference scheme and fixed model parameters in the Methods
section. In what follows we will introduce the experimental
task (the generative process) and the corresponding behav-
ioural model.

Results

Toy example

To illustrate emergent meta-control we will use a sequential
decision making task, similar to behavioural tasks in which
participants have to collect points in a series of trials to surpass
a known point threshold (Cuevas Rivera, Ott, Marković,
Strobel and Kiebel, 2018; Kolling et al., 2014). The task can
be considered a generalization of dynamic multi-armed ban-
dits (Gupta, Granmo and Agrawala, 2011) and consequently
an extension to a probabilistic reversal learning task
(Izquierdo, Brigman, Radke, Rudebeck and Holmes, 2017;
Marković, Reiter and Kiebel, 2019). The goal of the task de-
sign is to create situations (contexts) in which exploration is
either beneficial or detrimental to goal-reaching performance.
Hence, an adaptive agent would be incentivised to supress or
boost exploration depending on the hidden context. The task
of this adaptive agent will be to learn useful behaviour for
each context so that on future exposures to already experi-
enced contexts, the agent can quickly adapt its behaviour to
be more exploitative, or if necessary, exploratory. This makes
the task more complex than other multi-armed bandit task
used previously in exploration-exploitation research (Daw et
al., 2006; Laureiro-Martínez et al., 2015; Schwartenbeck et
al., 2019; Speekenbrink and Konstantinidis, 2015).

In the task, runs of five trials form a segment, during which
the agent can collect points in each trial by choosing one of
four different options. Each of these options returns probabi-
listically one blue point, one red point, or no point. The num-
ber of collected points is evaluated after the fifth trial, where
the reward is only given if the agent succeeded to collect at
least four points of the same colour (Fig. 2b). For example, 4
red points and 0 blue points are rewarded, while 3 red points
and 1 blue point are not rewarded. Although this setup and the
following task description may appear quite complex in rela-
tion to typical cognitive control tasks like the Stroop task, we
found that this level of task complexity is required to illustrate

clear behavioural differences between an agent that can adapt
exploratory tendencies and the one that works only in exploit-
ative mode.Wewill elaborate on this point in more detail once
we introduce the task specifics.

The simulated experiment consists of a series of five-trial
segments where a switch to a new context occurs only be-
tween segments, hence at a slower time scale (Figure 2c). A
context determines the probabilities of different point out-
comes associated with each of the four options. Context
changes occur whenever five segments, i.e., 25 trials, have
been completed. The number of trials within a segment and
the frequency of context changes were selected to make the
task difficult enough to illustrate between agent differences.

Importantly, both context and the changes are hidden (not
explicitly indicated). Hence, the agent can infer the current
context only from a sequence of choice outcomes. We defined
six different contexts (Fig. 2a). In three of these contexts,
taking into account expected information gain when selecting
options leads to a higher success probability compared to only
considering the expected value of choices (once the choice-
outcome contingencies are learned). Therefore, these three
contexts incentivise an agent to combine both instrumental
and epistemic value for action selection. In the rest of the
paper, we will refer to these three contexts as EV+, short for
“epistemic value +.” In the remaining three contexts, to be
most successful, an agent should suppress its exploration ten-
dencies (ignore information gain), so we call these contexts
EV−. This means that a goal-directed agent, which employs
meta-control, should adapt explorative tendencies depending
on the context by either suppressing or boosting them.

The six contexts come in three pairs. Each context pair,
e.g., context 1:EV− and 1:EV+ (Fig. 2a), consists of a context
variant EV- in which policy selection should be based only on
the instrumental value, and the context variant EV+ in which
policy selection should be based on both instrumental and
epistemic value. For each of the three context pairs, the vari-
ants EV− and EV+ differ only in the point probability of the
fourth-choice option while the choice-outcome contingencies
of the remaining three options are identical. For example, for
both contexts 3:EV− and 3:EV+, option 1 returns a red point
with 0.8 probability, and options 2 and 3 return a red point
with 0.1 probability each. The one different option is number
4, where in variant EV+ a red point is received every time, but
never in variant EV−. This specific construction of context
pairs has the effect that if an agent knows that the current
context is context 3 (high posterior probability is associated
with that context) but does not know its variant (EV− or EV+),
option 1 has the highest expected reward (0.8 red points) of all
options while the expected reward for option 4 is only 0.5 red
points. This setup makes behaviour of an agent that balances
instrumental value with information gain distinguishable from
an agent that bases its choices only on the instrumental value
(i.e., an agent that maximises expected reward). The agent that
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infers only the context pair but not the variant, e.g., number 3,
will try to maximize expected reward by choosing the option
number 1, whereas the agent that also aims to reduce its un-
certainty about current context (variant EV− or EV+) would
choose option 4. As in real life, sometimes goal-directed ex-
ploration pays off, and if an agent that takes into account

information gain finds itself in one of the three context vari-
ants EV+, it will outperform an agent with purely exploitative
behaviour, because it will correctly infer the context and con-
sequently select the option with highest return. However, in
the three context variants EV−, an agent maximising instru-
mental value only will not differentiate between context

Fig. 2 Illustration of the task structure. a Each context is defined by the
coloured point probabilities associated with four different options. In the
illustration the height of the coloured bar corresponds to the probability of
obtaining a point of the corresponding colour (or no point denoted by a
grey bar). Possible point probabilities are 0, 0.1, 0.8, and 1. In context
variants EV− (top row), agents maximising only instrumental value will
on average bemore successful in reaching the segment-wise goal (surpass
the threshold of four points of a single colour) than agents balancing both
instrumental value and epistemic value. The opposite behaviour will be
on average more successful for context variants EV+ (bottom row).
Furthermore, the only difference between each context pair, e.g., contexts
1:EV− and 1:EV+, is the option which returns points with certainty,
which corresponds to option 4 in each context. All other options return
a blue, a red point or no point with 0.8 probability and the other two
outcomes with 0.1 probability. Note that option types (point probabilities
associated with an option) are shared across context, e.g., the point prob-
abilities (0.8 blue point, 0.1 red point, 0.1 no point) are used four times in

contexts 1:EV−, 1:EV+, 2:EV−, and 2:EV+. If an agent does not know
the current context variant (EV− or EV+), the expected return of choos-
ing the fourth option is lower compared to options associated with 0.1-
point probability, e.g., option 1 in context pair 3:EV− and 3:EV+.
However, option 4, which returns a point (or no point) with certainty, is
the most informative, because it resolves the uncertainty about the context
variant EV− or EV+. b Trial level task structure in two consecutive
segments k and k + 1. To succeed, an agent has to collect at least 4 points
of a single colour within a segment. For illustration purposes, we have
assumed that the agent had selected option 2 five times in the kth segment
but failed to reach the threshold. In the next segment, the agent selected
the option 4 five times and passed the threshold. The true point probabil-
ities are not known to the agent but only visualised here for clarification. c
Context dynamics across segments that was fixed across simulations. The
presence of circles denotes segments under context variants EV−, and the
absence segments under context variants EV+.
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variants and stick with the second-best option. Consequently,
it will collect on average more reward (i.e., has reached more
often the goal of collecting four points at the end of a segment)
than an agent that also takes into account information gain
hence tries to reduce context uncertainty.

Therefore, this nontrivial task design gives an inherent ad-
vantage to the agent who can adapt its exploratory tendencies
(reliance on epistemic value, that is, information gain) de-
pending on its beliefs about the current context and context
variant. Furthermore, if the meta-control enabled agent can
predict the moment of change and the upcoming context var-
iant, this will allow it to adjust its behaviour in anticipation of
the otherwise hidden change of context.

The following is our attempt to demonstrate that, given the
task, we can build a probabilistic inference agent that balances
between its exploratory and exploitative tendencies, depend-
ing on the beliefs about contexts and meta-control states at the
upper level of the hierarchy. Importantly, agents doing the
task will learn task parameters during a training period, just
as human participants would do. Specifically, agents will have
to learn the outcome probabilities (blue point, red point, and
no point) associated with each option, in each of the six con-
texts to be successful in the task and the likelihood of success-
fully completing a segment in different meta-control states
given different contexts. The agent is informed that there are
only six different contexts and that the context might change,
on average, every five segments, as we fix the model param-
eter capturing context switch frequency. Initially, we will con-
sider a hiddenMarkov model for representing context dynam-
ics, similar to related work in sequential inference problems
(FitzGerald, Hämmerer, Friston, Li and Dolan, 2017;
Schlagenhauf et al., 2014). Note that the hiddenMarkov mod-
el implicitly assumes maximal unpredictability of the moment
of change, for a known change frequency. It often is the case
in sequential decision making tasks used in cognitive neuro-
science that the moments of change are actually unpredictable
(Meyniel, Maheu and Dehaene, 2016). However, once one
introduces temporal structure to the moments of change, the
framework of hidden semi-Markov models is better suited
than HMMs to represent this temporal structure and use it
for predicting moments of change. Therefore, in a subsequent
set of simulations, we illustrate anticipatory meta-control by
providing the agent with beliefs about the durations between
subsequent changes using semi-hidden Markov models
(Marković et al., 2019).

Behavioural model

We constructed the task such that the context is a hidden
variable, which is not directly observable but can be inferred
with varying certainty depending on the observed outcomes
and the specific sequence of actions the agent performs. As the
agent cannot directly observe the underlying hidden states,

e.g., which of the six contexts is the current one, the agent
has to form beliefs over possible contexts and make decisions
based on these beliefs, and thereby resolving the exploration-
exploitation dilemma. This means that the decisions of the
agent are made under uncertainty about the current context.
To define an agent, we will use a two-level deep temporal
model as described above.

We depict the hidden states and observables (random var-
iables) as circles in the factor graph shown in Fig. 1. We use x′′

to denote hidden states at the second level of the hierarchy and
x′ to denote hidden states at the first level. Similarly, ok de-
notes observations (evidence) at the second level of the hier-
archy, which is defined as a binary variable (success or fail-
ure), and o1:T ¼ o1;…; oTð Þ a sequence of observations at the
first level of the hierarchy. At any trial t an observation ot at
the first level of the hierarchy consists of three factors:

point type ft ∈ {0,1}2,
total number of points of each type wt∈ {0,…,5}2,
selected option lt ∈ {1,…,4}.

Hence ot = (ft, wt, lt). Note that the point type ft is expressed as
a two-dimensional vector (Null – ( 0, 0), Blue – (1, 0), Red -
(0, 1)) and the total number of points wt is obtained as

wt ¼ f t þ wt−1 ¼ w0 þ ∑
t

n¼1
f n

where w0 = (0, 0). At the lower level of the hierarchy the hid-
den states s

0
1:T consist of the following factors (l

0
t; i

0
k ; c

0
k ), se-

lected option, auxiliary meta-control state and auxiliary con-
text. Note that i

0
k ; c

0
k are constant variables at the lower level,

which are linked to the dynamic counterparts on the upper
level. The auxiliary variables are necessary to guide the learn-
ing of the observation likelihood A′, and policy selection at the
lower level. At the upper level of the hierarchy, hidden states
s′′k factorise into context c′′k , context duration d ′′k , and meta-
control state i′′k , hence s

′′
k ¼ c′′k ; d

′′
k ; i

′′
k

� �
.

The agent’s generative model of the task represents the
known probabilistic mappings between hidden states, their
transitions, and outcomes. We will assume fixed state transition

probabilities, p s′′k js′′k−1;π′′
� �

and p s
0
k js

0
k−1;π

0� �
. In other words,

the agent has a predefined knowledge about the state transitions
at both levels of the hierarchy. In contrast, the beliefs about state

outcome probabilities, p ok js′′k ;A′′
� �

and p otjs0t;A
0� �
, are not

known a priori and are learned throughout the task by updating
beliefs about state-outcome contingencies A′ and A′′, which
define the likelihoods.Hence, the agentwill learn to associate each
of the six contexts with a specific probabilistic option-outcome
mapping (Fig. 2).

Importantly, to model beliefs about context dynamics, we
will use hidden semi-Markovmodels (Yu, 2010) that combine

beliefs about hidden states (c′′k ) with beliefs about their
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duration (d′′k ). In practice, this modelling choice allows us to
explore how the precision of beliefs about the hidden moment
of change interacts with meta-control capabilities of the agent.
Here, we will use the representation of the hidden semi-
Markov model also for simulating behaviour under the hidden
Markov assumption, as this represents a special case of the
semi-Markovian state change representation (seeMethods for
more details).

To reach the segment-wise goal of collecting at least four
points of a single colour, the agent has to plan ahead and select
behavioural policies, i.e., sequences of actions. When the
agent has learned the relation between states and outcomes
at both levels of the hierarchy, the agent can make predictions
about the consequences of selecting a specific policy, within
each segment at the lower level of the hierarchy and between
segments at the upper level of the hierarchy. Importantly, the
policy selection at both levels is defined asminimisation of the
expected free energy (EFE). Minimising EFE corresponds to
maximising the expected instrumental value (IV), i.e., the ex-
pected amount of reward and maximising the epistemic value
(EV), that is, the information gain (see e.g., Kaplan and
Friston, 2018). Note, that at the lower level of the hierarchy
the instrumental value is proportional to the expected proba-
bility of collecting 4 points of a single colour at the end of the
segment and at the upper level to the expected probability of
succeeding in the next segment. As outlined in the previous
section, we have designed our task such that the fourth option
in each context (Fig. 2) carries the highest information gain,
because it clearly differentiates between the context variants
EV− and EV+. In contrast, the expected instrumental value of
fourth option is relatively low compared with the second-best
options, when the context variant is not known.

Simulations

We will proceed with simulations in three stages. First, to
illustrate the basic features of the model, we will show the
behaviour of agents that are fixed in their balance between
information gain and expected reward, that is, between an
explorative versus exploitative stance. Hence, these agents
do not perform meta-control. Second, we will introduce adap-
tive agents that can supress or boost its exploratory tendencies,
hence resolve the exploration-exploitation dilemma by
adapting its meta-control states in a context-dependent fash-
ion. Third, we will show that by utilising the framework of
hidden semi-Markov models we can introduce anticipatory
behaviour enabling an agent to change its meta-control state
in anticipation of a predicted context switch.

In the first illustrative simulation, we exposed agents to the
task for 200 segments, i.e., 1,000 trials. In Fig. 3, we show
group mean success rates of three different agent types, where
each group consists of n = 100 agents of the same type. One of

these agents simply serves as a reference random choice (RC)
agent. The other two agent types differ in their policy selection
objective. In one case, the policy selection objective corre-
sponds to the instrumental value (IV) only and in the other
case to the expected free energy (EFE), i.e., the combined
instrumental and epistemic value. In the task, maximizing IV
only results in exploitative behaviour of an IV agent while an
EFE agent is expected to show goal-directed exploration be-
cause of the EFE’s epistemic value component. We assume
that the two agents have sufficiently learned the choice-out-
come probabilities for the six contexts after 100 segments.
Note that we used an alternating pattern of context variants
EV− and EV+ to maximize the need for adapting to a new
context, see also below. As expected due to the task design,
there are large performance differences between context var-
iants EV− and EV+. This is because in context variants EV+,
for each of the three contexts, there is the fourth option that
returns a point with certainty, see the task description above.
The EFE agent reaches the highest performances in variants
EV+, because the affinity toward informative choices enables
the agent not only to resolve the uncertainty about the current
context but also to collect points with maximal probability. In
EV− variants, the EFE agent has clearly a worse performance
than the IV agent.

To understand the difference between the mean success
rates of the IV and EFE agents in both context variants EV−
and EV+, we now take a closer look at their choice probabil-
ities. In Fig. 4, one can see that the EFE agent is more likely to
select the fourth option, which is the most informative about
the current context (Fig. 2a). This allows the agent to resolve
uncertainty about the context rapidly, leading to higher per-
formance in EV+ context variants and lower performance in
EV− context variants as initial trials are used to reduce context
uncertainty and identify the true context.

Adaptive control of the exploration-exploitation
dilemma

Note that the relative contributions of the instrumental and
epistemic value to the policy selection were fixed in both the
IV and EFE agent. However, one could argue that agents
should be able to adapt their behavioural mode depending
on the context, i.e., use autonomously controlled contributions
of the two value terms for policy selection, akin to human
meta-control.

We implemented the conceptual idea to enable such meta-
control in an agent by linking the inference over meta-control
states, which define contributions of the instrumental and ep-

istemic values to policy selection. These meta-control states

i′′k are part of the second level states s
′′
k (see the graphical model

in Fig. 1) and linked to each context via observations of suc-
cess or failure in each segment. Specifically, the meta-control
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Fig. 3 Success rates of three different agents in six different contexts. Group
mean success rates for the expected free-energy agent (EFE; blue lines),
instrumental agent (IV; orange lines), and a random choice agent (RC; green
lines), which randomly selects one of the four options on a trial with equal

probabilities. The black dashed line denotes the expected success rate for
always selecting the option that returns a coloured point with the highest
probability. We use thinner lines to mark mean success rates in early context
blocks and thicker lines for context blocks later in the experiment.

Fig. 4 Probability of selecting different options in different contexts and
context variants. The probabilities are estimated from 100 simulations for
the IV and EFE agents and pooled across the last 100 segments of the
experiment. The three context variants EV− are shown in the upper row
and the three context variants EV+ in the lower row. The EFE agent (blue
bars) selects the informative options (option type 100%-1) with the

highest rate when exposed to variant EV+, and is also more likely to
select the informative option (option type 100%-0) when exposed to
variant EV− compared with the IV agent (orange bars). For
visualisation, we have pooled options that return a point with high
probability (independent of the colour, 80%-1 and 100%-1) and options
that return no points with high probability (80%-0 and 100%-0).
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states adapt the selection of policies by changing the prior over
policies at the lower level that is proportional to the expected
free energy, see also (Parr and Friston, 2019). Intuitively, the
prior over policies can be interpreted as a behavioural mode or
a strategy, because the prior simply tells an agent which action
sequences it should currently prefer. Importantly, the prior
over policies, depending on the meta-control state, will either
take the epistemic value term into account or ignore it.
However, the uncertainty over the currently preferred meta-
control states will lead to a continuous weighting of the epi-
stemic value term. The adaptive weighting biases the set of a
priori viable policies, by downscaling or upscaling the infor-
mation gain (see Eq. (1) and Priors over policies – expected
free energy for more details), which in turn influences the
computations of the posterior over policies. We anticipate that
such an adaptive agent will learn to be biased towards exploit-
ative behaviour in context variants EV− and towards explor-
ative behaviour in context variants EV+. In other words, an
observer of the agent’s behaviour would possibly conclude
that this agent resolves the exploration-exploitation dilemma
by exerting meta-control.

Critically, the meta-control states do not represent external
states of the environment but rather internal modes of behav-
iour. Note that the prior over policies does not exclude any
policies in a hard-wired fashion. Rather, some policies be-
come more likely to be selected than others.

To show this, we will compare the behaviour of this
adaptive agent (ADP) to the behaviour of the IV and EFE
agents, which we used in the simulations above. These
two nonadaptive agents represent the two extreme modes
of the adaptive agent: the IV agent corresponds to a zero
weighting of the information gain, and the EFE agent to
the unit weighting of the information gain (see Priors
over policies – expected free energy for details). In Fig.
5, we show the group mean success rates of the adaptive
and the two nonadaptive agents, using the same task de-
sign (as shown in Fig. 2). One can see that the adaptive
agent is on average similar in performance to the EFE
agent in the context variants EV+, which shows that the
adaptive agent increases the weight of the information
gain in EV+ context variants. However, in context vari-
ants EV−, the performance of the adaptive agent is slight-
ly better compared with the EFE agent (but still far below
the IV agent).

The reason for this apparent nonadaptation to the context
variants EV− are shown in Fig. 6a, where we plotted the
trajectories of the weighting α of the epistemic value for pol-
icy evaluation, i.e., a value of 1 indicates that the adaptive
agent balances information gain with instrumental value,
whereas a value of 0 indicates policy selection based only
on the instrumental value. Due to the learning in the first half
of the experiment, the dynamics of the weighting factor α are
history dependent, as can be seen for the trajectories of 100

agent instances doing exactly the same task with the same
context sequence but with differently sampled outcomes (see
Fig. 6a, blue lines). This implies that the stochasticity of the
outcomes interacts with the learning process on both levels of
the hierarchy generating unique, adaptive behaviour that is
sensitive to previous experience.

To further quantify the differences between the adaptive
agent and the two nonadaptive agents, we looked at two
other quantities: (i) The context inference accuracy (Fig.
7a), defined as the probability that the agent correctly iden-
tifies the current context (measured by the highest posterior
probability for the true context). The adaptive agent
achieves high levels of inference accuracy in both context
variants. In other words, the adaptation of the behavioural
modes does not have a detrimental impact on the ability of
the adaptive agent to resolve its uncertainty about the cur-
rent state of the world. This is in contrast to the IV agent,
which on average has inaccurate beliefs about the current
context. Note that the IV agent also is capable of explora-
tion, albeit only random exploration, which on average
leads to a lower information gain. (ii) The success proba-
bility of different agents computed over all repetitions of
the same context (Fig. 7b). In context variants EV+, the
success probability of the adaptive agent is as high as the
success probability of the EFE agent. However, in context
variants EV−, the adaptive agent’s success probability is
lower compared with the one of the IV agent, but signifi-
cantly higher than the EFE agent (p < 0.05 as per Wilcoxon
signed-rank test for all relative segment values). This lower
performance of the adaptive agent compared with the IV
agent can be directly related to the wide distribution of
trajectories of the weighting factor α as shown in Fig. 6a.
Many of the 100 adaptive agents, due to the high
stochasticity of the task (probabilistic sampling of out-
comes), do not learn how to behave exploitatively in con-
text variants EV−. This point of variability in experience-
dependent adaptation is stressed by showing the average
success probability of a subset of ten instances of the adap-
tive agent, which learned to down-regulate α. We selected
these ten agent instances using the criterion of a downreg-
ulated epistemic weight below the 0.5 level in context var-
iants EV−. One can clearly see (Fig. 7b, grey line) that the
average success probability of this subset of adaptive
agents is close to the performance level of the exploitative
agent.

Therefore, the overall low group mean performance
of the adaptive agent in the EV− context variants may
be explained by the difficulty of downregulating explor-
atory tendencies in the presence of various sources of
uncertainty. This is because the adaptive agent has to up-
date continuously its beliefs about the current context, choice
probabilities, and relations between the meta-control states,
contexts, and the success probability for a segment. In other
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Fig. 5 Success rates of an adaptive (controlled) and two non-adaptive
agent types. Group mean success rate for 100 agents of the adaptive
(ADP), EFE minimising (EFE), and IV maximising (IV) agent type,
plotted over the second half of the experiment. The horizontal black
dashed line denotes the expected mean success rate for always selecting
an option which returns a coloured point with probability p = 0.8. Note

that the success rates of the adaptive and the EFE agents are similar in the
context variants EV+ as the mean performance overlap. The black dashed
line denotes the expected success rate for always selecting the option
which returns a coloured point with highest probability. We use thinner
lines to for early context blocks and thicker lines later five blocks of the
same context.

Fig. 6 Adaptive weighting of the information gain. (a) Trajectories of the
weighting α of the epistemic value contribution to the policy selection.
The closer this value is to zero the more exploitative the agent becomes.
To show the variability of the 100 agents’ individual α trajectories, we

plotted the median α trajectory (yellow), the average α trajectory (red),
and the individual α trajectories (blue). (b) For comparison, the context
change dynamics limited to the last 100 segments of the simulated
experiment.
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words, the adaptive agent works as expected, but the
stochasticity of its task environment keeps the adaptive agent
in a limbo of uncertainty and drives the agent often into an
exploratory mode. This suggests that the adaptive agent could
fare better in our task environment if we reduced the agent’s
overall uncertainty by providing it with a more accurate rep-
resentation of changes in the task environment.

So far, we have limited the agent to an imprecise prior on
when to expect a context change, i.e., an agent expects a
change after each segment with probability p = 1/5. It is rea-
sonable to assume that a human participant would learn after
an extended period of 100 segments (500 trials) that there
might be a context change around every 5 segments, where
the stochasticity of the task still makes the exact duration of a
context difficult to predict, but at least there should not be an
anticipation that there is a context change after each segment.
If we gave such a prior about the duration between context
switches to an adaptive agent, it would anticipate the moment
of change and maintain high precision on the current context
for a longer time. In the next section, we will show how
representing the moment of change can improve the perfor-
mance of adaptive agent and bring it much closer to the

performance of the exploitative agent (IV agent) in EV− con-
text variants.

Anticipatory control of behaviour

The agents described so far were limited to expecting
context change in every segment with a constant switch
probability (of p = 1/5), corresponding to a standard
hidden Markov model. Here, we enable agents to rep-
resent the temporal structure of the task better and an-
ticipate a switch around every five segments: to under-
stand how introducing temporal representations drives
anticipatory behaviour we will not consider a precise
prediction of a switch after five segments, but a low
uncertainty over possible durations between subsequent
changes, see Methods for details. We introduce temporal
expectation about changes by providing the agent with a
more precise prior over context durations, that is, the num-
ber of segments before the next change occurs. This rep-
resentation corresponds to replacing the hidden Markov
framework with the hidden semi-Markov framework
(Marković et al., 2019).

Fig. 7 Quantification of between-agent differences in group context in-
ference accuracy and group mean success rates. (a) Context inference
accuracy histogram for the two contexts variants A and B, for the adaptive
(green), exploratory (orange) and exploitative (violet) agent type, estimat-
ed over the last 100 segments of the experiment and defined as group
probability of assigning the posterior mode to the current context. (b)
Average success probability estimated over n = 100 instances of each
agent type, over the last 100 segments of the experiment. We used the
last 100 segments of the experiment to estimate success probability per

instance of each agent type. The relative segment number denotes the
segment number relative to the moment of context change, where zero
corresponds to the segment at which the context changed. The error bars
show the 25th and the 75th percentile. The same colour scheme as in (a)
applies, where in addition, we show as black solid lines the average
success probability of a subset of 10 instances of the adaptive agent which
were the most efficient in down-regulating exploratory behaviour (see
text for more details).
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If the adaptive agent can form predictions about the mo-
ment of change, it can use that prediction to adapt its meta-
control states and any control signal a priori, before observing
outcomes of the upcoming segment. To illustrate this, we
show in Fig. 8 prior beliefs about the meta-control state
(which is represented by the weighting factor αÞ for two var-
iants of an adaptive agent, one with imprecise predictions as
we used in the simulations above, and one with precise pre-
dictions, seeMethods for details. Importantly, one can see that
the agent with precise predictions also changes its prior beliefs
about its meta-control states when anticipating change (i.e., at
the relative segment number 0 the group mean prior beliefs are
reduced already before the change was observed in terms of
outcomes). In contrast, the agent with imprecise predictions

(i.e., the adaptive agent described above with a constant
switch probability of p = 1/5) changes its prior beliefs only
after interacting with the environment and observing a change
of context at relative segment number 1.

How does the precise prediction of context changes modulate
an agent’s performance in the two context variants EV− and
EV+? In Fig. 9, we show a comparison of success probabilities
of the three agent types. As expected, we find that all agent types
benefit from precise predictions of context changes, in compari-
son to imprecise predictions, as shown in Fig. 7b. In context
variant EV−, we find a significantly higher performance (p <
0.05 per Wilcoxon signed-rank test) of the adaptive agent, rela-
tive to the EFE agent, for relative segments 2, 3, and 4. We
expect that increasing the number of instances (simulations) will

Fig. 8 Modulation of prior beliefs over meta-control states by the antic-
ipation of upcoming context change. (Left) The adaptive agent with im-
precise change prediction, where prior probabilities over meta-control
states during two types of transitions are plotted. These prior probabilities
are entertained by the agent after the end of a segment before observing
the outcome of the first trial of the next segment. One transition type
changes from a context variant EV− to EV+ (blue), the other from a
context variant EV+ to EV− (orange). The solid lines denote the mean,
estimated over multiple transitions between two context variants, and the

error bars show the 10th and 90th percentile. (Right) The agent with
precise prediction, in comparison to the agent with imprecise prediction,
adapts its prior belief over the meta-control state before having seen
evidence for this change. This can be seen by comparing the prior prob-
abilities of the two agents at relative segment number 0. One can also see
that the agent with precise prediction has on average more extreme prior
probabilities (closer to 0 and 1). This indicates that precise change pre-
dictions also enables the adaptive agent to gain more certainty about the
current behavioural mode.

Fig. 9 Success probability of three different agent types with strong
change prediction. Mean success probability estimated as the average of
success probabilities of n = 100 instances of each agent type in (left)
context variants EV− and (right) in context variants EV+. Note that in
context variant B the adaptive agent (green line) shows the same mean
success probability as the explorative agent (orange line) so that the green

line is hidden from view. We used the last 100 segments of the
experiment to estimate success probability relative to the moment of
change. The relative segment number denotes the segment number
relative to the moment of context change, where zero corresponds to
the segment at which the context changed. The error bars show the 25th

and the 75th percentile.
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trivially lead to significant differences for all comparisons.
Furthermore, as the higher average performance of the adaptive
agent is stable over repeated simulations (data not shown), we
can exclude a chance occurrence of performance differences. In
contrast to adaptive agents with imprecise change prediction, we
find that with a precise change prediction the majority of agent
instances (90 of 100) down-regulate the use of epistemic value in
context variants EV− (<0.5 level as above). Note that the IV
agent is insensitive to the epistemic value (information gain)
and therefore does not base policy selection on its subjective
uncertainty about the current context. As a consequence, the IV
agent will stick with the less informative options and have a
higher chance of succeeding in context variants EV−. This be-
comes obvious for the relative segment 0 in Fig. 9, where the
adaptive and EFE agents aim at reducing context uncertainty and
at relative segment 4 just before another context change. Here,
although the two agents have a strong prior for change predic-
tion, they still expect the change with some probability at relative
segment 4 already so that they experience increased uncertainty
about their current context.

Another view at the results shown in Fig. 9 is to not focus on
the differences in mean success probabilities, as one would in the
analysis of a psychological experiment, but to evaluate agent
performance from a competitive “survival of the fittest” perspec-
tive. The question is then what agent type, after an initial learning
period, has the highest chance to produce the best-performing
agent instances: the nonadaptive or the adaptive, controlled
agent? In Fig. 10, we show the survival function of cumulative
successes of the three agent typeswith precise change predictions
(ADP, EFE, and IV). The survival function is estimated over n=
100 simulations of each agent type, and as in Fig. 9, we used the
last 100 segments (where we pooled over context variants EV−
and EV+) of the experiment to estimate success probability per
instance. Critically, we found that 50% instances of the adaptive
agents achieved a success probability ≥80%, leading to the larg-
est probability of observing a high performing adaptive agent

instance among the three agent types. For example, in an envi-
ronment where an agent requires at least an 80% success proba-
bility to survive, this world would be populated mostly (66%) by
adaptive agents (i.e., agents with meta-control).

Discussion

We have proposed a model that casts meta-control as an arbi-
trating, context-specific mechanism underlying planning and
decision making under uncertainty. We used the example of
the exploration-exploitation dilemma to illustrate how an agent
adapts its behavioural modes (encoded as the priors over poli-
cies), i.e., its internal preferences to specific sequences of ac-
tions. Critically, the agent arbitrates between explorative and
exploitative behaviour by changing the relative weight of epi-
stemic value (expected information gain) relative to the instru-
mental value (expected reward) when evaluating the posterior
probability of different policies. As we have shown, this con-
text-specific weighting results in adaptive transitions between
explorative or exploitative behaviour, depending on the context
inferred by the agent. The key element of the proposed model
are meta-control states, which encode the different modes of
behaviour, and can be used to learn the association between
contexts and appropriate modes of behaviour. We have shown
that inference over meta-control states and control signals
(which make the agent behave according to its specific meta-
control states) leads to adaptive meta-control as a function of
the agent’s beliefs about the current context.

Various experiments utilizing restless multi armed bandits
typically vary the mean payoffs over trials, e.g., (Daw and
Doya, 2006; Speekenbrink and Konstantinidis, 2015) where
the considered behavioural models implement different strat-
egies of how humans may balance exploitative and explorato-
ry actions. Experiments based on these dynamic environments
ask the question how humans sample the different arms to stay
on top of relative changes of mean reward rates (Speekenbrink
and Konstantinidis, 2015). However, in an everyday environ-
ment, we often experience situations (contexts) that
incentivise or punishes either exploration or exploitation.
Furthermore, we have often already learned what behavioural
modes are the best for specific contexts. Hence, a typical
problem is not so much to compute the balance between ex-
ploration and exploitation but rather to identify the current
context and apply the previously learned balance for that spe-
cific context. In such a setup, the problem of deciding which
behavioural mode to use is reduced to identifying the specific
context we just got into. Hence, we expect that the better
agents are in reducing the uncertainty about various aspects
of the environment (hidden states and their dynamics), the
better they will be in controlling their behaviour. In the present
toy example, we show that the context-dependent level of
exploration can be learned and inferred in an online fashion.

Fig. 10 Survival function of success probabilities. Survival function (i.e.,
complementary cumulative distribution) for three different agent types
with precise change prediction, using the same simulations as in Fig. 9
over the last 100 segments of the experiment. We pooled across the two
context variants EV− and EV+. The adaptive agent (ADP) has the highest
chance of generating a high performing instance over most success
probabilities.
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Note that the model currently does not make much use yet of
the hierarchical architecture, e.g., by introducing context
change dependencies. Such an extension would allow agents
to plan and navigate within the contextual space itself and can
be applied to future experiments. Although we did not present
a behavioural experiment, we would expect that the precision
of participants’ beliefs about the current context and
the anticipation of context changes will be inversely propor-
tional to their reaction times. More generally, the hierarchical
representation of control-dilemmas can help us to relate rep-
resentational (belief) uncertainty at different levels of the hi-
erarchy to specific features of human decisionmaking, such as
reaction times, choice certainty, and specific behavioural
strategies.

Related approaches and algorithms

Two components of any decision-making algorithm are central
to the resolution of the exploration-exploitation dilemma: (i) an
inference (learning) algorithm which defines how an agent up-
dates their beliefs and learns to represent the latent dynamics
based on a sequence of performed actions and observed out-
comes; (ii) an action selection algorithm which defines how an
agent chooses next action based on its current beliefs. How
humans learn a latent dynamical structure and update their be-
liefs about a changing world under various sources of uncer-
tainty (Dayan and Angela, 2003) has been a key topic of neu-
roscience research for at least a decade (Behrens, Woolrich,
Walton and Rushworth, 2007; Doya, 2002; Mathys,
Daunizeau, Friston and Stephan, 2011; McGuire, Nassar,
Gold and Kable, 2014; Meyniel, Sigman and Mainen, 2015;
Nassar,Wilson, Heasly andGold, 2010). Althoughwe illustrate
learning and inference from the perspective of variational infer-
ence, in practice, any learning algorithm and an approximate
inference scheme would be viable and may be related to active
inference and minimisation of the expected free energy. The
critical point to establish this relationship is to define action
selection as a balance between maximisation of expected re-
ward and expected information gain, which are functionals of
the posterior beliefs about latent states of the world.

Therefore, given an approximate inference scheme (which
comprises the learning algorithm) one can define action selection
either as direct minimisation of the expected free energy, or as an
approximation of that process. For example, commonly used
algorithms, such as upper confidence bound (UCB) (Garivier
and Cappé, 2011) and Thompson sampling (Agrawal & Goyal,
2012), can be seen as specific approximations to the process of
minimising expected free energy, which balances expected value
with both random and directed exploration (Schwartenbeck et al.,
2019). The combination of random and directed exploration is an
important feature of human behaviour (Wilson et al., 2014). The
UCB algorithms rests on balancing the expected reward and the
confidence bound, which can be seen as an approximation to the

expected information gain. Similarly, Thompson sampling or
random exploration can be obtained in the limit of low action
precision (small γ). Although a direct comparison betweenUCB,
Thompson sampling, and active inference would clarify their
correspondence, we leave such comparison for future works fo-
cused specifically on establishing the relation between different
approaches.

Finally, we would like to stress that the take-home message
from our results for the emergence of meta-control between ex-
ploration and exploitation is not how exactly the update equa-
tions are implemented but rather that a hierarchical representation
is employed. Furthermore, this type of meta-control rests upon
the interaction between different levels of the hierarchy, the re-
duction of uncertainty about latent states of the world, meta-con-
trol states, and actions (policies) at different levels of the hierar-
chy, and finally selection of hierarchy-specific control signals
which balance expected value and expected information gain.

Meta-control: mapping of contexts to strategies

The proposedmodel describes a way to compute meta-control as
a way of associating specific contexts with specific behavioural
policies (modes of behaviour). Crucially, this is precisely theway
that Heilbronner and Hayden (2016) describe in a recent review
the hypothesized function of dorsal anterior cingulate cortex
(dACC). In their section “Mapping contexts to strategies,” they
write, “We propose, therefore, that the dACC embodies a type of
storage buffer that tracks task-relevant information to guide ap-
propriate action.…” We speculate that the inference, that is, ev-
idence accumulation about the meta-control states is implement-
ed in dACC. This would explain why dACC tracks task-relevant
information as would be required when inferring the context and
the appropriate meta-control state, which is used for guiding
concrete behaviour. This view is congruent with proposals that
dACC is involvedwhen switching away from the current task set
(Collins and Koechlin, 2012; Duverne and Koechlin, 2017;
Gruber, Diekhof, Kirchenbauer and Goschke, 2010) or an ongo-
ing task (Kolling, Behrens, Mars and Rushworth, 2012), where
the idea is that dACC does not only represent the ongoing con-
text, including task-relevant states and prior over policies but also
potentially relevant alternative contexts and in particular their
associated prior over policies.

In the proposedmodel, the representation of the current and
potentially relevant alternative contexts is the only way the
agent can infer, when faced with uncertainty about the current
context, the appropriate setting of the meta-control states. In
other words, the reason why dACC seems so involved in
representing task-relevant and potentially task-relevant states
may be that inference about the current context is typically not
straightforward as there are several sources of uncertainty that
will obscure context identity and must be routinely resolved
by the brain, even in well-controlled experimental settings. It
also is important to note that Heilbronner and Hayden refer to
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“strategies” and describe dACC’s function as “guiding ac-
tion.” This is important because in the proposed model, me-
ta-control states do not select actions directly but instead mod-
ulate the action selection process by adapting the prior over
policies. This means that the prior over policies shapes viable
behavioural strategies as the prior constrains the space of
available policies and supresses selection of policies that were
associated with lower performance contexts.

Control signals

Assuming that dACC guides the action selection process
(Heilbronner and Hayden, 2016), it is an open question
what control signals are effectively sent to lower motor
hierarchies, such as primary motor cortex? For example,
Shenhav et al. (2013) argue that the brain should com-
pute a control signal of a specific identity (what is con-
trolled?) and a specific intensity (how strongly?) where
it is an open question how these control signals are
computed and how they modulate concrete action selec-
tion in a given task. It is precisely this sort of quanti-
tative questions that one may address using the pro-
posed model. For example, in Fig. 6a, we show how
much the epistemic value contributes to action selection
in a specific context and specific trial. These variations
directly modulate the prior over policies and can be
readily interpreted as a control signal of specific identity
(what policies are preferred) and intensity (how high is
the prior for each policy). In other words, the proposed
model and variants may be used in the future for mak-
ing testable predictions how strong specific actions are
preferred in a given trial, for a specific experimental
sequential decision-making task where participants have
to plan under uncertainty, in order to reach goals.

Meta-reasoning as context inference

For artificial agents, another prominent control dilemma has
been subsumed under the topic of rational meta-reasoning,
i.e., how agents can select a strategy that selects actions in
time and strikes a balance between expected computational
costs and expected performance (Boureau et al., 2015;
Gershman, Horvitz and Tenenbaum, 2015; Lewis, Howes
and Singh, 2014; Lieder and Griffiths, 2017). Here, an inter-
esting research question is whether one can reduce this type of
meta-control to, as proposed here, context learning and prob-
abilistic context inference. The idea is that previously encoun-
tered contexts enable the agent to learn a prior over policies for
this context; see Maisto, Friston and Pezzulo (2019) for a
recent example for modelling the arbitration between habits
and goal-directed control. As we have shown, the agent can
learn for each of these contexts a prior over policies, which
can be considered the set of default behaviour of an agent in

this specific context. If the brain used such a discrete contex-
tual tiling of its environment, phenomena, such as maladap-
tive habits, where meta-reasoning seems short-circuited, could
be at least partially explained by suboptimal context inference,
as may be the case in Pavlovian to Instrumental Transfer ex-
periments (Garbusow et al., 2014).

Beyond exploration-exploitation: extension to other
cognitive control dilemmas

The general question of meta-control, i.e.. how humans infer
how to make their decisions, results in a wide range of experi-
mentally established cognitive control dilemmas. Three exam-
ples of these are (i) the goal shielding-shifting dilemma which
relates to a problem a decision maker faces when pursuing a
long-term goal in multi-goal settings. To reach a long-term goal,
the agent has to ignore (shield) competing goals to prevent pre-
mature goal shifts (Goschke and Dreisbach, 2008). However, the
agent has still to be aware of the existence of alternative goals as
in dynamic environment agent should be able to flexibly switch
between goals and adapt behaviour to changing task demands or
reward contingencies. (ii) The selection-monitoring dilemma re-
lates to the problem a decisionmaker faces when deciding to pay
attention to a specific part of the environment while trying to
reach a goal (Goschke and Dreisbach, 2008). Typically, not all
available information is relevant for the task at hand, and paying
attention to all of it would be detrimental for performance.
However, completely ignoring currently irrelevant information
would prevent the agent from noticing a crucial change in the
environment and adapting its behaviour. (iii) The anticipation-
discounting dilemma relates to the problem a decision maker
faces when having to decide whether or not to forgo an imme-
diate reward and wait for a delayed but potentially more substan-
tial reward (Dai et al., 2018; Kable, 2014; Scherbaum et al.,
2013). We speculate that the proposed modelling approach spe-
cific to the exploration-exploitation dilemmawill enable progress
into determining the computations of how the brain resolves
these and other meta-control dilemmas. The key conceptual idea
is to build on the assumption that control dilemmas can be for-
mulated as an inference problem over external states (contexts),
internal states (meta-control states), and control signals (actions).
For example, the selection-monitoring dilemma also can be un-
derstood as a hierarchical inference problem in which an agent
has to decide to which aspect of the environment it should pay
attention to. The probabilistic hierarchical inference would, as
we have shown here, enable an agent to infer and predict that
the context might change and at the same time infer its behav-
ioural mode, which is the most appropriate for the expected
context change. One of the consequences of this inference will
be that the agent will use the preferred policies for this new
context and, for example, infer that different states will be-
come task-relevant, i.e., an experimenter would measure the
redirection of attention to different task features.
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Methods

Likelihoods and transition probabilities

The latent state of the selected option is directly observable,

hence the corresponding observation likelihood p ltjl0t
� �

cor-

responds to the identity matrix. We express the relation be-

tween latent states s
0
t and observations ot as

p otjs0t;A
0
; ot−1

� �
¼ p wtj f t;wt−1ð Þp f tjl

0
t; c

0
k ;A

0
� �

p ltjl0t
� �

where the likelihood over point types ft corresponds to a cat-
egorical distribution parametrised by point type probabilities
Al, c, j

p f tjl′t ¼ l; c′t ¼ c;A′
� � ¼ ∏

3

j
Aδ j;ht
l;c; j; ∑ jAl;c; j ¼ 1

where ht = h(ft), which maps the point type vector ft into a
scalar ((0, 0) -> 1, (1, 0) -> 2, (0, 1) -> 3).

Note that the point type probabilities Al, c, j has a prior set to
a Dirichlet distribution

p A
0

� �
¼ ∏

l;c
Dir A

0
l;cjal;c

� �
The prior parameters al, c are set to form vague priors about

true state-outcome contingencies. This is required to allow
agent a possibility to differentiate between different contexts
before any choice outcomes are observed in any context.

At the first level of the hierarchy policies π′ correspond to a
sequence of five option choices, hence π′ = (a1,…, aT). Each

choice deterministically sets the state of selected option l
0
t,

thus

p l
0
tþ1jl

0
t;π

0
k

� �
¼ p l

0
tþ1jl

0
t; at

� �
where

p l
0
tþ1 ¼ ljl0t; at

� �
¼ 1; if at ¼ l

0; if at≠l

	
The auxiliary latent factors at the lower c

0
k ; i

0
k are related to

their upper level counterparts via the link probability as

p π
0
; s

0
1js′′k

� �
¼ p π

0 ji0k
� �

p i
0
k ji′′k

� �
p c

0
k jc′′k
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where s

0
1 ¼ l

0
1; c

0
1; i

0
1

� �
≡ l

0
1; i

0
k ; c

0
k

� �
, p i

0
k

� ��i′′kÞ ¼ I2; and

p c
0
k jc′′k

� � ¼ I6. Hence we define deterministic mapping

between auxiliary lower level states and their upper level
counterparts using identity matrices. Note that in contrast to

the selected option l
0
t, latent factors c

0
k , and i

0
k are stable during

one segment. Hence, their transition probabilities correspond
to identity matrix and can be ignored.

At the upper level of the hierarchy, we define the state
transition probability of contexts c′′k and context duration

d′′k in the form of an explicit duration hidden Markov
model, where

p d′′kþ1 ¼ djd′′k
� � ¼ δd;d′′k−1; ifd

′′
k > 1

p0 dð Þ; if d′′k ¼ 1
;

(

Similarly,

p c′′kþ1 ¼ cjc′′k ¼ h; d′′k
� � ¼ δc;h; if d ′′k > 1

1

5
1−δc;h
� �

; if d′′k ¼ 1
;

8<:
where we use J6 to denote a six-dimensional all-ones
matrix, and I6 a six-dimensional identity matrix.
Intuitively, these state transition probabilities describe a
deterministic count-down process. As long as the context

duration d′′k is above one, the context remains fixed

(c′′kþ1 ¼ c′′k ) and the state duration is reduced by one

(d′′kþ1 ¼ d′′k−1). Once the duration of one is reached a
new context will be uniformly selected in the next seg-
ment from the remaining five contexts, and a new con-
text duration is sampled from the duration prior p0(d).

Wewill express here the duration prior as a discrete gamma
distribution with bounded support, hence

p0 dð Þ ¼ 1

C
dθ−1e−βd; C ¼ ∑

D

d¼1
dθ−1e−βd

where D = 20. In Fig. 11a, we illustrate the duration priors for
agents with precise (θ = 20, β = 4) and imprecise (θ = 1, β =
0.2) prior beliefs about the moment of change. Both priors,
have the same mean but different variances. Importantly, the
imprecise and precise priors correspond to imprecise and pre-
cise predictions about the future moment of change as illus-
trated in Fig. 11b using an effective change probability de-
fined as

ρ τð Þ ¼ 1−∑
d
p c′′kþτ ¼ cjc′′k ¼ c; d
� �

p0 dð Þ; for∀c∈1;…; 6:

In other words, the effective change probability mea-
sures the probability that the current context c will
change at some future segment τ. Note that the imprecise
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priors correspond to the standard hidden Markov model
as the effective change probability remains constant.

Finally, we define the likelihood at the upper level of the
hierarchy as

p ok ji′′k ¼ i; c′′k ¼ c;A′′
� � ¼ ∏

2

j¼1
A′′δ j;ok

i;c; j ; ∑
j
A′′
i;c; j ¼ 1;

where ok = 0 if a failure at the end of the segment is observed,
and ok = 1 if a success is observed. Similar to the prior over
likelihoods at the lower level, the prior over likelihoods at the
upper level corresponds to a Dirichlet distribution

p A′′
� � ¼ ∏

i;c
Dir A′′

i;cjbi;c
� �

where bi, c = (1, 1) independent of the control state i and con-
text c.

Priors over policies – expected free energy

For our case of a hierarchical generative model, we will adapt
the above relation for the expected free energy, shown in Eq.
(1), and define the following priors over policies and the cor-
responding expected free energy at different levels of the hi-
erarchy. Note that the epistemic and intrinsic value term are
computed at both levels of the hierarchy, with the difference
that the beliefs about hidden statesQ s′′k

� �
at the second level of

the hierarchy can modulate the prior preferences over policies
at the lower level of the hierarchy; effectively supressing di-
rected exploration. At the second level of the hierarchy the
prior over behavioural policies, that is, the expected free en-
ergy is defined as

p π′′
� � ¼ σ −γG π′′

� �� �
∝e−γG π′′ð Þ

G π′′
� � ¼ EeQ −ln Q

A′′js′′k ; ok ;π′′
� �

Q A′′
� � −ln

Q s′′k jok ;π′′
� �
Q s′′k jπ′′
� � −U okð Þ

" #

where γ = 8 , and the prior preferences over outcomes are
defined as

P okð Þ∝eU okð Þ; U okð Þ ¼ 2; if ok ¼ success
−2; if ok ¼ failure

;

	
Importantly, as the expected free energy depends only on a

single future step (segment) there are only two possible be-
havioural policies π′′ at the second level of the hierarchy,
which sets the agent either to the first or the second control
state, hence π′′ ∈ {1, 2}.

Similarly, at the first level of the hierarchy we define
the expected free energy and the corresponding policy
prior as

p π′ji′k
� � ¼ σ −G π′ji′k

� �� �
G π′ji′k
� � ¼ XT

τ¼tþ1

G π′; τ ji′k
� �

G π′; τ ji′k
� � ¼ −γ i′k

� �
EV π′; τ

� �
−γ i′k

� �
λ i′k
� �

IV π′; τ
� �

¼ −γα i′k
� �

EV π′; τ
� �

−γIV π′; τ
� �

EV π′; τ
� � ¼ EeQ U oτð Þ½ �

IV π′; τ
� � ¼ EeQ ln

Q Ajsτ ; oτ ;πð Þ
Q Að Þ þ ln

Qðsτ joτ ;πÞ
Q sτ jπð Þ

#"

Fig. 11 Two specific cases of duration priors and the context change
predictions. (a) Visualisation of the precise and imprecise prior
distributions of duration d. The dashed vertical line marks the mean of
both distributions. (b) Effective context change probability at a future
segment k + τ. The effective change probability corresponds to the
probability of context change after τ segments conditioned on a last

change in kth segment. Note that for precise duration prior the temporal
profile of the transition probability has clearly defined periods of low and
high transition probability. In the case of imprecise duration prior the
change probability ρ is constant, corresponding to the hidden Markov
model.
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where γ i
0
k

� �
λ i

0
k

� � ¼ γ ¼ 8, and α i
0
k

� � ¼ 1
λ i0kð Þ. We used

α i
0
k

� �
to denote meta-control state dependent weighting of

the epistemic value term in the expected free energy on the

lower level. Hence, α i
0
k

� �
controls the contribution of the ep-

istemic value to policy selection via the auxiliary meta-control
state, and consequently the second level meta-control state i′′k
(as we have deterministic mapping between, e.i. p i

0
k ji′′k

� � ¼ I2
). By setting α i

0
k

� � ¼ α ¼ 1, we obtain the EFE agent variant,

and by setting α i
0
k

� � ¼ α ¼ 0, we obtain the IV agent variant.
These two agents are nonadaptive; hence, they have only one
available meta-control state. In contrast, the adaptive agent

contains two meta-control states: i
0
k ; i

′′
k∈ 1; 2f g states, and the

weighting function,

α i
0
k

� �
¼ 1; for i′′k ¼ 1

0; for i′′k ¼ 2

	
Finally, we defined the outcome utility at the first level of

the hierarchy as

U oτð Þ ¼ U wτð Þ ¼ 1; if wblue
τ ≥4 or wred

τ ≥4; and τ ¼ T
0; otherwise

	
The behavioural policies at the first level of the hierarchy

correspond to a set of sequences of all possible choices (option
selection). Hence, π′ ∈ {1,…, 1024}.

Variational inference

Inverting the generative model requires computing posterior
beliefs over hidden states and behavioural policies at different
levels of the hierarchy. This computation is analytically intrac-
table and can be approximated using variational inference.
Under the mean-field approximation, the true posterior is ap-
proximated as a product of multiple independent factors,
hence

p A′′;π′′; s′′k ;A
′;π′; s′1:T j O′

T

� �1:k
;O′′

k

� �
≈Q A′′

� �
Q π′′
� �

Q s′′k jπ′′
� �

Q A′
� �

Q π′
� �

Q S ′T jπ′
� �

where O
0
T

� �1:k ¼ o11;…; o1T ;…; ok1;…; okT
� �

,

O′′
k ¼ o1;…; okð Þ, S 0

T ¼ s
0
1;…; s

0
T

� �
.

The approximate posterior is found as the minimiser of the
variational free energy

F ¼ ∫dxQ xð Þln Q xð Þ
p ok ; ok1:T jx
� �

p xð Þ

where x ¼ A′′; π′′; s′′k ;A
0
; π

0
; S

0
T

� �
; and p xð Þ ¼ p xj O0

T

� �1:k−1
;O′′

k−1

� �
:

The minimum of the variational free energy corresponds to
the following relations:

Upper level

Q A″ð Þ∝p A″ð Þexp ∑
s0k

Q s″k
� �

lnp ok js″k ;A″
� �8<:

9=;
Q π″ð Þ∝p π″ð Þexp −∑

s0k

Q s″k jπ″
� �

ln
Q s″k jπ″
� �

p ok ; s″k jπ″
� �

8<:
9=;

Q s″k jπ″
� �

∝p ok js″k
� �

p s″k jπ″
� �

exp ∑
c0k ;i

0
k

Q i
0
k

� �
Q c

0
k

� �
lnp i

0
k ; c

0
k js″k

� �8<:
9=;

where

p ok js″k
� � ¼ ∫dA″p A″

� �
p ok jsk ;A″
� �

;

p s″k jπ″
� � ¼ ∑s″k−1

p s″k js″k−1;π″
� �

Q s″k−1
� �

:

Lower level

Q π′
� �

∝exp
X

s′k
Q i′k
� �

ln p π′ji′k
� �

−F π′
� �	 


¼ exp

	
−γ

�
αkEV π′; τ

� �
−IV π′; τ

� ��
−F π′

� �


F π′
� � ¼ EQ A′ð Þ

X
l′1:t ;s

′
k

Q c′k
� �

Q S ′tjπ′
� �

ln
Q c′k
� �

Q S ′tjπ′
� �

p
∼

O′
t

� �k jS ′t; c′k ;A′
� �

p S ′tjπ′
� �

p
∼
c′k
� �

24 35

where epð O
0
t

� �k
S

0
t;A

0�� � ¼ ∏t
j¼1p okj jl

0
j; c

0
k ;A

0
� �

, ep i′k
� � ¼ ∑i′′k

Q
i′′k
� �

p i′k ji′′k
� �

; and ep c′k
� � ¼ ∑c′′k

Q c′′k
� �

p c′k jc′′k
� �

. To estimate the
beliefs over a sequence of locations l

0
1:t, and a fixed context c

0
k ,

we use the Bethe approximation and the corresponding belief
propagation algorithm (Schwöbel, Kiebel and Marković,
2018)
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Q l
0
tjπ

0
� �

∝exp lnp otð jl0t
n �

þ lnm! l
0
tjπ

0
� �

þ lnm← l
0
tjπ

0
� �o

Q c
0
k

� �
∝ep c

0
k

� �
exp lnp O

0
t

h ik
jc0

k

 �	 

Q i

0
k

� �
∝ep i

0
k

� �
exp ∑

π0
Q π

0
� �

lnp π
0 ji0k

� �( )
lnp otjl0t

� �
¼ ∑

c0k

Q c
0
k

� �
∫dA

0
Q A

0
� �

lnp otjl0t; c
0
k ;A

0
� �

lnp O
0
t

h ik
jc0

k

 �
¼ ∑

l
0
1:t ;π

0
Q l

0
1:tjπ

0
� �

Q π
0

� �
∫dA

0
Q A

0
� �

∑
t

j¼1
lnp okj jl

0
j; c

0
k ;A

0
� �

Finally, we obtain the posterior beliefs over likelihood point
type probabilities at the first level of the hierarchy likelihoods as

Q A
0

� �
∝p A

0
� �

exp ∑
T

t¼1
∑
l
0
t ;c

0
k

Q l
0
tjπ

0
� �

Q c
0
k

� �
Q π

0
� �

lnp otð jl0t; c
0
k ;A

0
�8<:
9=;

Note that we used a product of Dirichlet distributions as the
prior and the posterior over likelihoods at the two levels of the
hierarchy; hence, we write

p A′
� � ¼ ∏

c;l
Dir ak−1c;l

� �
p A′′
� � ¼ ∏

c;i
Dir bk−1c;i

� �
and the corresponding approximate posterior as

Q A′
� � ¼ ∏

c;l
Dir akc;l

� �
Q A′′
� � ¼ ∏

c;i
Dir bkc;i

� �
Thus, the update equations for the parameters of the

Dirichlet posterior become

akc;l; j ¼ ak−1c;l; j þ δ j;ht ⋅Q l′t ¼ l
� �

Q c′k ¼ c
� �

bkc;i; j ¼ bk−1c;i; j þ δ j;ok ⋅Q i′′t ¼ i
� �

Q c′′k ¼ c
� �

Statistics

We use the following definitions of the group mean success

rate and success probability. Let O′′
K;n be the sequence of out-

comes (successes – 1, failures 0) at the second level of the
hierarchy for the nth simulation after K = 200 segments. Then
the group mean success rate at kth segment is defined as

okð Þgroup ¼
1

N
∑
N

n¼1
ok½ �n

Similarly, to define the instance-specific success probabil-
ity, we use the following relation

O′′
K;n

� �
¼ 1

M
∑
k∈Ω

ok½ �n

where Ω denotes set of valid segments, and M = ∣Ω∣. For
example, when computing success probability at different
time points (relative segment numbers) of a repeated context
type, the set of valid segment Ω will consist of a sequence
(101, 106,…) for the relative segment number r = 0, of a se-
quence (102, 107,…), for the relative segment number r =
1,and so on for the three remaining relative segment numbers.
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