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Cell-to-cell heterogeneity in gene expression and growth can have critical functional
consequences, such as determining whether individual bacteria survive or die following
stress. Although phenotypic variability is well documented, the dynamics that underlie
it are often unknown. This information is important because dramatically different out-
comes can arise from gradual versus rapid changes in expression and growth. Using
single-cell time-lapse microscopy, we measured the temporal expression of a suite of
stress-response reporters in Escherichia coli, while simultaneously monitoring growth
rate. In conditions without stress, we found several examples of pulsatile expression.
Single-cell growth rates were often anticorrelated with reporter levels, with changes in
growth preceding changes in expression. These dynamics have functional consequences,
which we demonstrate by measuring survival after challenging cells with the antibiotic
ciprofloxacin. Our results suggest that fluctuations in both gene expression and growth
dynamics in stress-response networks have direct consequences on survival.
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Even under otherwise constant environmental conditions, genetically identical cells can
display substantial phenotypic heterogeneity, resulting from differences in gene expres-
sion and growth rate from cell to cell (1–4). Phenotypic heterogeneity can, in principle,
arise from slow changes within the population where individual cells have different
expression levels or growth rates but maintain their state over many cell cycles. Alterna-
tively, fast dynamics with rapid fluctuations could produce equivalent distributions.
The distinction between these alternatives is significant because the timescale over
which expression or growth differences persist can ultimately determine if they have
functional consequences or are simply short-lived random variations that are filtered
before impacting cellular outcomes. Although phenotypic heterogeneity is well-
documented, the timescales underlying the variation and their ultimate impact on
function are often less clear.
We focused on stress-response genes in Escherichia coli to study the dynamics of

expression and growth in single cells. Genes involved in adaptation to stress are among
the noisiest genome-wide (3, 5). Studies on individual pathways have revealed specific
examples in which heterogeneous expression of stress-response genes can allow subpo-
pulations of cells to survive sudden environmental stress, such as transient exposure to
antimicrobial drugs, oxidative stress, and acid stress (6–9). Recent studies also indicate
that heterogeneity in the expression of genes involved in DNA repair can lead to vari-
ability in mutation rates, contributing to microbial evolution (10–12). Notably, this
diversity exists even in the absence of stressors. Although selected studies have begun to
reveal examples of how cell-to-cell phenotypic variation can provide important func-
tional capabilities to cell populations, examples of direct links are relatively sparse com-
pared to reports quantifying phenotypic heterogeneity. This motivated our focus on
stress-response pathways because the effect of the genes involved can be directly
assessed by quantifying outcomes like cell survival versus death following stress.
In addition to measurements at a single time point, long-term monitoring of gene

expression has begun to uncover examples of rich dynamics in key stress-response pro-
teins (13). For example, self-cleavage of the regulator LexA produces spontaneous
pulses in the SOS response network (14). Further, dynamic activity of transcription
factors can propagate to downstream genes, with direct consequences for stress toler-
ance. For instance, pulsatile expression of the transcription factor ComK enables Bacil-
lus subtilis cells to enter a transient competent state (15, 16). In E. coli, heterogeneous
expression of RpoS, a key regulator of general stress response, originates from pulses of
activation that are inversely correlated with growth, allowing cells to survive oxidative
stress (8). Additionally, Kim et al. demonstrated that genes in the flagellar synthesis
network, a process with a pivotal role in microbial pathogenicity, are expressed with
different pulsing programs that allow cells to switch between flagellar phenotypes (17).
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Collectively, these studies demonstrate that the temporal
dynamics of gene expression play an important role in the regu-
lation of stress-response networks.
Growth rate fluctuations have also been observed in single

cells across many bacterial species (2, 8, 18–20). They can arise
due to temporal variation in the expression of metabolic
enzymes (2, 21), the expression of burdensome proteins (12),
and due to regulatory effects such as feedback involved in cell-
size control (19). These single-cell differences in growth rate
can play a functional role in stress tolerance. For example, Nar-
ula et al. demonstrated that the growth rate of B. subtilis under
starvation conditions can determine whether individual cells
differentiate into spores or remain vegetative (22). Single-cell
growth rates also play a protective role, for example correlating
with differential antibiotic susceptibility in mycobacteria (23)
and E. coli (7, 24).
Understanding the timescales associated with gene expression

dynamics and growth can provide critical insights into the strat-
egies that cells use to hedge against environmental uncertainty.
In this study, we characterize the prevalence and dynamic prop-
erties of cell-to-cell phenotypic variation in different branches
of the stress-response network in E. coli. Using time-lapse
microscopy, we monitored the activity of key stress-response
genes, as well as genes involved in biosynthesis and metabolism,
in single E. coli cells under precisely controlled, unstressed con-
ditions. Our results reveal several examples of genes that exhibit
pulses of gene expression. Furthermore, properties of the
dynamics, such as the frequency or amplitude of pulsing, are
unique to each gene. Interestingly, fluctuations in the expres-
sion of genes frequently occur following variations in growth
rate. Dilution due to cell growth plays an important role in
driving these fluctuations, but the precise relationship between
growth and expression differs between the genes. Finally, we
show that coincident up-regulation of stress-response genes and
reduced growth rate favors tolerance to lethal antibiotic expo-
sure. Together, this work reveals that nontrivial gene expression
dynamics are common, even in otherwise constant conditions,
and that these dynamic patterns of gene expression and growth
can have critical consequences for cell survival.

Results

Single-Cell Measurements of Phenotypic Heterogeneity. We
began by characterizing heterogeneity in the expression of genes
with a diverse range of functions (SI Appendix, Table S1).
These include genes involved in acid resistance (gadW, gadX,
and phoP), multidrug resistance (evgA, marA, and rob), heat
shock (rpoH), oxidative stress response (oxyR), SOS response
(dinB, recA, and sulA), and general stress response (bolA), in
addition to genes involved in biosynthesis and metabolism
(araC, metJ, and purA).
To measure heterogeneity in the expression from each pro-

moter at the single-cell level, we used strains containing tran-
scriptional reporters where the promoter sequence of interest is
fused to the coding sequence of a fluorescent protein. We grew
independent bulk cultures of each strain to exponential phase
and measured heterogeneity across cells in the population using
fluorescence microscopy for single cells on agarose pads. Cell-
to-cell differences in gene expression resulted in different distri-
butions of reporter levels for each gene (Fig. 1A and SI
Appendix, Fig. S1). Measurements of the reporters revealed
many instances of wide distributions, indicative of a broad
range of expression levels across cells within a population.

Distributions tended to skew to the right of the mean (skew >
0) due to the presence of highly expressing cells.

However, measures of static distributions do not reveal the
underlying dynamics that generate them, prompting the ques-
tion: Do these distributions stem from long-lived fixed subpo-
pulations with slow dynamics or from conditions with fast
dynamics where individual cells transition between different
expression levels over time (Fig. 1B)? The significance of this
question is particularly pertinent in the context of stress-
response networks, where the timescales over which individual
genes are active may have concrete implications for tolerance
levels. For instance, if a transcription factor that activates genes
involved in stress response exhibits short pulses in expression,
these pulses might be insufficient to turn on expression of
downstream genes, while more sustained expression could. Fur-
ther, single-cell growth rates can impact survival, and thus the
interplay between expression and growth may be significant for
determining tolerance.

Pulsatile Gene Expression Can Underlie Cell-to-Cell Heterogeneity.
Thus, we next aimed to quantify the temporal dynamics under-
lying the distributions of gene expression and growth. We mea-
sured expression in cell lineages over many generations using a
“mother-machine” microfluidic device (25) and time-lapse fluo-
rescence microscopy. In this device, “mother” cells are trapped
at the top of one-ended chambers and maintained indefinitely
in exponential phase through the addition of fresh media,
allowing for multihour imaging of cell lineages. We used this
to monitor gene expression in tens to hundreds of independent
cell lineages for each reporter for at least 15 h. To quantify
gene expression over time, we used our deep learning-based cell
segmentation and tracking algorithm (26) to extract single-cell
resolution data from the mother cell and its progeny.

We observed heterogeneity in gene expression for cells grow-
ing in these precisely controlled conditions, which was consis-
tent with measurements acquired from bulk culture snapshots
(SI Appendix, Fig. S2). Further, our measurements of fluores-
cence correlate well with independent measurements from pre-
vious studies (SI Appendix, Fig. S3 and Table S2). Long-term
monitoring of expression revealed a diversity of phenotypes,
with some genes that fluctuated at a low level, likely due to var-
iation in copy number in the reporter plasmid and inherent sto-
chasticity in gene expression, while others were highly dynamic
in their expression (Fig. 1 C–E and SI Appendix, Fig. S4). We
observed that variability within a distribution often arose from
pulsatile dynamics, with single cells transitioning smoothly
between different expression states. These results join other
recent single-cell studies showing transcriptional pulses in
expression in the absence of stress (8, 14, 17).

We found that the timescales of these fluctuations were spe-
cific to each gene, and the pulses themselves ranged in inten-
sity. For instance, gadX, which encodes a transcription factor
that regulates ∼34 genes in the acid-resistance system, exhibits
pulses of high amplitude and duration that persist well beyond
the cell-cycle length, as visible in multigeneration patterns of
gene expression (Fig. 1C and Movie S1). In contrast, recA,
which plays a central role in the processes of homologous
recombination and SOS response, showed large-amplitude
pulses, but with shorter durations (Fig. 1D and Movie S2). Yet
others, like araC, which encodes a transcription factor that reg-
ulates arabinose catabolism and transport, were more muted in
their changes and exhibited only mild, low-amplitude fluctua-
tions (Fig. 1E and Movie S3).
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Fig. 1. Cell-to-cell heterogeneity and temporal dynamics of gene expression. (A) Histograms of fluorescence values show cell-to-cell variation. Values are
presented normalized relative to their means to allow for comparison across reporters. The same data without normalization are shown in SI Appendix, Fig.
S1. Corresponding coefficient of variation (CV) values obtained from snapshot images of cells grown in bulk cultures are listed in the figure. The skewness
(skew) of the distribution, which is positive for distributions that are right-skewed, is also listed. (Insets) Phase contrast and fluorescence images for repre-
sentative strains. Functional classes are listed for each gene. (Scale bar, 2 μm.) (B) Schematic representation of fluorescence signal over time originating
from single cells with slow or fast dynamics of gene expression that result in identical fluorescence distributions for the final timepoint. (C–E) Representative
kymographs of cells containing transcriptional fluorescent reporters for (C) gadX, (D) recA, and (E) araC. In all cases, fluorescence values are normalized to
the mean to allow comparisons across the reporters. (Scale bars, 5 μm.) Corresponding phase contrast images and distributions of cell lengths are shown in
SI Appendix, Fig. S4. (F) Single-cell measurements of GFP expression over time for the gadX reporter. Colored heat maps summarize the time-series data. (G)
Heat maps summarizing the temporal dynamics of gene expression for all reporters. (H) Constitutive reporter heat map. (I) Chromosomally integrated gadX
reporter heat map. In F–I, data from 25 cells are shown; however, this represents a subset of the time-series data. Color scale and normalization approach
in F applies to all heat-map data.
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Surveying 15 reporters, we observed a wide range of tempo-
ral gene expression profiles (Fig. 1 F and G). Despite the
marked differences in temporal gene expression, cell length dis-
tributions were similar for strains harboring these different
reporters (SI Appendix, Fig. S5A). We also measured correla-
tions between fluorescence and cell length for all the reporters
(SI Appendix, Fig. S5 B and C). These signals were not strongly
correlated for most of the reporters. However, we did observe
positive correlations between expression of recA and sulA and
cell length. This result is expected, because these genes play a
key role in the SOS response, which is known to induce cell fil-
amentation (27–29). Even in unstressed conditions, we find
that a small subset of cells exist in a state with high gene expres-
sion and corresponding elongated cell morphology. To rule out
the possibility that the mother-machine architecture was intro-
ducing spurious relationships between growth rate and cell size
or position within the chamber, we verified that growth rates
were independent of both cell length and chamber position,
indicating that the growth rate of mother cells is representative
of all cells within the chambers (SI Appendix, Fig. S6). In all
cases, the mean fluorescence levels were consistent across the
duration of the experiments despite the fluctuations in gene
expression at the single-cell level (SI Appendix, Fig. S7). Impor-
tantly, the dynamic activity observed for many reporters
occurred under constant growth conditions, where parameters
such as pH, temperature, and growth medium do not fluctuate.
As a control, we also included a plasmid-based constitutive

reporter to quantify the baseline level of fluctuations expected
from variation in plasmid copy number (Fig. 1H). The constitu-
tive reporter exhibits mild changes in expression but does not
reach the level of variation we observed in reporters like gadX and
recA. As an additional control, we also chromosomally integrated
the gadX reporter and confirmed that pulses in gene expression in
cells containing the plasmid and chromosomally integrated ver-
sions of the reporters were comparable (Fig. 1I). Low expression
levels prevented us from conducting all experiments using chro-
mosomal reporters; however, the constitutive reporter serves as a
control to establish baseline effects that are plasmid-based rather
than specific to the stress-response reporters.

Properties of Temporal Expression Vary across the Reporters.
Next, we defined several metrics across which to assess dynamic
behavior. We selected properties related to pulses including
their frequency, duration, and amplitude (Fig. 2A). Pulse fre-
quencies were broadly distributed, ranging from examples that
exceed 0.25 pulses per hour (one pulse every 4 h) for recA to
much less frequent conditions where our peak-finding algo-
rithm rarely identified pulses (Fig. 2B). Pulse durations typi-
cally ranged from 0 to 4 h and showed instances of precision
(e.g., recA and sulA) in addition to examples with widely vari-
able durations (e.g., bolA, evgA, and rpoH). Pulse amplitudes
were predominantly small, with average amplitudes around
75% of the mean, or 0.75×, but there were notable instances
where the distributions had long tails such that amplitudes
extended well above this for a subset of the pulses. For example,
gadX and recA exhibit pulses that significantly deviate from the
mean. None of the pulse properties analyzed displayed a strong
correlation with the mean expression of the reporters (SI
Appendix, Fig. S8). To alleviate the potential concern that these
relationships were a result of the specific method by which we
identified pulses, we repeated the calculations under a range of
different peak determination thresholds and found that our
results were not sensitive to the precise threshold definition,
provided the threshold was set high enough to exclude most

fluctuations in the constitutive reporter control (SI Appendix,
Fig. S9).

We next asked what characteristic timescales the gene expres-
sion dynamics exhibited by calculating the autocorrelation of the
fluorescence signal. In all cases, we observed monotonically
decreasing average autocorrelation curves (SI Appendix, Fig. S10).
We calculated the half-life associated with the autocorrelation
curve for each gene (Fig. 2 C and D). If the fluorescent reporter
levels decrease solely due to dilution resulting from growth and
division, the half-life will equal the cell division time. Longer
half-lives can indicate the presence of memory, for example due
to regulatory networks that cause signals to persist. We found
that half-lives were always greater than or equal to the cell divi-
sion time, consistent with the use of stable fluorescent reporters
(Fig. 2D). Notably, we observed cases where the average exceeded
the cell division time by two- to threefold, potentially indicative
of memory within the network. We verified that these calcula-
tions performed on data from mother cells were consistent with
correlations within the lineage tree. Indeed, tracking fluorescence
signals from mother to daughter to granddaughter cells revealed a
strong positive correlation that persisted across multiple genera-
tions (SI Appendix, Fig. S11).

RpoS Levels Influence gadX Pulsing Dynamics. One question
that our results provoke is why some of the reporters exhibit
pulsatile expression. We began by examining this in more detail
for the case of the gadX reporter, which exhibited frequent
pulses of high amplitude and duration. RpoS plays a role in
gadX regulation and has been shown to exhibit pulsatile
dynamics during exponential growth (8, 30, 31). Thus, we
hypothesized that fluctuations in cellular RpoS levels during
exponential growth could be underlying gadX pulsing. We used
the same gadX reporter and compared expression in wild-type
and ΔrpoS strains. Deletion of rpoS reduced gadX expression,
and fluctuations in gadX expression became significantly less
noticeable (Fig. 2E and SI Appendix, Fig. S12). We found that
the frequency, duration, and amplitude of gadX pulses in the
ΔrpoS cells were all reduced relative to the characteristic profile
of wild-type cells (Fig. 2F), demonstrating the impact of RpoS
on gadX pulsing dynamics. Experiments with the constitutive
control show similar expression dynamics in both wild-type
and ΔrpoS backgrounds, consistent with the lack of RpoS regu-
lation of this reporter (Fig. 2 G and H).

To investigate whether RpoS modulates the dynamics of its
different target genes in a standardized fashion, we also moni-
tored the expression dynamics of two other RpoS-regulated
reporters from our library, evgA and gadW, by comparing
expression in the wild-type and ΔrpoS backgrounds (SI
Appendix, Fig. S13). The overall dynamics of both reporters
were altered in the ΔrpoS strain in comparison to wild type,
confirming that RpoS has an important role in modulating the
expression of its target genes during exponential phase. How-
ever, the impact of rpoS deletion on pulse metrics appears to be
specific to each gene. These results suggest that RpoS modula-
tion impacts expression dynamics, but its precise influence is
gene-dependent.

For some of the reporters we used, the mechanism leading to
pulsing dynamics has been revealed through prior studies. For
example, pulsing dynamics for genes involved in SOS response,
like recA and sulA, has been shown to originate from fluctua-
tions in the availability of their common negative regulator
LexA (14). Thus, fluctuations in master regulators of gene
expression might be a common mechanism leading to heteroge-
neous expression of downstream genes.
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ages with at least one pulse. (C) Autocorrelation of the fluorescence signal for independent cell lineages with the gadX reporter. Half-life is defined as the
value of the time shift τ when the mean of the autocorrelation curve crosses 0.5. (D) Cell division time and half-life for each of the reporters. Error bars
show SD around the mean. For the autocorrelation half-life calculations, half-lives are calculated using data from single cells, then mean and SD are calcu-
lated over these single-cell values. (E) Heat maps summarizing single-cell measurements of GFP over time for the gadX reporter in wild-type and ΔrpoS cells.
Identical reporters are used in both strains, and thus the unnormalized data can be compared directly. (F) Frequency, duration, and amplitude distributions
for the gadX reporter in the wild-type and ΔrpoS backgrounds. (G) GFP expression for the constitutive reporter in wild-type and ΔrpoS cells. Identical report-
ers are used in both strains, and thus the unnormalized data can be compared directly. (H) Frequency, duration, and amplitude distributions for the consti-
tutive reporter in the wild-type and ΔrpoS backgrounds.
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Pulsatile Expression Dynamics and Growth. We next asked
whether growth rate contributes to the observed variability in
expression levels. While the growth rate of individual E. coli
cells shows long-term stability during replicative aging (25), it
can exhibit noisy temporal behavior (2, 8, 19). We sought to
quantify how temporal fluctuations in growth rate correlate
with gene expression. Patange et al. demonstrated that growth
rates fluctuate, with periods of slow growth that last for several
generations and are anticorrelated with pulses of activation of
RpoS (8). However, it is not clear whether this feature is spe-
cific to RpoS or if it is common to many genes. We asked
whether the pulsatile dynamics we observed coincided with
dynamic patterns in growth rate. To test this, we extracted the
instantaneous growth rate from cell lineages over time and
compared them to fluorescence data for the different reporters.
We observed distributions of growth rates that were similar
across all reporters and strains used in this study (SI Appendix,
Fig. S14).
In principle, fluorescence levels, which report underlying cel-

lular properties such as those related to metabolism, can pre-
cede changes in growth (32). Alternatively, growth can drive
changes in fluorescence since it affects dilution rates; regulatory
links between growth rate and fluorescence are also possible
(Fig. 3A). In both cases, these relationships could be positive or
negative depending on the precise underlying mechanism.
To distinguish between these possibilities, we first computed

temporal cross-correlations between fluorescence (F) and
growth rate (μ), RF,μ(τ) (Fig. 3B). The cross-correlation meas-
ures how well the fluorescence and growth signals are correlated
when the growth signal is shifted by a time τ relative to the
fluorescence signal. Cross-correlation curves for our reporters
have characteristic shapes, where signals are uncorrelated at
large positive and negative values of the time shift, τ. For inter-
mediate values of τ, we regularly observed valleys in the cross-
correlation. We defined (τextreme, Rextreme) as the coordinates of
the point on the cross-correlation curve with the largest abso-
lute value, indicating the largest correlation between the fluo-
rescence and growth rate signals. Rextreme can be either positive
or negative, depending on whether the signals are correlated or
anticorrelated. We also defined τextreme as the time shift associ-
ated with Rextreme, where τextreme < 0 when changes in fluores-
cence precede changes in growth and τextreme > 0 when growth
leads fluorescence.

Growth and Expression Are Often Anticorrelated, with
Growth Leading Expression. We found examples where a
strong anticorrelation between fluorescence and growth were
visible, such as with the gadX reporter, and other cases where
the signals were uncorrelated, such as with the recA reporter
(Fig. 3C). To quantify this trend across many cell lineages, we
calculated cross-correlations between fluorescence and growth
rate for all reporters (Fig. 3D). In many cases we observed an
anticorrelation with a positive time shift between growth rate
and gene expression, indicating that the pulses of expression
from these promoters were preceded by a decrease in growth
rate. In addition, we confirmed that the chromosomally inte-
grated version of the gadX reporter produces cross-correlation
curves that are similar to the plasmid-based version (SI
Appendix, Fig. S15).
We found that changes in growth rate never lagged changes in

fluorescence for all reporters we measured (τextreme > 0) (SI
Appendix, Fig. S16). It is possible that fluorophore maturation
times could systematically introduce a lag between actual expres-
sion changes and read-out of the fluorescent protein. Maturation

times for our reporters are relatively rapid, with 50% of fluores-
cent proteins maturing within ∼6 min (33); however, reporter
maturation times could systematically introduce a modest positive
shift in τextreme. Overall, our measurements indicate that even cells
growing exponentially under optimal conditions undergo episodes
of slow growth that are largely followed by the pulses of stress-
related genes, which frequently demonstrate an inverse relation-
ship between growth rate and fluorescence.

Many of the genes in our library have long half-lives, and
thus the relationship between the proteins they encode and
growth rate may be similar to our experiments with stable fluo-
rescent proteins. Examples of specific proteins include EvgA,
RecA, and PhoP which have half-lives of 3 to 4 h (34).
Although half-lives are not known for all proteins we consid-
ered, most proteins in E. coli are slowly degraded (35). Thus,
delayed anticorrelations between growth and fluorescence sig-
nals are likely indicative of many of the protein concentration
and growth rate relationships.

Promoter Activity Is Typically Positively Correlated with
Growth. Accumulation of fluorescent proteins resulting from
reduced dilution due to cell growth and division could poten-
tially generate the delayed anticorrelation relationship we
observed for many of the genes. However, we observed only a
modest anticorrelation for several of the promoters, a near-zero
or mildly positive relationship for the constitutive reporter, and
no anticorrelation for recA and sulA (Fig. 3D). Thus, the anti-
correlation is not an unavoidable consequence of dilution but is
instead dependent on the specific relationship between gene
expression and growth. Although the specific mechanisms that
generate this effect will require further study, reporters with
transcription rates that are decoupled from growth rate might
produce delayed anticorrelations as a result of dilution effects,
while transcription rates proportional to growth rate could can-
cel out this effect, resulting in flat cross-correlation curves.
Indeed, Klumpp et al. showed that constitutive gene expression
can be growth-rate-dependent, while expression of other genes
is independent of growth rate (36).

In order to help decouple expression and growth rate effects,
we also calculated promoter activity, which quantifies the rate
of expression from the promoter. Promoter activity signals fluc-
tuate over time and exhibit more rapid changes than the fluo-
rescence signals (SI Appendix, Fig. S17A). We observed low or
slightly anticorrelated relationships between cell growth and
promoter activity for gadX and positive correlations for recA.
We repeated the cross-correlation analysis for all reporters using
the promoter activity signal and growth rate (SI Appendix, Fig.
S17B). The promoter activity was often positively correlated
with growth with no time shift between the two signals (τextreme

≅ 0) (SI Appendix, Fig. S17 C–E). We also observed instances
of weak (e.g., gadW and rob) or mildly negative correlations (e.
g., gadX). Together, these results suggest that the delayed anti-
correlation in the cross-correlation between fluorescence and
growth is largely due to cell dilution; however, the relationship
between the rate of gene expression and growth varies widely
across the reporters.

Gene Expression and Growth Dynamics Impact Single-Cell
Survival under Stress. A critical question is whether these
changes in gene expression and growth have concrete implications
for whether a single cell will survive or die following stress.
In other words, are the dynamics we observed sufficient to
provide meaningful phenotypic differences that cause a cell
to tolerate or succumb to stress? Slow growth and induction
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of stress-response genes have previously been reported as
mechanisms that allow survival at the populational level
(37–41). This prompted us to investigate whether gene
expression and growth dynamics influence the chances of
survival under stress. Further, we asked whether survival was
the result of a fortuitous condition of gene expression or
slow growth upon stress introduction, or if a cell’s past his-
tory was important.
For these studies, we first focused on expression of gadX, as

our measurements demonstrate that this reporter is expressed in
large pulses and has a strong anticorrelation with growth. In a
prior study, we demonstrated that gadX is heterogeneously
expressed in the absence of antibiotic stress and that expression
levels correlate with longer survival times under constant car-
benicillin and ciprofloxacin exposure (7). However, it was not
clear how prior history or pulsing dynamics contribute to this
phenotype and whether cells could recover normal cell division
after transient drug treatment. Thus, we quantified how gadX
and growth fluctuations preceding sudden exposure to a lethal
antibiotic dose influence survival. We leveraged the mother-
machine device to rapidly switch input media and exposed
exponentially dividing cells to a short pulse of ciprofloxacin, a
fluoroquinolone drug widely used to treat bacterial infections.
We treated cells with 2 μg/mL ciprofloxacin, which corre-
sponds to 100× the minimum inhibitory concentration, for 35
min before switching back to growth medium without antibi-
otic. This experimental setup allowed us to monitor the
dynamics of gadX expression and growth in single cells prior to

antibiotic stress while also recording the outcome of each cell
lineage.

Within the same experiment, we observed instances where
single cells were able to survive ciprofloxacin treatment (Fig. 4A
and Movie S4) and cases where treatment killed the cells (Fig.
4B and Movie S5). In addition to surviving and dying, we also
observed a third category of outcomes where cells filamented.
However, it was difficult to accurately assess whether these cells
survived or died, as they were frequently swept out of the
mother-machine chamber and lost from the field of view.
Thus, we focused our analysis on the surviving and dying cells
because we could accurately determine their outcomes. By
tracking gene expression history preceding antibiotic treatment,
we observed pulses in fluorescence from the gadX reporter prior
to ciprofloxacin addition in both the surviving and dying cells
(Fig. 4C). Cells that exhibited expression pulses in the past, but
had low expression at the time of ciprofloxacin treatment, were
more likely to die. In contrast, cells which were in the fortu-
itous state of having an ongoing gadX pulse at the time of cip-
rofloxacin addition were more likely to exhibit transient stress
tolerance.

We also looked at cellular outcome as a function of the
growth rate. Consistent with our results showing anticorrela-
tions between fluorescence and growth for gadX (Fig. 3D),
we observed decreased growth rates in cells that survived,
which were associated with increases in fluorescence signals
(Fig. 4D). By looking at gene expression and growth rate his-
tory prior to ciprofloxacin addition, we see clear differences
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Fig. 3. Growth and gene expression dynamics are often anticorrelated. (A) Two possible models for the relationship between fluorescent reporter levels
and growth. (B) Schematic of cross-correlation function between fluorescence (F) and growth rate (μ), RF,μ(τ) indicating points corresponding to Rextreme and
τextreme (Top). Temporal patterns of the fluorescence and growth rate and their impact on Rextreme and τextreme (Bottom). (C) Representative fluorescence
(green) and growth rate (magenta) values over time for a single mother cell with a reporter for gadX (Left) or recA (Right). Black dots at the top of the figure
indicate cell division events. To aid visualization, growth rate data in this figure are smoothed with a moving average filter with a window of five frames in
addition to the standard data processing described in Materials and Methods. (D) Cross-correlations between fluorescence and growth for all reporters.
Shaded region represents SD about the mean.
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emerging between the populations of cells that will survive
and die starting ∼5 h prior to treatment (Fig. 4 E and F).
The trend we observe does not reflect a linear increase in
fluorescence in individual cells but rather results from gadX
pulsing dynamics (Fig. 4 C and E). Similarly, decreases in
growth rate accumulate based on contributions from indi-
vidual cell dynamics (Fig. 4 D and F). For surviving and
dying cohorts, we quantified how long each cell had been
experiencing its final pulse of gadX expression at the point
when ciprofloxacin was introduced (Fig. 4G). We found that
a broad range of pulse lengths led to survival, while cells that
died were rarely in an extended pulse.

Both Elevated Expression of Stress-Response Genes and Slow
Cell Growth Contribute to Survival. Because growth rate and
expression of stress-response genes are linked, a key question is
whether survival is simply a by-product of slow growth, or if
elevated gene expression and slow growth act synergistically.
Disentangling this is challenging because growth, fluorescence,
and survival are all correlated, but not necessarily causally
related. To investigate this, we used a minimal model of causal
inference to consider all possible impacts of growth and gene
expression on survival. Conceptually, we considered three sce-
narios (Fig. 4H): growth rate (μ) and gene expression (reported
by fluorescence, F) both impact survival; μ is linked with sur-
vival, but F has no impact; and F is linked to survival, but μ
has no impact. These three possible relationships between μ, F,
and survival can all be associated with correlations between
fluorescence and survival, but the causal relationships are differ-
ent in each case.
For example, the three scenarios will each produce different

single-cell outcomes (survived or died) when fluorescence is
plotted as a function of growth rate, even when μ and F are
correlated in the same way (Fig. 4I). When both μ and F
impact survival, the line that best separates the populations that
survived and died will be diagonal. In contrast, when μ only
impacts survival, the line is vertical. When F solely impacts sur-
vival, the line is horizontal. Importantly, these lines of separa-
tion represent where the probability of survival (P) is 0.5.
Thus, it is not expected that all points that fall on one side of
the line will be surviving cells and those on the other will die
(this would imply a probability of 1 on one side and 0 on the
other, rather than a smooth transition between these probabili-
ties). Instead, the region where P > 0.5 is more likely to have
cells that survive but will also contain some cells that die.
Inferring causal relationships is an intensive topic of study in

statistical analysis (42–45). We employed a multiple regression,
coupled with estimates of prior distributions, to predict the most
likely causal relationships given our data. To quantify the causal
contributions between μ and F with survival in the model (Fig.
4H), we defined parameters βμ and βF, where βμ = 0 or βF = 0
indicate that μ or F do not contribute to survival, respectively.
Positive values for these terms indicate complementary relation-
ships and negative values indicate inverse relationships. In addi-
tion, the parameter γ quantifies the relationship between μ and
F. Similarly, the model can infer that this relationship is not pre-
sent, positive, or negative. The model is fit to the distributions
of growth rate and fluorescence values that we observed experi-
mentally (SI Appendix). Briefly, the model assumes a normal
distribution for growth rates and a log-normal distribution for
fluorescence values, which is a function of the value of μ. Sur-
vival is a binary variable, which we model using a Bernoulli dis-
tribution, with probability of survival determined as a function
of the values of μ and F.

To generate simulated data on which to test performance of
the minimal model for causal inference, we used a stochastic
simulation of gene expression based on the random telegraph
model (46–49). This stochastic mechanistic model accounts for
promoter activity, transcription, and translation and includes a
model for cell survival and death (SI Appendix). We generated
data for each of the three scenarios: μ and F impact survival
together, μ impacts survival alone, and F impacts survival alone.
We used these simulated data points and plotted single-cell
outcomes (survival or death) as a function of growth rate and
fluorescence at the time of antibiotic addition (Fig. 4J). Using
these data, we computed the likelihood of the minimal model
parameters, including βμ, βF, and γ, to generate the posterior
distribution (Fig. 4K). Feeding this posterior distribution into
the minimal model in a forward fashion allowed us to compute
the posterior predictive distribution of cell outcomes as a func-
tion of μ and F (Fig. 4J). We next used the model parameters
to visualize the line representing a survival probability of 0.5.

The minimal model was able to correctly capture the causal
relationships between μ, F, and survival from the stochastic simu-
lation data. In the case where both μ and F have a direct impact
on survival, both βμ and βF have nonnegligible values (Fig. 4K)
and the line showing the 0.5 probability of survival is diagonal
(Fig. 4J). When only μ influences survival, the maximum a poste-
riori of βF is close to zero, and the 0.5 probability line is approxi-
mately vertical. Similarly, when only F influences survival, the
maximum a posteriori of βμ is close to zero, and the 0.5 probabil-
ity line is approximately horizontal. Thus, the minimal model for
causal inference can distinguish between alternative direct rela-
tionships between gene expression, growth, and survival.

Building upon the intuition from the stochastic simulation
results, we next tested this approach on experimental data.
Measurements for the gadX reporter of the instantaneous fluo-
rescence and growth rate at t = 0, just prior to antibiotic addi-
tion, tend to show an inverse correlation between fluorescence
and growth rate (Fig. 4L). For example, most surviving cells
exhibited both elevated gadX expression and reduced growth
rate immediately prior to ciprofloxacin treatment (Fig. 4 C and
D). However, this correlation between growth rate and fluores-
cence does not imply causation. Thus, we next used these data
to fit the values of the minimal model parameters, including
βμ, βF, and γ, and computed the posterior predictive distribu-
tion of cell outcomes.

For the gadX reporter, we found that βμ was negative, βF was
positive, and, correspondingly, the line representing the 0.5 sur-
vival probability was diagonal, indicating that both gene expres-
sion and growth impact survival (Fig. 4 L and M). The negative
value of βμ indicates that growth rate and survival are inversely
related, as expected since slow growth is known to have a protec-
tive effect (2, 8, 18–20). Positive values of βF indicate that higher
levels of gadX expression directly influence survival. These rela-
tionships with survival characterized by negative values of βμ and
positive values of βF emerge ∼5 h in advance, consistent with the
extended duration of the gadX pulses ( SI Appendix, Fig. S18).

To investigate whether the expression of other genes may
also correlate with survival, we monitored the expression of two
additional reporters under ciprofloxacin treatment (Fig. 4L).
First, we measured the dynamics of the bolA reporter, an
important stress-response gene controlled by RpoS whose
expression has been found to be anticorrelated with growth rate
(8). Cells that survived treatment were more likely to be in the
midst of a transient period of slow growth and high bolA
expression, while cells in the dying cohort were not (SI
Appendix, Fig. S18). We also tracked the expression of recA,
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Fig. 4. Cell-to-cell differences in gene expression and growth influence survival outcomes after antibiotic exposure. (A) Representative kymograph of a cell
lineage with gadX reporter that survives and (B) dies after antibiotic treatment. Images are from nearby chambers within the same microfluidic chip. Shaded
area in red indicates 35-min period of ciprofloxacin treatment. (C) Single-cell gadX expression and (D) growth rate for the period preceding ciprofloxacin
treatment. Cell numbers in C and D correspond to the same cells. Time series are sorted by the mean value of the fluorescence signal for t < 0, from high to
low. (E) Mean fluorescence from the gadX reporter (F) and growth rate for the period preceding ciprofloxacin addition, with cells that survived or died sepa-
rated. Shaded regions correspond to SD about the mean. Statistics are conducted at each time point; the horizontal bar indicates time points after which
P < 0.001 (***), two-sample t test for differences between the mean of the cells that survived and died. (G) Histogram of duration of the pulse that cells
were in upon ciprofloxacin addition, sorted by outcome. (H) Minimal model for causal relationships between growth rate (μ), gene expression (as reported
by fluorescence, F), and survival and associated parameters. (I) Schematics showing data with identical correlations between μ and F but different causal
relationships for survival. (J) Stochastic simulation results used to generate data that were then fit to the minimal model for causal inference. Gray shaded
region shows the area where the probability of survival is between 0.9 and 0.1. Contour lines show the posterior predicted distributions from the fit to the
minimal model. (K) Predicted values for βμ, βF, and γ from the data in J. Violin plots show the marginal posterior distribution of each of the three variables.
The black lines show the 94% highest density interval (HDI), i.e., the smallest interval containing 94% of the probability. Each row in I–K corresponds to the
scenario shown in that row in H. (L) Experimental data showing fluorescence values of individual cells carrying reporters for gadX, bolA, and recA that sur-
vived (green) or died (gray) following ciprofloxacin treatment plotted as a function of growth rate and fluorescence at t = 0. Gray shaded region and contour
lines are as described in J. (M) Predicted values for βμ, βF, and γ from the gadX, bolA, and recA experimental data. Violin plots are as described in K.

PNAS 2022 Vol. 119 No. 14 e2115032119 https://doi.org/10.1073/pnas.2115032119 9 of 12



which we selected because its fluorescence levels were not
strongly correlated with growth rate (Fig. 3D). For both bolA
and recA, the results mirror the effects observed for gadX, cor-
roborating the important roles of both gene expression and
slow growth in survival and suggesting the potential for collec-
tive protective impact of different proteins encoded by stress-
response genes that accumulate during slow growth episodes.
In addition, we compared the estimated values of γ, which
describe the relationship between growth and fluorescence. The
minimal model estimates negative values of γ for the gadX and
bolA reporters and values for γ near zero for the recA reporter.
These estimates are consistent with experimental results mea-
sured using cross correlations (Fig. 3D), demonstrating that the
minimal model captures the essential features in the complex
relationship between gene expression, growth, and survival.

Discussion

Although cells can display substantial phenotypic heterogeneity in
constant environmental conditions, the timescales over which
gene expression levels and growth rate fluctuate and how this ulti-
mately impacts function are often less clear. To provide insight
into these questions, we focused on genes involved in stress
response in E. coli. Our results demonstrate that distributions of
gene expression levels and growth rates can originate from rich
dynamic activity, where individual cells transition between expres-
sion levels over time. Our findings expand previously published
observations on pulsing dynamics (8, 13, 14, 17, 50) to a broader
set of genes, suggesting that these time-varying differences in
expression and growth may be more common than previously
appreciated. These fluctuations occur under uniform, unstressed
conditions and are observed across genes with diverse stress-
response roles. Notably, temporal changes in gene expression are
also related to growth. In our measurements, we found many
instances where pulses of high activity followed decreases in
growth rate. However, this link is not universal and is potentially
indicative of differences in how gene expression rates are related
to growth rate. Finally, we asked whether gene expression dynam-
ics have functional consequences. We showed that a functional
outcome of a decrease in growth rate is that cells are more likely
to survive following sudden exposure to a lethal dose of ciproflox-
acin. This coincides with increases in expression of several of the
stress-response genes we measured in our study, where both slow
growth and elevated gene expression work together to provide a
synergistic protective effect.
Our results join a small number of other studies demonstrat-

ing examples of functional phenotypic heterogeneity. For exam-
ple, the stochastic activation of diverse stress-response genes,
such as those encoding porins (51), the catalase-peroxidase
KatG (52), and the multiple antibiotic resistance activator
MarA (6, 53, 54), result in transient tolerance to exogenous
stress. Other examples include biased partitioning of efflux
pumps during cell division that results in differential antibiotic
susceptibility (55) and heterogeneous induction of gad regulon
genes during antibiotic treatment that cross-protects cells
against subsequent acid stress (9).
Reduced growth rates are known to enable cells to transiently

resist stress, for example by playing a major role in the forma-
tion of persister cells (38, 56). By tracking expression dynamics
and growth rates simultaneously, we found many instances in
which these metrics are inversely correlated over time. Interest-
ingly, an analogous observation was reported by Patange et al.
(8) that demonstrated that the stress-response master regulator
RpoS is expressed with pulsatile dynamics in exponentially

dividing cells and is inversely correlated with growth rate. We
demonstrated that RpoS availability directly influences pulsing
dynamics in gadX, evgA, and gadW and could potentially serve
as a common mechanism underlying the expression and growth
dynamics associated with additional genes characterized in our
study. Other mechanisms are also possible, as several genes in
our study (e.g., marA) are not known to be regulated by RpoS.
In some instances other mechanisms have been demonstrated,
as in a recent study that indicated that self-degradation of the
SOS response repressor LexA triggers pulses in the expression
of recA and sulA during exponential growth in unperturbed
conditions (14). Fluctuations in LexA result in frequent pulses
in recA expression, while sulA is less susceptible to LexA vari-
ability, corroborating our observations. It is also noteworthy
that, in addition to RpoS, at least one additional sigma factor,
RpoH, was activated with pulsatile dynamics during exponen-
tial growth, a behavior that can potentially be propagated to
>150 downstream genes that collectively control the cellular
heat-shock response (57, 58). The pulsatile activity of these reg-
ulators might indicate that the mechanism by which sigma fac-
tors “time share” RNA polymerase complexes previously
described in B. subtilis (59) might also be present in E. coli.
Additionally, the pulses of activation of different sigma factors
might be associated with different cellular growth statuses.

A link between the expression of genes in the gad regulon and
survival to antimicrobial drugs has also been observed in other
studies (7, 60). For example, overexpression of gadX can extend
survival times under carbenicillin treatment (7). Our results pro-
vide important insights into potential additional mechanisms
underlying this effect. We demonstrate that pulses of gadX expres-
sion coincide with episodes of slow growth, which can contribute
to survival. Additionally, many stress-response genes display pulsa-
tile expression dynamics and anticorrelation with growth rate, and
we show that elevated expression and slow growth in both bolA
and recA are also linked to a higher likelihood of survival. Addi-
tionally, our minimal model results suggests that both elevated
gene expression and reduced growth rate play a causal role in pro-
tecting cells from antibiotic stress. The collective accumulation of
stress-response proteins may serve to amplify the tolerance of sin-
gle cells undergoing periods of slow growth.

In future experiments, it would be interesting to conduct
measurements using pairs of reporters so that expression pulses
can be monitored simultaneously in the same cell. This is par-
ticularly interesting to examine in relation to the growth rate,
as we observed many instances of anticorrelation, but the tem-
poral properties of these pulses were distinct from each other.
Although we measure growth rate in our analysis, our findings
do not preclude the possibility that growth rate is a secondary
effect that is downstream of the true coordinating signal, such
as metabolic state (32, 61). Experiments that use reporters to
measure genes involved in metabolism alongside the stress-
response reporters or studies that carefully control the nutrient
composition could be used to investigate this possibility. It will
also be interesting to investigate how the information encoded
in transcription factor dynamics is transmitted to downstream
genes, and emerging technologies that enable the manipulation
of gene expression over time could help to identify how these
signals are propagated (62, 63). Finally, although we have
focused our analysis of stress survival on transient ciprofloxacin
treatment in wild-type cells, it would be interesting to test sur-
vival in other antibiotics, different stress application patterns,
and the effect of different strain backgrounds.

In summary, our findings reveal that pulsatile dynamics in gene
expression and growth serve as a mechanism that cells can leverage
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to transiently resist stress. This dynamic behavior is spread across a
broad range of stress-response genes, including heat-shock
response, multidrug resistance, and oxidative stress and can enable
subpopulations of cells to withstand temporary stress.

Materials and Methods

Strains and Growth Media. Strains containing reporter plasmids were
sourced from the collection created by Zaslaver et al. (64), unless otherwise
noted. Briefly, each strain has a low-copy-number plasmid (SC101 origin) con-
taining the promoter sequence for the gene of interest upstream of the coding
sequence for gfpmut2 green fluorescent protein (GFP). Further details on plas-
mid and strain construction are provided in SI Appendix.

Cells were grown in M9 medium (0.1 mM CaCl2, 2 mM MgSO4, and 1× M9
salts) supplemented with 0.4% glucose, 0.2% casamino acids, and 30 μg/mL
kanamycin for plasmid maintenance. Media used in microfluidic experiments
were supplemented with 2 g/L F-127 Pluronic to prevent cell adhesion and
growth outside of the mother-machine growth chambers.

Static Fluorescence Microscopy Snapshots. Overnight cultures were
diluted 1:100 and incubated at 37 °C with shaking for 2.5 to 4 h (optical density
at 600 nm [OD600nm] = 0.7 to 1.3). One microliter of cells was placed on 1.5%
MGC (0.2% glycerol, 0.01% casamino acids, 0.15 μg/mL biotin, and 1.5 μM thi-
amine) low-melting-point agarose pads and imaged at 100× on a Nikon Ti-E
inverted fluorescence microscope. Three separate overnight cultures were sam-
pled and imaged for each reporter strain.

Mother-Machine Microfluidic Device. The mother-machine microfluidic
master mold used was described previously in ref. 26. Briefly, the master mold
chip has eight independent main feed channels where growth media flows in
and out. Each channel features 1,000 one-ended chambers (length × width ×
height = 25 μm × 1.3 μm × 1.1 μm) where the mother cells are trapped. We
made the microfluidic devices by pouring a degassed 10:1 mixture of dimethyl-
siloxane monomer and curing agent (Sylgard 184 Silicone Elastomer Kit; Dow
Corning) onto the wafer, which was then cured overnight at 65 °C. Individual
chips were separated from the mold and a 0.75-mm biopsy punch was used to
create inlets and outlets for each flow channel before the chip was plasma
bonded to a glass slide.

Time-Lapse Microscopy Movies. Overnight cultures were diluted 1:100 and
incubated at 37 °C with shaking for ∼3 h until midexponential phase (OD600nm
= 1.0–1.3). Cells were concentrated by centrifugation (6,000 × g for 2 min) and
loaded into the microfluidic chip. Cells were seeded in the growth chambers by
centrifugation at 6,000 × g for 3 min. Media was supplied at a flow rate of 20
μL/min using a peristaltic pump. Cells were allowed to adapt to growth in the
device for 2 to 4 h before imaging. Time-lapse movies were acquired with a
100× oil objective on a Nikon Ti-E inverted fluorescence microscope equipped
with a perfect focus system and a temperature control chamber that was set at
37 °C for the duration of the experiment. Images were acquired in phase con-
trast and epifluorescence illumination with a green or cyan fluorescent protein
filter every 5 min. The total number of cell lineages tracked for each reporter is
listed in SI Appendix, Table S3.

Microscopy Image Processing and Fluorescence and Growth Rate
Analysis. For static snapshots, cell images were segmented with the SuperSeg-
ger software (65). For mother-machine experiments, we performed automated
cell segmentation and lineage tracking using the deep learning-based software
DeLTA (26). In both cases, reported single-cell fluorescence values are the average
fluorescence intensities of all pixels belonging to each cell. Unless otherwise
noted, for mother-machine experiments only data for the “mother” cell trapped at
the top of the growth chambers was used in quantitative analysis. We smoothed
the fluorescence data using a moving average filter with a window of five frames.

To estimate growth rates, we calculated the difference in cell length between
adjacent frames normalized by the cell length, 1/L dL/dt. Specifically, when there
is no cell division event between frames, this is calculated as ln(Li+1/Li�1)/(2Δt),
where Li is the length of the cell at time ti, Li�1 is the length at the preceding
frame, Li+1 is the length at the subsequent frame, and Δt is the time between
frames (5 min = 0.083 h). In cases where a cell division event occurs, this

calculation is modified to ln([Li+1 + Di+1]/Li�1)/(2Δt), where Di+1 is the length
of the daughter at time ti+1. After calculating the growth rate, we smoothed the
data using a moving average filter with a window of five frames.

Cell division times are calculated as the time between division events.

Pulse Identification. To allow comparison across all reporters, which have dif-
ferent expression levels and where imaging exposure times are different (SI
Appendix, Table S3), we normalized each time series by its mean. Pulses of
gene expression were identified using the built-in MATLAB function findpeaks,
which identifies local maxima. We set the threshold for the minimum peak
prominence at 0.5, unless otherwise noted. This value was determined empiri-
cally (SI Appendix, Fig. S9).

Promoter Activity Calculations. Promoter activity was calculated as in
Patange et al. (8) as M 1

L
dL
dt þ λp

� �þ dM
dt , where M is the cell’s average fluores-

cence value, L is the cell length, λp = 0.1, and postprocessing is applied to
remove spurious negative values of dLdt.

Autocorrelation and Cross-Correlation Calculations. We calculated the
autocorrelation of the fluorescence signal—RF,F(τ) where τ is the time shift—using
the MATLAB function xcov with the “normalized” method. The half-life was calcu-
lated by taking the mean of all autocorrelation signals from individual cell line-
ages and identifying the time shift value where it crosses 0.5.

The cross-correlation between the fluorescence signal and the growth rate,
RF,μ(τ), was calculated using the MATLAB function xcov with the “normalized”
method. RPA,μ(τ) was calculated with the same approach, but with the promoter
activity and growth rate.

Rextreme is the value of RF,μ(τ) with the largest absolute value. τextreme is the
time lag value associated with Rextreme.

Antibiotic Survival Assay. Mother-machine experiments were initiated using
the methods described above. During image acquisition, cells were provided
with fresh medium for at least 10 h, followed by 35 min of treatment with
medium supplemented with 2 μg/mL ciprofloxacin, then fresh medium again
for 16 h. The outcomes of ciprofloxacin treatment for each lineage were manu-
ally scored as “survived,” “died,” or “filamented.” Cells were scored as “survived”
if cell division was observed in the chamber at the end of the full 16 h after the
second addition of fresh medium. Cells were scored as “died” if growth perma-
nently ceased in the chamber at any point after antibiotic exposure.
“Filamented” cells were excluded from the analysis, as it was difficult to accu-
rately assess their outcome since they were frequently swept out of the chamber
and field of view.

Causal Influence Model. The causal influence model is composed of three
interacting variables: the growth rate (μ), fluorescence (F), and survival (S). S is a
binary variable representing the cell outcome (survived or died). The model
assumes that fluorescence cannot causally influence growth rate because we
found experimentally that changes in fluorescence never precede changes in
growth rate for any reporter, but μ and F may influence survival and μ may influ-
ence F. The growth rate is assumed to be at steady state and distributed accord-
ing to a normal distribution. The fluorescence is assumed to be distributed
according to a log-normal distribution. The average of the underlying normal dis-
tribution is assumed to be linearly related to the growth rate, while its variance
is fixed, which is consistent with the experimental data. Finally, the survival out-
come is treated as resulting from a weighted Bernoulli distribution (coin flip)
with a probability of survival based on a logistic function acting upon a linear
combination of growth rate and the logarithm of fluorescence: logit(psurvival) =
α + βμμ + βFF. Statistical inference was performed with PyMC3 (66), a Python
package for probabilistic programming. Full details of the model, including a
description of the parameters α, βμ, βF, and γ, are provided in SI Appendix.

Stochastic Simulations. The stochastic model is an extension of the random
telegraph model (46–49). To model bursts of gene expression, it simulates
random activations and deactivations of a promoter, transcription when the
promoter is activated, translation, and degradation of both messenger RNA and
proteins. We extended this model in two ways: including a stochastic growth
rate and cell division model, and a model of death caused by antibiotics. The
model was implemented in Rust with the Gillespie algorithm (67). Full details of
the model are provided in SI Appendix.
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Data Availability. The processing algorithms for all data analysis and models
conducted in this study are available in Gitlab at https://gitlab.com/dunloplab/
sampaio-single-cell-gene-expression-and-growth. Single-cell microscopy data for
gene expression and growth rate have been deposited in Zenodo (DOI: 10.
5281/zenodo.6369878) (68) .
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