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Abstract: Currently considered an excellent candidate source of novel chemical diversity, the existence
of marine myxobacteria was in question less than 20 years ago. This review aims to serve as a roll call
for marine myxobacteria and to summarize their unique features when compared to better-known
terrestrial myxobacteria. Characteristics for discrimination between obligate halophilic, marine
myxobacteria and halotolerant, terrestrial myxobacteria are discussed. The review concludes by
highlighting the need for continued discovery and exploration of marine myxobacteria as producers
of novel natural products.
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1. Introduction

In a myxobacterial ecology review published in 1999, Hans Reichenbach asked, “Are there
marine myxobacteria?” [1]. Reichenbach’s succeeding paragraph provides insight into the uncertainty
surrounding marine myxobacteria prior to the routine practice of molecular taxonomy [1]. Two of the
major factors contributing to this obscurity were the incorrect assignment of marine Bacteroidetes as
lower order myxobacteria or ‘Myxobacteria imperfecta’ and the ubiquitous distribution and reported
isolations of myxobacteria, with varying halotolerances among interfacial environments, such as
sediments from beaches and shores [1–9]. While the 16s rRNA sequence analysis has mostly addressed
the former, determining that what were considered lower-order marine myxobacteria, were instead
Bacteroidetes from the genera Cytophaga and Flavobacterium, the latter continues to obfuscate the
distinction between marine and terrestrial myxobacteria [10–12]. Literature concerning the halotolerant
myxobacterium Myxococcus fulvus HW-1 (ATCC BAA-855) typifies this issue [13,14]. While M. fulvus
HW-1 has been reported to tolerate a salinity as high as 3% and is listed in the World Register of Marine
Species (WoRMS), the strain displays attenuated morphologies and social behaviors that are typical of
myxobacteria, such as a fruiting body formation on agar media with low concentrations of seawater
or salts [13,15]. This review aims to clarify such confusion by highlighting the unique characteristics
of halophilic myxobacteria when compared to better-known halotolerant soil myxobacteria, and to
encourage further discovery and investigation of marine myxobacteria as a source of structurally
unique secondary metabolites.

2. Characteristics Unique to Marine Myxobacteria

The recent retrospective analysis of natural product discovery trends reported by Pye et al.
concluded that marine organisms are, at least upon discovery, productive sources of novel chemical
diversity [16]. Considering this observation, combined with the abundance of biologically active
myxobacterial metabolites, we anticipate that an investigation of marine myxobacteria, as producers of
secondary metabolites with unique molecular scaffolds and activities, will become a priority for drug
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discovery efforts [17–19]. While limited by the scarcity of cultivable marine myxobacteria, the following
characteristics are meant to differentiate known terrestrial, halotolerant myxobacteria from marine,
halophilic myxobacteria. These characteristics are centered on halophilicity, multicellular behaviors
that have been observed at saline cultivation conditions, phylogeny, and ecology.

Halophilic bacteria rely on the cellular accumulation of organic osmolytes to prevent dehydration
in osmotic environments, such as seawater [20,21]. Recently, differing strategies for osmolyte
accumulation were reported for Enhygromyxa salina SWB007 and Pleciocystis pacifica SIR-1T [22].
While P. pacifica accumulates amino acids to offset osmotic stress, E. salina produces the ubiquitous
osmolytes betaine and hydroxyectoine [22]. Interestingly, all of the sequenced myxobacterial halophiles
possess a betaine/carnitine/choline transporter (BCCT) or BetT homolog, while the sequenced
terrestrial myxobacteria do not, regardless of the reported halotolerances (Table 1). The gene loci
that encode solute biosynthetic pathways, such as the confirmed ectoine/hydroxyectoine cluster
from E. salina SWB007, cannot currently be considered as critical aspects of marine myxobacteria,
as P. pacifica SIR-1T has no such pathway and instead relies on the accumulation of glutamate and
glycine to prevent osmotic stress [22]. Excluding M. fulvus HW-1, the only cultivable myxobacteria
found to be obligate halophiles have been associated with the ‘marine’ moniker.

Table 1. Putative osmolyte synthases and transporters from sequenced marine myxobacteria [22].
BCCT—betaine/carnitine/choline transporter.

Strain Gene NCBI Reference
Sequence Length (aa) Highest Homology Identity (%)

H. ochraceum ectC WP_012827762.1 142 ectoine synthase
(Hydrogenophaga crassostreae) 67%

betT WP_012829907.1 538 BCCT family transporter
(Desulfovermiculus halophilus) 64%

sodium/proline symporter WP_012825704.1 598 hypothetical protein
(Hymenobacter terrenus) 49%

E. salina ectC WP_106088059.1 126 ectoine synthase
(Blastopirellula marina) 63%

ectD AMH38938.1 298 ectoine hydroxylase
(Blastopirellula marina) 59%

betT AMH38943.1 492 BCCT family transporter
(Spingomonas sp. Leaf30) 57%

sodium/proline symporter WP_106088061.1 481 sodium/proline symporter
(Rubinisphaera brasiliensis) 59%

sodium/glutamate symporter KIG18073.1 469 hypothetical protein
(P. pacifica) 64%

P. pacifica betT (BCCT
family transporter) EDM75025.1 512 BCCT family transporter

(Spingomonas sp. Leaf10) 40%

sodium/proline symporter WP_006976305.1 484 sodium/proline symporter
(E. salina) 56%

sodium/glutamate symporter
(hypothetical protein) WP_006969752.1 478 sodium/glutamate symporter

(E. salina) 64%

While among the order of the Myxococcales obligate halophilicity is wholly unique to marine
myxobacteria, all myxobacteria participate in unique multicellular behaviors, such as fruiting body
formation, social swarming, and organized predation [23–25]. Salinity impedes fruiting body formation
of the vast majority of terrestrial and halotolerant myxobacteria [13]. Instead, halotolerant myxobacteria
adopt a less complicated, unicellular growth strategy that is independent of cell density, when grown
at salinities reflective of seawater conditions [13]. While this strategy provides the resilience required
for halotolerant myxobacteria to survive in sandy beaches and shoreline soils, it impedes their ability to
thrive in seawater. An outlier, halotolerant Pseudenhygromyxa salsuginis SYR-2T, designated a ‘brackish
water myxobacterium’, displays fruiting bodies similar to E. salina SHK-1T and P. pacifica SIR-1T at
various levels of salinity [26–28]. Synchronized motility, referred to as swarming or gliding, is a defining
feature of myxobacteria, has been observed for all marine myxobacteria as well as halotolerant
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myxobacteria, such as M. fulvus HW-1, when grown at varying salinities [12,25–30]. Halophilic
myxobacteria swarm in radial patterns with varying amounts of etching occurring on the surface
of agar medias [12,26–30]. Typical of terrestrial myxobacteria, marine myxobacteria do not form
radial veins or distinct waves when swarming [12,26–30]. Instead, marine myxobacteria aggregate at
peripheral bands along the outer circumference of swarms [12,26–30]. Unlike the predation efforts of
the model myxobacterium Myxococcus xanthus, organized predation strategies of marine myxobacteria
have yet to be explored in detail. While all halophilic myxobacteria discovered to date are capable of
lysing a variety of Gram-negative bacteria, only H. ochraceum, H. tepidum, and Enhygromyxa niigatensis
are able to lyse Saccharomyces cerevisiae cells [26–30].

The suborder Nannocystineae exclusively consists of halotolerant and halophilic myxobacteria,
including all of the discovered cultivable halophilic myxobacteria, with the only potential outlier
being the lesser studied, terrestrial Kofleria flava (Figure 1a). Yet again exceptional, M. fulvus HW-1
is the only purported marine myxobacterium to instead belong to the suborder Cystobacterineae
(Figure 1a). However, Brinkhoff et al. recently reported a distinct cluster exclusively comprised of
marine myxobacteria (Figure 1b) [31]. Aptly designated as the marine myxobacteria cluster (MMC),
associated marine myxobacteria were observed primarily from sediment samples and water column
samples near the sediment surface worldwide, at salinities ranging from brackish to marine [31].
Interestingly, the myxobacteria distinctly clustered between the MMC and the defined suborders
Nannocystineae, Sorangiineae, and Cystobacterineae were from a variety of diverse habitats including
volcanic sediment, a wastewater treatment plant, a glacier, a uranium mining waste pile, a microbial
biofilm, a hypersaline microbial mat, and various marine sediments [31]. The prevalence of halotolerant
and halophilic myxobacteria within the suborder Nannocystineae, the observation of clustered
myxobacteria from fluid habitats, and the exclusivity of the MMC provide a unique phylogenetic
landscape within the order Myxococcales, where physiological adaptability to environmental volatility
seems apparent [13,25,31,32]. The observation of phylogeographic separation of marine and terrestrial
myxobacteria, reported by Jiang et al., supports this conspicuous delineation [32]. While only recently
observed, the MMC and the assumed capacity of the myxobacteria within to produce secondary
metabolites exemplifies the need for continued efforts focused on the isolation and cultivation of
marine myxobacteria.



Mar. Drugs 2018, 16, 209 4 of 11Mar. Drugs 2018, 16, x FOR PEER REVIEW   4 of 11 

 

 
Figure 1. (a) Phylogenetic tree of cultivable Myxococcales with the discussed myxobacteria bolded; (b) Phylogenetic tree of myxobacteria, that includes the MMC and other 
myxobacteria from [31]. Using MEGA7, 16s rRNA sequences were aligned with ClustalW using general settings (gap opening penalty 15.0; IUB DNA weight matrix), and 
phylogenetic trees was generated using the neighbor-joining method [33].

Figure 1. (a) Phylogenetic tree of cultivable Myxococcales with the discussed myxobacteria bolded; (b) Phylogenetic tree of myxobacteria, that includes the MMC and
other myxobacteria from [31]. Using MEGA7, 16s rRNA sequences were aligned with ClustalW using general settings (gap opening penalty 15.0; IUB DNA weight
matrix), and phylogenetic trees was generated using the neighbor-joining method [33].
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3. Haliangium ochraceum

Originally isolated from a seaweed sample collected from a beach on the Miura Peninsula of
Japan and reported as Nannocystis sp. strain SMP-2 in 1998 by Iizuka et al., H. ochraceum, along
with what would become Plesiocystis pacifica, was one of the first halophilic marine myxobacteria,
which were confirmed by 16s rRNA sequencing to be a member of the myxobacterial suborder
Nannocystineae [12,29]. The genome for type strain H. ochraceum SMP-2T (DSM 14365T) was published in
2010 (NC_013440.1) [34]. Originally cultivated at 30–34 ◦C on modified VY/2 agar media (Baker’s yeast
5 g L−1, cyanocobalamin 0.5 mg L−1, agar 15 g L−1) supplemented with sea water, H. ochraceum
was observed to grow at NaCl concentrations of 0.2–5% (w/v), with optimal growth between
2–3% [12,29]. Fudou et al. reported the first discovery of a secondary metabolite from marine
myxobacteria, haliangicin, a polyketide with antifungal activity isolated from Haliangium luteum
in 2001 [35,36]. Fudou et al. later reclassified Haliangium luteum as H. ochraceum [29]. H. ochraceum
has since been reported to produce a variety of haliagicin congeners, as well as the hybrid
polyketide-nonribosomal peptide haliamide (Figure 2), via a type-I polyketide synthase pathway
and a hybrid polyketide-nonribosomal biosynthetic pathway respectively [37–40]. The features of
H. ochraceum, denoted as differentiated from soil myxobacteria, include obligate halophilicity, palmitic
acid as a principle fatty acid, and presence of anteiso-branched fatty acids [29]. Fruiting body formation
has been reported from both solid and liquid cultures of H. ochraceum, regardless of salinity [13,29].
H. ochraceum swarms form slightly sunken radial bands within agar, generating a tough slime film [29].
Associated with the Haliangiaceae clade of the suborder Nannocystineae, H. ochraceum shows a higher 16S
rRNA sequence similarity to terrestrial myxobacteria than other halophilic marine myxobacteria [36,37].
As previously mentioned, H. ochraceum is capable of lysing both Gram-negative bacteria, specifically
Escherichia coli and Micrococcus luteus, but also S. cerevisiae [29].
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4. Enhygromyxa salina

Also discovered by Iizuka et al., E. salina was initially isolated from a lagoon shore on the north
coast of Hokkaido, Japan [27]. Three strains of E. salina have been sequenced, including the type
strain E. salina SMK-1T (DSM 15217T) and strains SWB005 and SWB007 [30,41]. Belonging to the
Plesiocystis/Enhygromyxa clade of the suborder Nannocystineae, numerous unique strains of E. salina
have been reported [27,30,42]. E. salina produces fruiting bodies varying from white to orange
when grown on VY/2 supplemented with salt water [27]. An obligate halophile, E. salina tolerates
NaCl concentrations of 0.1–4.0% (w/v) with an optimal range of 1.0–2.0% NaCl [27,30]. However,
the numerous strains of E. salina all demonstrate varying ranges of salt tolerance with minimum
concentrations as high as 1% NaCl (w/v) and maximum concentrations of 7% NaCl [27,30]. E. salina
swarms form circular patterns, leaving deeply etched craters within agar surfaces [27]. While able to
survive on media with yeast as the sole nitrogen source, E. salina is only capable of lysing Gram-negative
bacteria and is unable to lyse S. cereviseae cells [27]. Numerous secondary metabolites have been
discovered from a variety of E. salina strains (Figure 3); the activities and biosynthetic assembly of
these metabolites have been well reviewed elsewhere [17–19,43,44]. Of note, comparative antiSMASH
analysis of the three sequenced strains of E. salina suggests strain SWB005 to be the only sequenced
strain of E. salina without a predicted trans-AT polyketide synthase, and strain SWB007 to be the only
strain with an identified thiopeptide biosynthetic pathway [45]. Interestingly, only E. salina seems to
produce the osmolyte hydroxyectoine, as no other EctD homologue is apparent in the genomes of
other sequenced marine myxobacteria (Table 1) [22].
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5. Plesiocystis pacifica

Discovered, yet again, by Iizuka et al., P. pacifica, originally identified as Nannocystis sp. SHI-1,
was isolated from a beach on Iriomote-jima Island, Japan in 1997 [12,28]. There are currently two
reported strains, the type strain P. pacifica SIR-1T (DSM 14875T) and SHI-1 (DSM 14876) [28]. Both strains
produce pinkish-orange to brownish-orange fruiting bodies when grown on VY/2 that is supplemented
with salt water, and require NaCl concentrations of 1% (w/v) for growth with optimum salinities of
2.0–3.0% [28]. P. pacifica forms radial bands at the perimeter of its swarms, leaving cloudy etches in
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agar surfaces [28]. Similar to the other members of the Plesiocystis/Enhygromyxa clade of the suborder
Nannocystineae, P. pacifica lyses Gram-negative bacteria and is unable to lyse S. cerevisiae [28]. While no
secondary metabolites have been reported from either strain, an antiSMASH analysis on the draft
genome of P. pacifica SIR-1T (GCA_000170895.1) revealed numerous secondary metabolite biosynthetic
pathways [18,46]. This analysis portrays P. pacifica as an excellent candidate for future natural product
discovery efforts. Instead, the haloalkane dehalogenase DppA from P. pacifica SIR-1T has garnered
interest as a potential biocatalyst for bioremediation of aromatic pollutants [47,48]. DppA shows
unique specificities towards brominated α,β-haloalkanes, with no activity observed towards the
chlorinated substrates [48]. Only briefly referenced in a PCR survey of polyketide synthase genes from
various myxobacteria, genomic DNA from Plesiocystis sp. strain SIS-2 was found to contain several
polyketide synthases [46]. However, whether Plesiocystis sp. strain SIS-2 is a third strain of P. pacifica or
a unique member of the genera Plesiocystis remains unclear.

6. Haliangium tepidum

The lesser investigated of the marine members of the Haliangiaceae clade of the suborder
Nannocystineae, Haliangium tepidum SMP-10T (DSM 14436T) was first reported by Fudou et al. [29].
Found to be an obligate halophile, H. tepidum grows and produces fruiting bodies at salinities ranging
from 0.5–6.0% NaCl (w/v) [29]. H. tepidum is able to lyse both Gram-negative bacteria and S. cereviseae,
and swarms in radial patterns leaving slime sheets slightly etched into agar surfaces [29]. As the
species designation suggests, H. tepidum grows at moderately warm temperatures when compared to
other marine myxobacteria with an optimal temperature range of 37–40 ◦C [29]. While no genome
sequence data or discovered natural products have been reported, a PCR survey of myxobacterial
genomic DNA found an abundance of polyketide synthases within the genome of H. tepidum [46].

7. Potential Marine Myxobacteria

While the six previously discussed marine myxobacteria are the best characterized to date, there
have been several recently reported potential marine myxobacteria. Tomura et al. discovered three
new myxobacterial natural products that were produced by Enhygromyxa niigataensis or Enhygromyxa
sp. SNB-1 (Figure 4) [49]. With a 97% similarity to the 16S rRNA sequence of E. salina SWB004,
E. niigataensis SNB-1 was determined to be a new species within the genera Enhygromyxa. Although the
phylogenetic position of E. niigataensis would suggest that it is indeed a marine myxobacterium,
the halotolerance levels and morphological features of the strain are currently unreported [49].
Originally isolated from a marsh bank in Shikoku, Japan, Pseudenhygromyxa salsuginis SYR-2T
(DSM 21377T) develops fruiting bodies at NaCl concentrations of up to 2.5% (w/v), and forms slightly
sunken, radial swarms [26]. However, P. salsuginis is not an obligate halophile [26]. Optimal growth
conditions for P. salsuginis were determined to be somewhat saline between 0.2–1.0% NaCl [26].
The species identifier for P. salsuginis, translated as “of brackish water”, aptly summarizes this
observation. The obligate halophile Paraliomyxa miuraensis SMH-27-4 produces a variety of halogenated
hybrid polyketide-nonribosomal peptide metabolites (Figure 4) [50]. Although its halophilic nature
strongly suggests the strain to be a marine myxobacterium, the morphological features for P. miuraensis
at saline cultivation conditions have not been reported.
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8. Conclusions

Ubiquitous to marine environments worldwide, cultivable marine myxobacteria remain
a relatively underexplored resource [31]. Ideally, this roll call for known marine myxobacteria and
corresponding descriptions will provide clarity to the early literature surrounding halophilic and
halotolerant myxobacteria, as well as encourage the continued discovery of new marine myxobacteria.
The recent expansion of the order Myxococcales, with the addition of myxobacteria associated with
the MMC, suggests that the vast majority of marine myxobacteria have yet to be discovered [31].
Although the limited number seems to suggest a scarcity, it should be recognized that the covered
marine myxobacteria have been discovered thanks to the tremendous efforts of only a few research
groups. This dearth of cultivable marine myxobacteria has not, however, limited the chemical diversity
of their cognate reported natural products. To date, natural product classes discovered from marine
and potential marine myxobacteria include polyketides, hybrid polyketide-nonribosomal peptides,
degraded sterols, diterpenes, cyclic depsipeptides, and γ-alkylidenebutenolides. The capability to
produce natural products with novel chemical scaffolds, such as salimabromide, will ensure the
continued investigation of marine myxobacteria as a resource for the discovery of new therapeutics.



Mar. Drugs 2018, 16, 209 9 of 11

Author Contributions: H.A. and D.C.S. compared marine myxobacterial genomes via BLAST and wrote
the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are grateful to Fulbright and AMIDEAST (H.A.), as well as the American Association of
Colleges of Pharmacy New Investigator Award (D.C.S.) for support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reichenbach, H. The ecology of the myxobacteria. Environ. Microbiol. 1999, 1, 15–21. [CrossRef] [PubMed]
2. Stanier, R.Y. A Note on the Elasticotaxis in Myxobacteria. J. Bacteriol. 1942, 44, 405–412. [PubMed]
3. Stanier, R.Y. Studies on nonfruiting myxobacteria. I. Cytophaga johnsonae n. sp., a chitin-decomposing

myxobacterium. J. Bacteriol. 1947, 53, 297–315. [PubMed]
4. Veldkamp, H. A Study on Two Marine Agar-Decomposing, Facultatively Anaerobic Myxobacteria.

Microbiology 1961, 26, 331–342. [CrossRef] [PubMed]
5. Mitchell, T.G.; Hendrie, M.S.; Shewan, J.M. The Taxonomy, Differentiation and Identification of Cytophaga

Species. J. Appl. Bacteriol. 1969, 32, 40–50. [CrossRef] [PubMed]
6. Brockman, E.R. Fruiting myxobacteria from the South Carolina coast. J. Bacteriol. 1967, 94, 1253–1254.

[PubMed]
7. Rückert, G. Investigations on the distribution of myxobacteria in substrates influenced by seawater with

special reference to the island of Helgoland. Helogländer Meeresuntersuchungen 1984, 38, 179–184. [CrossRef]
8. Gray, J.P.; Herwig, R.P. Phylogenetic analysis of the bacterial communities in marine sediments.

Appl. Environ. Microbiol. 1996, 62, 4049–4059. [PubMed]
9. Ravenschlag, K.; Sahm, K.; Pernthaler, J.; Amann, R. High bacterial diversity in permanently cold marine

sediments. Appl. Environ. Microbiol. 1999, 65, 3982–3989. [PubMed]
10. Bernardet, J.F.; Segers, P.; Vancanneyt, M.; Berthe, F.; Kersters, K.; Vandamme, P. Cutting a Gordian Knot:

Emended Classification and Description of the Genus Flavobacterium, Emended Description of the Family
Flavobacteriaceae, and Proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and
Tait 1978). Int. J. Syst. Bacteriol. 1996, 46, 128–148. [CrossRef]

11. Moyer, C.L.; Dobbs, F.C.; Karl, D.M. Phylogenetic diversity of the bacterial community from a microbial
mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 1995, 61,
1555–1562. [PubMed]

12. Iizuka, T.; Jojima, Y.; Fudou, R.; Yamanaka, S. Isolation of myxobacteria from the marine environment.
FEMS Microbiol. Lett. 1998, 169, 317–322. [CrossRef] [PubMed]

13. Zhang, Y.Q.; Li, Y.Z.; Wang, B.; Wu, Z.H.; Zhang, C.Y.; Gong, X.; Qui, Z.J.; Zhang, Y. Characteristics and
living patterns of marine myxobacterial isolates. Appl. Environ. Microbiol. 2005, 71, 3331–3336. [CrossRef]
[PubMed]

14. Li, Z.F.; Li, X.; Liu, H.; Liu, X.; Han, K.; Wu, Z.H.; Hu, W.; Li, F.F.; Li, Y.Z. Genome sequence of the halotolerant
marine bacterium Myxococcus fulvus HW-1. J. Bacteriol. 2011, 193, 5015–5016. [CrossRef] [PubMed]

15. Horton, T.; Kroh, A.; Ahyong, S.; Bailly, N.; Boury-Esnault, N.; Brandão, S.N.; Costello, M.J.; Gofas, S.;
Hernandez, F.; Mees, J.; et al. World Register of Marine Species; WoRMS Editorial Board: Ostend, Belgium,
2018. Available online: http://www.marinespecies.org (accessed on 1 May 2018). [CrossRef]

16. Pye, C.R.; Bertin, M.J.; Lokey, R.S.; Gerwick, W.H.; Linington, R.G. Retrospective analysis of natural products
provides insights for future discovery trends. Proc. Natl. Acad. Sci. USA 2017, 114, 5601–5606. [CrossRef]
[PubMed]

17. Herrmann, J.; Fayad, A.A.; Müller, R. Natural Products from myxobacteria: Novel metabolites and
bioactivities. Nat. Prod. Rep. 2017, 34, 135–160. [CrossRef] [PubMed]

18. Dávila-Céspedes, A.; Hufendiek, P.; Crüsemann, M.; Schäberle, T.F.; König, G.M. Marine-derived
myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and
biologically active metabolites. Beilstein J. Org. Chem. 2016, 12, 969–984. [CrossRef] [PubMed]

19. Schäberle, T.F.; Lohr, F.; Schmitz, A.; König, G.M. Antibiotics from myxobacteria. Nat. Prod. Rep. 2014, 31,
953–972. [CrossRef] [PubMed]

http://dx.doi.org/10.1046/j.1462-2920.1999.00016.x
http://www.ncbi.nlm.nih.gov/pubmed/11207714
http://www.ncbi.nlm.nih.gov/pubmed/16560578
http://www.ncbi.nlm.nih.gov/pubmed/20290967
http://dx.doi.org/10.1099/00221287-26-2-331
http://www.ncbi.nlm.nih.gov/pubmed/13925237
http://dx.doi.org/10.1111/j.1365-2672.1969.tb02187.x
http://www.ncbi.nlm.nih.gov/pubmed/5791934
http://www.ncbi.nlm.nih.gov/pubmed/6051351
http://dx.doi.org/10.1007/BF01999964
http://www.ncbi.nlm.nih.gov/pubmed/8899989
http://www.ncbi.nlm.nih.gov/pubmed/10473405
http://dx.doi.org/10.1099/00207713-46-1-128
http://www.ncbi.nlm.nih.gov/pubmed/7538279
http://dx.doi.org/10.1111/j.1574-6968.1998.tb13335.x
http://www.ncbi.nlm.nih.gov/pubmed/9868776
http://dx.doi.org/10.1128/AEM.71.6.3331-3336.2005
http://www.ncbi.nlm.nih.gov/pubmed/15933036
http://dx.doi.org/10.1128/JB.05516-11
http://www.ncbi.nlm.nih.gov/pubmed/21868801
http://www.marinespecies.org
http://dx.doi.org/10.14284/170
http://dx.doi.org/10.1073/pnas.1614680114
http://www.ncbi.nlm.nih.gov/pubmed/28461474
http://dx.doi.org/10.1039/C6NP00106H
http://www.ncbi.nlm.nih.gov/pubmed/27907217
http://dx.doi.org/10.3762/bjoc.12.96
http://www.ncbi.nlm.nih.gov/pubmed/27340488
http://dx.doi.org/10.1039/c4np00011k
http://www.ncbi.nlm.nih.gov/pubmed/24841474


Mar. Drugs 2018, 16, 209 10 of 11

20. Da Costa, M.S.; Santos, H.; Galinski, E.A. An overview of the role and diversity of compatible solute in
Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 1998, 61, 117–153. [PubMed]

21. Burg, M.B.; Ferraris, J.D. Intracellular organic osmolytes: Function and regulation. J. Biol. Chem. 2008, 283,
7309–7313. [CrossRef] [PubMed]

22. Moghaddam, J.A.; Boehringer, N.; Burdziak, A.; Kunte, H.; Galinski, E.A.; Schäberle, T.F. Different
strategies of osmoadaptation in the closely related marine myxobacteria Enhygromyxa salina SWB007 and
Plesiocystis pacifica SIR-1. Microbiology 2016, 162, 651–661. [CrossRef] [PubMed]

23. Schumacher, D.; Søgaard-Anderson, L. Regulation of Cell Polarity in Motility and Cell Division in
Myxococcus xanthus. Annu. Rev. Microbiol. 2017, 71, 61–78. [CrossRef] [PubMed]
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