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The OpenDeID corpus for patient 
de‑identification
Jitendra Jonnagaddala1*, Aipeng Chen2, Sean Batongbacal2 & Chandini Nekkantti3

For research purposes, protected health information is often redacted from unstructured electronic 
health records to preserve patient privacy and confidentiality. The OpenDeID corpus is designed 
to assist development of automatic methods to redact sensitive information from unstructured 
electronic health records. We retrieved 4548 unstructured surgical pathology reports from four 
urban Australian hospitals. The corpus was developed by two annotators under three different 
experimental settings. The quality of the annotations was evaluated for each setting. Specifically, we 
employed serial annotations, parallel annotations, and pre‑annotations. Our results suggest that the 
pre‑annotations approach is not reliable in terms of quality when compared to the serial annotations 
but can drastically reduce annotation time. The OpenDeID corpus comprises 2,100 pathology 
reports from 1,833 cancer patients with an average of 737.49 tokens and 7.35 protected health 
information entities annotated per report. The overall inter annotator agreement and deviation 
scores are 0.9464 and 0.9726, respectively. Realistic surrogates are also generated to make the corpus 
suitable for distribution to other researchers.

Unstructured electronic health records (EHRs) such as discharge summaries, encounter notes, pathology reports 
and radiology reports are valuable sources of information for undertaking basic, clinical and translational 
 research1–3. Often, researchers are required to share or access EHRs in a de-identified state to protect the privacy 
of patients. Traditionally, researchers manually redacted the Protected Health Information (PHI) in EHRs. It was 
reported that the average time required to manually de-identify a single clinical note (7.9 + /−6.1 PHI per note) 
was 87.3 + /−61  seconds4. It is practically not possible to de-identify large numbers of EHRs manually. Identify-
ing PHI in unstructured EHRs is also critical for electronic phenotyping and record  linkage5,6. Furthermore, man-
ual de-identification is not possible to integrate into routine clinical workflows. For example, in biobanking 
systems, the pathology reports are automatically obtained once the patient agrees for biospecimen collection. 
These reports are then delivered directly to the biobanking management system. However, the reports need to 
be de-identified in order to be shared with the researchers looking for specific biospecimens. Similarly, there 
are many other clinical workflows, where de-identification of these unstructured EHRs is vital. Over the years, 
several studies have been conducted on de-identification of EHRs using manual, rule based and machine learn-
ing methods. Automated de-identification methods can be employed to replace manual  processes1,7–11. These 
methods, especially deep learning-based methods, often require a large corpus for accurate de-identification.

A de-identification corpus is a large set of unstructured texts with PHI entities that has been manually anno-
tated. The corpus annotation process requires careful design and execution of a systematic approach. Failing to 
appropriately annotate the corpus may lead to inaccurate predictions by automated de-identification systems 
compromising patient privacy. The process of annotating a corpus for de-identification purposes is similar to the 
process used in named entity recognition (NER) tasks. Individual PHI entities are identified and categorised into 
pre-defined  categories12. When constructing a corpus for de-identification, the goal is to locate and classify any 
PHI that exists in clinical texts and preserve as much data as possible. De-identification differs from other NER 
tasks such as disease and drug  recognition13. De-identification has little dependency on clinical context but strong 
dependency on organizational context. Several corpora of unstructured EHRs exist for clinical NER tasks. The 
Clinical E-Science Framework project shared a corpus containing 565,000 clinical records from 20,000 patients 
including clinical narratives, histopathology reports and imaging  reports14. The Text Retrieval Conference also 
shared a corpus with 17,000 records to offer health records based on the semantic content of free-text  fields15. 
However, given the complex nature of automatic de-identification tasks, very few corpora are available for the 
development of automatic de-identification  systems16,17.

The 2014 i2b2/UTHealth de-identification corpus contained a total of 1,304 longitudinal clinical narratives 
of 296 patients from USA. In this corpus 28,872 PHI were annotated and classified into 6 PHI categories and 25 
 subcategories17,18.Another corpus is 2016 CEGS N-GRID de-identification corpus of 1000 psychiatric notes from 
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 USA19. Deleger et al. (2014) also created a corpus of 3,503 medical records with 30,815 PHI entities annotated. 
The corpus contains 22 different types of clinical notes such as operative, pharmacy, progress, and discharge 
notes. However, the corpus did not include any pathology  reports20. Uzuner et al. (2007) also shared a corpus 
consisting of 889 hospital discharge summaries, containing a total of 19,498 PHI in 8 main categories and 25 
 subcategories13. In a recent study 21, the Medical Information Mart for Intensive Care III (MIMIC-III) database 
22 is used to semi-automatically construct a corpus using the PhysioNet DeID  tool9. Annotators have manually 
reviewed and improved the PhysioNet DeID tool annotations.

Traditional rule-based de-identification methods rely heavily on dictionary lists and gazetteers. PHI that 
are ambiguous and not covered in dictionary lists or gazetteers decrease the performance of rule-based de-
identification methods. Furthermore, the presence of many categories in the PHI also increases the difficulty in 
de-identification using machine learning based methods. Similar corpora are constructed from other countries to 
fit local  use23,24. All these corpora employ various annotation approaches. Uzuner et al. (2007) employed serial 
annotation by two  annotators11,13. Deleger et al.20used parallel annotations and Stubbs et al. (2015) employed 
serial annotations, parallel annotations and pre-annotations17. Similar types of annotation settings are used in 
the construction of PGx corpus of PubMed  abstracts25 and CHIA corpus of clinical trial eligibility  criteria26. In an 
another similar study, Spanish clinical trial studies announcements are pre-annotated using a hybrid  approach27. 
Though there are many similar corpora, in a few studies the ability of automated pre-annotations to improve the 
performance of manual annotation is  evaluated27–30.

As per our knowledge at the time of this publication, there is no corpus available from Australia for the 
purpose of automatic de-identification. Most of the existing corpora available in Australia are constructed using 
pathology reports for clinical NER tasks and are not related to de-identification31. Though there are few de-
identification corpora available outside Australia, their performance is significantly reduced when applied on 
Australian EHRs. For example, Australian hospital names, cities, and other location specific entities are not likely 
to exist in corpora constructed using EHRs from other countries. Patterns and sequences such as phone numbers, 
postal codes, and ID including social security numbers, medical record numbers might also vary from other 
countries. There is very limited evidence around this research gap with only a handful of studies. In Zuccon 
et al. (2013) an automatic de-identification system was developed using machine learning techniques using 669 
documents from the 2006 i2b2 de-id corpus and tested on 228 Australian pathology  reports32. The portability of 
the model to Australian EHRs was noted to be poor (F-measure of 0.286). It is of great importance to construct 
a robust de-identification corpus that is suitable for Australian context. Additionally, there is limited evidence 
regarding the impact of annotation approach on time and quality. The quality of annotations in serial and parallel 
orders were compared in a previous study but the time aspect of the annotation process was not  investigated28. 
In this study we aim to construct a large corpus of pathology reports for automatic patient de-identification. 
Furthermore, we aim to investigate the cost and quality of corpus annotations under three different settings 
using different annotation approaches.

Results
The final gold standard OpenDeID corpus consists of 2,100 unique pathology reports of 1,833 unique can-
cer patients from four urban Australian hospitals. The corpus consists of 38,414 PHI entities and 1,548,741 
tokens (Table 1). The average number of tokens and PHI entities per report were 716.88 and 18.29, respec-
tively. The distribution of PHI entities across different category types is even in all three settings. Most of the 
annotated PHI entities belong to NAME category, followed by LOCATION, ID and DATE. AGE and CONTACT 
contributed a small fraction to the corpus, while PROFESSION and OTHER categories did not appear in our 
corpus. A detailed distribution over PHI subcategories is presented in Supplementary Table 3.

The total time spent by annotators in Setting 2 is 55.2 h (Table 2), the highest among the three settings. Anno-
tators in Setting 1 spent 17.8 h less than Setting 2. In Setting 3, the total time spent by annotators is 27.75 h, the 

Table 1.  Summary of the OpenDeID corpus where n = total number of pathology reports.

Category All settings (n = 2100) Setting 1 (n = 700) Setting 2 (n = 700) Setting 3 (n = 700)

NAME 11,789 3929 3903 3957

AGE 141 40 42 59

CONTACT  7 1 5 1

LOCATION  9861 3359 3151 3351

DATE  7665 2566 2501 2598

ID  8951 2913 3042 2996

PROFESSION 0 0 0 0

OTHER 0 0 0 0

Total number of PHI entities 38,414 12,808 12,644 12,962

Average number of PHI entities per report 18.29 18.29 18.06 18.51

Standard deviation of PHI entities 7.35 6.85 7.67 7.50

Total number of tokens 1,548,741 510,357 508,988 529,396

Average number of tokens per report 737.49 729.08 727.12 756.28

Standard deviation of tokens 362.33 345.18 374.74 366.22
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lowest of all settings, almost half the time spent in Setting 2. The average time spent per report in all settings is 
10.31 min. However, the average time spent for each report in the training phase is 27.1 min.

The Inter Annotator Agreement (IAA) and Deviation Score (DS) under all three settings are presented in 
Tables 3 and 4, respectively. The overall IAA reached 0.9464 amongst all three settings. The IAA for Setting 1 
and Setting 2 are 0.9559 and 0.9337, respectively. However, Setting 3 achieved the lowest IAA of 0.8721 and 
0.8999. Under Setting 3, Recall was significantly lower than Precision and F-measure. In Setting 3, NAME and 
ID categories had low IAA and DS. Supplementary Table 4 and Table 5 present detailed IAA and DS for each 
PHI category under each setting. Annotation quality varied across the PHI categories. The IAA and DS are > 0.95 
in most categories under each setting except in LOCATION and AGE categories. Discrepancies in annotations 
across these two categories are noted to be common in all 3 settings, with IAA < 0.9. The DS of Annotator 1 is 
also relatively low when compared to Annotator 2 for these two categories in all settings. The DS of Annotator 
1 for LOCATION was the lowest across all settings. The DS of Annotator 2 across all settings and categories 
remained consistent except for CONTACT category, which had very low count on entities in the corpus. In 
general, Annotator 1 had lower IAA and DS when compared to Annotator 2.

Supplementary Table 5 presents the p-values of the significance tests for time and quality metrics across all 
three settings. The pairwise comparison of time metric across all settings is found to be statistically significant 
(p-value < 0.0001) except between Setting 1 and Setting 2 (p-value < 0.0667). In other words, using PhysioNet 
DeID for pre-annotations has significantly reduced the total time taken in Setting 3. The differences in overall 
IAA among all three settings are statistically significant, mainly in NAME, LOCATION, DATE, and ID categories. 
However, there is no statistically significant differences in IAA for AGE across all the settings. Like the time met-
ric, IAA has significantly decreased in Setting 3 PhysioNet DeID when compared to Setting 1 (p-value < 0.0001) 
and Setting 2 (p-value < 0.0001) across all PHI categories except for LOCATION. A statistically significant differ-
ence between DS in all settings is observed (< 0.0001). DS between Setting 1 and Setting 2, and between Setting 
1 and Setting 3 is significant but between Setting 2 and Setting 3 is not (p-value < 0.2981).

Our results suggest that although time can be decreased with pre-annotations using automated rule-based de-
identification systems, the quality of the corpus could decline when compared to serial annotations. Our results 
are congruent with previous findings, that automatically pre-annotating corpus can significantly save time while 
there is no significant difference of annotation quality between parallel and pre-annotations30,33. Comparison 
between Setting 1 and Setting 2 suggests that the former has better quality, contrary to what is observed in a 
previous  study28. For construction of de-identification corpus, we recommend using Setting 1. Setting 1 is an 
optimal choice in terms of time and  quality34.

Table 2.  Time spent under each annotation setting.

Setting Annotator No. of reports
Time spent by annotators 
independently (hours)

Time spent by annotators 
collaboratively (hours)

Total time
(hours)

1
1

700
24.65

8.25 37.4
2 4.5

2
1

700
25.9

9.75 55.2
2 19.55

3
1 700 10.8

9.75 27.75
2 700 7.2

Table 3.  IAA across individual settings.

All settings (n = 2100)
Setting1
(n = 700)

Setting2
(n = 700)

Setting3
PhysioNet DeID vs Annotator1 
(n = 700)

Setting3
PhysioNet DeID vs Annotator2 
(n = 700)

Precision 0.9482 0.9565 0.9329 0.9263 0.9618

Recall 0.9445 0.9552 0.9346 0.824 0.8455

IAA 0.9464 0.9559 0.9337 0.8721 0.8999

Table 4.  DS across individual settings.

All settings (n = 2100) Setting1 (n = 700) Setting2 (n = 700) Setting3 (n = 700)

Annotator1 Annotator2 Annotator1 Annotator2
Annotator
1

Annotator
2

Annotator
1

Annotator
2

Precision 0.954 0.997 0.9564 0.9998 0.9508 0.991 0.9549 0.9934

Recall 0.9466 0.9931 0.9552 1 0.9411 0.979 0.9436 0.9934

DS 0.9503 0.995 0.9558 0.9999 0.9459 0.985 0.9492 0.9934

Average DS 0.9726 0.9779 0.9655 0.9713
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Discussion
We constructed a large gold standard annotated corpus of 2,100 unstructured pathology reports retrieved for 
automatic patient de-identification. We evaluated the time and quality of annotations by two annotators under 
three different settings. Time and quality are intertwined aspects of great importance in corpus construction. The 
time spent is an important comparison factor that governs cost economics, which in turn can justify the com-
promise on quality. Thus, we need to find a setting that provides good quality annotations in a reasonable time 
frame which would equate to a reasonable cost.

We found Setting 1 and Setting 3 more effective than Setting 2. This is due to the large number of con-
flicting annotations that needed to be resolved in Setting 2. This shows great potential of pre-annotations in 
improving the efficiency of the corpus annotation process, in both time and quality. In our case, pre-annotations 
improved the overall speed of annotating our corpus but there was not much difference in quality. However, 
depending on the automatic tool used, pre-annotations might have a negative impact on quality. Setting 3 is 
not generalisable and performance depends on the system and corpus used to generate pre-annotations. It is 
also important to factor in the additional time required in Setting 3 for tuning the performance of automated 
system. For example, in our study we improved PhysioNet DeID tool to support Australian based PHI entities. 
This is reflected in our significance tests, which showed no statistically significant difference for the LOCATION 
category. In our study we assumed the time required to configure, improve, and use PhysioNet DeID tool as 
minimal.

Pre-annotations using machine learning based approaches seemed to increase quality but did not decrease 
overall time required in a French de-identification  corpus24. The quality and time is found to be insignificant in 
a different English based de-identification  corpus30 using a hybrid  system35. Time saved via pre-annotations with 
rule-based dictionaries in a NER task which is not related to de-identification is found to be  significant29. Similar 
results are observed in our study. The total time spent is significantly (p-value < 0.0001) less in Setting 3 (27.75 h), 
which used rule-based PhysioNet DeID tool, when compared to Setting 1 (37.4 h) and Setting 2 (55.2 h). It is 
worth noting that Annotator 2 annotated files under Setting 2 and reviewed the results under Settings 1 and 3. 
Thus, the time spent is significantly less for Annotator 2 under Setting 1 and Setting 3 compared to Annotator 
1. Annotator 2 was more experienced in annotation tasks, as a result spent less time in Setting 2 when both 
annotators were involved in the annotation tasks. It is important to recognise the differences in experimental 
settings and context of Grouin et al. (2014), Lingren et al. (2014), South et al. (2014) and our  study24,29,30. These 
experimental design and contextual differences do not permit direct comparisons. For example, in Grouin et al. 
(2014) sequential pre-annotations are spread over various iteration  cycles24,29. This allows machine learning-
based pre-annotations to improve after every iteration cycle. Similarly, in Lingren et al. (2014) the NER task is 
disease and symptom recognition in clinical trial announcements, which do not include  PHI29. Therefore, results 
presented in this study need to be interpreted judicially. Active learning is another approach that can be employed 
for pre-annotations. Boström and Dalianis (2012), employed active Learning to de-identify 100 Swedish  EHRs36. 
In a more recent study, using the 2006 i2b2 dataset, Li et al. (2019) established that small number of annotated 
documents are required to reduce the annotation workload using active  learning37.

The DS of Annotator 1 remained consistent and did not vary across all the settings. However, the performance 
of Annotator 2 varied under Setting 1 and Setting 2. This can be attributed to the fact that Annotator 2 in Setting 
1 reviewed Annotator 1’s annotations whereas in Setting 2, Annotator 2 independently performed the annota-
tion. In the categories of NAME, LOCATION, DATE and ID, Annotator 2’s DS showed significant improvement 
under Setting 1 compared to Setting 2. The DS for both annotators in Setting 3 for NAME category was lowest 
when compared to remaining categories. This suggests that PhysioNet DeID tool had trouble identifying names 
related to Australian healthcare context. Annotators had a higher agreement in the NAME category under Setting 
1 and Setting 2 with an IAA of 0.9971 and 0.9785, respectively. After review, the quality of NAME annotations in 
Setting 3 improved to that of Setting 1 and Setting 2. ID category entities were also difficult for the PhysioNet 
DeID to recognize. We believe that it was because the ID entities do not have a fixed pattern, making it difficult 
for rule-based systems such as PhysioNet DeID to recognise. It can be seen from Supplementary Table 5 that 
Annotator 1 missed more ID than Annotator 2. Though annotators went through an iterative training phase, in 
a few situations they deviated from the guidelines. For example, for the LOCATION category only one unique 
occurrence was supposed to be annotated. Annotator 1 marked all observed LOCATION entities in each docu-
ment, which led to a higher disagreement with Annotator 2 and the final gold set in all three settings.

This corpus was constructed specifically for an automated de-identification task. However, in the future we 
intend to annotate the OpenDeID corpus with disease, drug, and procedure entities. As such the OpenDeID 
corpus for other purposes apart from automated de-identification, disease, drug and procedure entity recogni-
tion and normalisation is not recommended. Surrogate generation of few entities such as age and dates reduce 
the reusability of the corpus for secondary clinical, molecular, or epidemiological investigations. Addition-
ally, this corpus contains cancer biobanking related pathology reports, and as such, performance of automated 
de-identification systems trained on other types of clinical documents such as discharge summaries and clini-
cal narratives may vary. However, for the patient de-identification task we hypothesise the performance differ-
ence will not be significant. The performance of multiple automated de-identification systems on the OpenDeID 
corpus is yet to be evaluated.

Methods
Reports (n = 4,548) in the form of HL7 messages and 156 reports in the form of PDF were retrieved from four 
urban Australian hospitals. Reports were excluded if there was a low token count (n = 2,162), and if the reports 
were not pathology reports or if the reports had inconclusive results (n = 292). The final set to be annotated com-
prised of 2,100 reports from 1833 unique cancer patients. The complete cohort selection process of the OpenDeID 
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corpus is explained  elsewhere38. Individual patient informed consent was obtained through the Health Sciences 
Alliance (HSA) biobank. The HSA biobank is an institutional biobank based at the Lowy Cancer Research Centre 
at the University of New South Wales, Sydney,  Australia39,40. The patient consent covers data linkage with other 
data sources for future research and ongoing storage of biospecimens. We have retrieved surgical pathology 
reports of cancer patients to construct the OpenDeID corpus, presented in this study. Ethics to develop this 
corpus was approved by the UNSW Sydney Human Research Ethics committee (approval no. HC17749). This 
research was undertaken in accordance with the approved ethics application, relevant guidelines, and regulations.

Corpus construction. The overall corpus construction process was carried out in two phases (Fig. 1). The 
first phase was the preparation phase, followed by the annotation phase. In the preparation phase, we retrieved 
and examined the pathology reports to understand syntactic and semantic content. This was followed by setting 
the process of annotating the extracted reports. We used the MAE (Multi-document Annotation Environment) 
v2.1.3 tool, which is a general-purpose annotation  tool41. The output files were in XML format as per the docu-
ment type definition (DTD) designed in phase 2. Each XML file has 2 main elements called TEXT and TAGS. 
The TEXT element contains the original content of the report. The TAGS element contains annotations that were 
marked within the original text. Each annotation is a child of the TAGS element. Each annotation element itself 
was made up of several attributes such as offsets, categories, subcategories, and comments.

Preparation phase. We have adapted existing PHI annotation guidelines and improved them to suit our 
 requirements17. In addition to the HIPAA PHI entities, we have added additional PHI entities which potentially 
include identifiable information. Additional PHI entities included indirect information such as names of hos-
pitals, doctors, nurses; dates; location information; and patients’ professions. Patients’ age, irrespective of age 
group, is considered as a PHI. These PHI entities have been grouped into 8 unique categories and 27 unique 
subcategories, such that we can use this granular information for de-identification. Supplementary Table 1 shows 
the categories, subcategories, and examples of PHI entities. We developed a guideline that contained annota-
tion instructions along with several examples. The last stage of this phase was training the annotators. The 
training was carried out in five iterations. In each iteration, a set of 50 reports (that are not part of the final 
2,100 reports) were annotated by the annotators. Reports with token counts within the range of 700–1200 were 
selected. Feedback from each iteration was provided to the annotators to help them better understand the anno-
tation guidelines and improve the quality of annotations. IAA was calculated between both annotators to assess 
the quality. Once IAA exceeded 0.8, the annotators were deemed eligible for the final annotation.

Annotation phase. The annotation phase was carried out under three different settings (Fig. 2) in batches. 
Each batch consisted of 50 reports. 2,100 pathology reports were randomly divided into three equal subsets. 
In Setting 1, Annotator 1 annotated the first 700 reports. Then, Annotator 2 reviewed Annotator 1’s annota-
tions and made necessary corrections. This was followed by the calculation of IAA. In the next step, the gold 
set was developed. DS was then calculated between the final gold set and each annotator’s annotation. In Set-
ting 2, both the annotators independently annotated the second subset of 700 reports. IAA was then calculated 

Figure 1.  Overall OpenDeID corpus construction process.
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between the annotators. Then, like the previous setting gold set was prepared and DS calculated. In Setting 3, 
PhysioNet DeID  tool9 was used for the remaining 700 reports. PhysioNet DeID tool is a rule-based system that 
can detect HIPAA PHI entities using pre-built dictionaries and lists of PHI entities. Though the tool has been 
primarily developed using nursing notes from USA, it has been applied to discharge summaries and other type 
of unstructured  EHRs42. We have improved the tool by enriching the dictionaries and gazetteers to include 
Australian PHI entities. The annotations were then reviewed and refined by Annotator 1 and Annotator 2 inde-
pendently, followed by IAA calculation, gold set development and DS calculation.

In all settings, the gold set was developed by combining annotations from Annotator 1 and Annotator 2. 
In situations of conflicting annotations, Annotator 1 and Annotator 2 discussed each conflict and reached a 
consensus. Both annotators have post graduate qualifications in medicine and are authorised to access the 
reports. Annotations from Annotator 1 and Annotator 2 were verified by all the co-authors during the training 
process. Additionally, 5% of annotations were independently verified in each setting by all the co-authors. As 
part of the gold set creation realistic surrogates were also generated. Generation of realistic surrogates is required 
to protect the privacy of patients and to maintain integral characteristics of the corpus. We have described our 
surrogate generation process in-detail  elsewhere43. After replacing the PHI with realistic surrogates, the corpus 
was further verified manually by both annotators for any possible PHI. In situations where automatic surrogate 
generation failed, surrogates were generated manually.

Corpus assessment. A comparison of the annotations was performed on two dimensions: time and qual-
ity. The time spent on annotation for each batch (50 reports) was tracked by the annotators. These logs were 
summed up to obtain the total time spent annotating all files under each setting. To compare the quality, IAA and 
DS were calculated (Supplementary Table 6A, 6B). IAA is a measure of how well the two annotators can make the 
same annotation decision. IAA provides an insight on the similarity of the annotations between two annotators. 
The score is calculated for 2 annotators as Annotator 1 vs Annotator2. The higher the IAA scores are, the better is 
the agreement and compliance with the annotation guidelines. This in turn results in high quality  annotations44. 
DS is defined as the difference between the final gold set and each annotation. Thus, within each setting there 
were 2 scores. DS for Annotator 1 was defined as gold vs Annotator 1, and DS for Annotator 2 was defined as 
gold vs Annotator2. IAA can be considered as interim quality of annotations and DS as the overall quality of the 
annotations. In NER tasks such as de-identification, F-measure is recommended to assess the quality of  corpus45. 
We evaluated IAA and DS using F-measure as a surrogate for Kappa or weighted kappa. Specifically, we used 
micro-averaged strict type of F-measure to report IAA and DS. Corresponding Precision and Recall were also 
calculated at category and subcategory  levels17,19. Overall PHI and category-wise PHI significance tests were 

Figure 2.  Annotation process under three different settings.
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performed to compare time and quality metrics across the three different annotation settings. We adopted one-
way analysis of variance (ANOVA) with Bonferroni correction to determine if the variance between each setting 
was statistically significant. A p-value < 0.05 was considered statistically significant difference between  settings46.

Conclusion
The OpenDeID corpus is the largest Australian corpus of unstructured EHRs available for development of 
automated de-identification systems. The corpus comprises 2,100 pathology reports from 1833 patients from 
four urban hospitals with 38,414 PHI entities. Our experiences suggest that annotating with two annotators is 
a balanced approach in terms of cost and quality. Among the three different annotation settings, we found that 
the most efficient setting in terms of time and quality is, the setting where two annotators annotated the corpus 
in serial. This setting is time saving and with non-significant loss of quality when compared to the other two set-
tings. Semi-automated pre-annotations are effective in reducing annotation time but are not generalisable. They 
are highly dependent on the performance of the automated system used, which sometimes may deteriorate the 
quality of pre-annotations causing increase in time required by the annotators to review and resolve conflicts.

Data availability
The instructions to access the OpenDeID corpus are available at https:// github. com/ TCRNB ioinf ormat ics/ OpenD 
eID- Corpus. Additionally, the annotation guidelines; code used to, select the cohort, generate the DS and IAA 
metrics, and evaluate performance can be made available up on request.
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