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Abstract

Motivation: Polyadenylation is a critical step for gene expression regulation during the maturation

of mRNA. An accurate and robust method for poly(A) signals (PASs) identification is not only

desired for the purpose of better transcripts’ end annotation, but can also help us gain a deeper in-

sight of the underlying regulatory mechanism. Although many methods have been proposed for

PAS recognition, most of them are PAS motif- and human-specific, which leads to high risks of

overfitting, low generalization power, and inability to reveal the connections between the underly-

ing mechanisms of different mammals.

Results: In this work, we propose a robust, PAS motif agnostic, and highly interpretable and trans-

ferrable deep learning model for accurate PAS recognition, which requires no prior knowledge or

human-designed features. We show that our single model trained over all human PAS motifs not

only outperforms the state-of-the-art methods trained on specific motifs, but can also be general-

ized well to two mouse datasets. Moreover, we further increase the prediction accuracy by transfer-

ring the deep learning model trained on the data of one species to the data of a different species.

Several novel underlying poly(A) patterns are revealed through the visualization of important

oligomers and positions in our trained models. Finally, we interpret the deep learning models by

converting the convolutional filters into sequence logos and quantitatively compare the sequence

logos between human and mouse datasets.

Availability and implementation: https://github.com/likesum/DeeReCT-PolyA

Contact: chenw@sustc.edu.cn or xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Polyadenylation, as a critical and pervasive process (Proudfoot,

1991) during the maturation of mRNA, is essentially composed of

two coupled steps: a cleavage at the poly(A) site and an addition of

an adenosine tail. Studies have found a great number of poly(A) sig-

nals (PASs) in most eukaryotes (Shen et al., 2008a,b). It is well

accepted that the recognition of polyadenylation sites requires a

signal residing in the �10–30 nt upstream region of the cleavage site

(Proudfoot, 2011), which consists of 6 nt known as PAS motifs.

Studies on PAS motifs and their surrounding regions are crucial,

as they provide insights on how transcription is ended thereby deter-

mining the fate of the RNA transcripts (Shaw and Kamen, 1986)

and the association of their mutations with diseases (Lin et al.,

2012; Pastrello et al., 2006). In the past few decades, numerous
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works have been done for this purpose, to characterize the sequence

information around PASs and identify core elements and their roles

in polyadenylation. It has been shown that the surrounding sequen-

ces of a poly(A) site are U-rich in general (Tian et al., 2005).

Similarly, GU-rich elements found in the downstream of the cleav-

age site are also believed to regulate polyadenylation and have been

regarded as informative patterns to specify the true PASs

(Zarudnaya et al., 2003).

Previous works have made great efforts in the prediction of PAS

in mRNA and genomic DNA sequences. Specifically, most methods

aim to identify true PAS from pseudo ones which have the same hex-

amer (e.g. ATTAAA) as true PAS but do not involve in polyadenyla-

tion. Earlier studies (Helden et al., 2000; Matis et al., 1996;

Tabaska and Zhang, 1999) focus on exploring the statistical infor-

mation of PAS surrounding sequences. Based on prior knowledge of

DNA sequences, many carefully hand-crafted features have been

proposed by experts which formed the basis of most PAS recogni-

tion models (Akhtar et al., 2010; Cheng et al., 2006; Hu et al.,

2005; Liu et al., 2003; Salamov and Solovyev, 1997; Tabaska and

Zhang, 1999).

Recently, several methods have greatly advanced the accuracy of

human poly(A) recognition. Kalkatawi et al. (2012) provided a

benchmark (denoted as the Dragon human data) containing 14 740

sequences for 12 human PAS motif variants. Based on many expert-

crafted features, they proposed an artificial neural network-based

method and a random forest (RF) based method. After that, Xie

et al. (2013) derived a new set of latent features for DNA sequences

with hidden Markov model (HMM) and fed these features to an

SVM model for classification (referred as HSVM hereafter), which

significantly increased the accuracy on the Dragon human data.

Very recently, Magana-Mora et al. (2017) developed a new set of

hand-crafted features in combination with multiple classification

models, including decision tree, RF etc. Their model, Omni-PolyA,

improved the results of HSVM.

However, methods like RF, HSVM and Omni-PolyA have two

limitations. First, they are all feature-based methods which require a

large amount of prior knowledge and cannot cope with the rapidly

increasing size of data. Second and more importantly, they are not

robust or generic, in the sense that they require training a separate

model for each of the 12 human motif variants. And due to the fea-

tures that are hand crafted for human PAS motifs, they cannot be

extended to different species.

In this article, we propose an accurate and robust deep learning

model, i.e. Deep Regulatory Code and Tools for Polyadenylation

(DeeReCT-PolyA), for PAS recognition, which is PAS motif variant

agnostic. For example, PAS motifs are slightly different between

human and mouse. We train one single generic convolutional neural

network (CNN) that can deal with all 12 human PAS motif variants

which still significantly reduces the error rate on both two standard

human benchmarks, compared with the state-of-the-art methods

which require training 12 separate models. Further experiments on

C57BL/6J (BL) and SPRET/EiJ (SP) mouse data demonstrate that

our model can consistently perform very well across different spe-

cies. Moreover, we adopt transfer learning in PAS identification by

transferring a deep neural network pre-trained with one dataset to

recognize PAS motifs on a new dataset of a different species and

show transfer learning can further improve the accuracy and more

importantly, address the problem of insufficient training data. We

propose several methods to visualize our model and investigate the

biological significance of the model. We reveal some novel patterns

in poly(A) regulation and the similarities of such patterns across dif-

ferent species including human, BL and SP mouse.

2 Materials and methods

2.1 The proposed CNN for PAS recognition
We propose a deep neural network-based method, DeeReCT-PolyA,

for automatic feature extraction and PAS identification. Figure 1

illustrates the architecture of DeeReCT-PolyA. The first layer is a

convolutional layer consisting of 16 filters, which are essentially

motif detectors. When processing a raw DNA sequence (encoded

with one-hot encoding), each motif detector will search sequence

patterns that can discriminate true PASs from pseudo ones. The out-

puts of the convolutional layer are divided into several groups and

normalized within each group by a subsequent filter-group normal-

ization layer (GN). We propose such a novel normalization layer

with the motivation that some motif detectors are correlated and

show it improves the PAS recognition accuracy comparing to other

normalization techniques in deep learning (e.g. batch normaliza-

tion). More importantly, results show that comparing to batch nor-

malization; GN enables the model to be naturally transferrable from

a pre-trained task to a new target dataset (Section 2.5). Details and

results for GN can be found in Supplementary Material S3.

A rectified linear unit is applied to the normalized results as the

activation function. After a max-pooling layer, all feature vectors

are concatenated together and fed to the fully connected (FC) net-

work followed by a softmax function which normalizes the predic-

tion to values between 0 and 1. In fact, we have examined several

other deep learning architectures (Supplementary Material S1) and

finally chose the proposed one.

In addition to the proposed normalization layer, we faciliate the

proposed CNN with several other techniques. Dropout is applied to

the hidden neurons in the FC network (Srivastava et al., 2014) to al-

leviate overfitting. Namely, at each training iteration, some hidden

neurons will be randomly set to 0 to force the model to make predic-

tions with a subset of the parameters and the training will then yield

a more robust model. Besides, our empirical experiment shows that

dropout will also prevent the optimization of the model from being

stuck at a local optimum. As for the initialization of the network,

we find that the standard Xavier initializer (Glorot and Bengio,

2010) often leads to unsatisfactory results. Thus we propose to ad-

dress this problem by sampling the initialized value of each param-

eter from a normal distribution with zero mean and a random

variance. Then we do a random search on the validation dataset to

get the best initialization variance for each layer. Our loss function

comprises two terms: a cross-entropy loss of the prediction against

true labels and a regularization term of the weights in the convolu-

tional layer and FC layers, which is known as weight decay. The loss

function is minimized by stochastic gradient descent with momen-

tum. We also apply an exponential decay to the learning rate every

3000 iterations to make the training process more stable.

2.2 Cross validation and hyper-parameter search
To be consistent with previous studies, we use the standard 5-fold

cross validation in all experiments we conduct. Specifically, we ran-

domly partition the data into five equally sized folds and use three

of them for training, one for validation and the remaining one for

testing.

In the DeeReCT-PolyA model, there are several hyper-

parameters we need to specify for the training process, including the

number of groups in GN, the learning rate etc. Thus, the validation

fold is used for hyper-parameter search. The search is implemented

in a random sampling manner as Alipanahi et al. (2015) which ran-

domly samples a set of hyper-parameters and tests its performance

on the validation data. The one with the best accuracy on the
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validation fold is reserved as the final model and evaluated on the

test set. The convolutional layer is set to have 16 filters with a length

of 10. The number of hidden nodes in the FC network is searched

within {32, 64, 128} and finally fixed to 64. We sample the number

of groups from N 2 f2;4; 8g and the keep probability of dropout

layer from P 2 f0:50;0:75;1:00g. Details can be found in

Supplementary Material S2 and Supplementary Table S1.

2.3 Evaluation metric
To measure the performance of our model, we adopt the classifica-

tion error rate as the evaluation metric. The error rate is defined as

ErrorRate ¼ 1� TPþ TN

TPþ TN þ FPþ FN
;

where TP, TN, FP and FN stands for the number of predictions that

are true positive, true negative, false positive and false negative.

2.4 Datasets
We comprehensively evaluate our model on four different datasets,

including two human PAS motif benchmarks. The first benchmark,

Dragon human poly(A) dataset, is proposed in Kalkatawi et al.

(2012), containing 14 740 sequences for the 12 main human PAS

motif variants. Many previously proposed methods have used this

dataset as a standard benchmark to carry out comparative analysis.

The second benckmark (referred as the Omni human poly(A) data-

set) is proposed very recently by Magana-Mora et al. (2017). Omni

human poly(A) is a much larger dataset that consists of 18 786 posi-

tive true PAS sequences for 12 human PAS motif variants. An equal

number of pseudo-PAS sequences are extracted from human

Chromosome 21 after excluding all the true PAS sequences.

To assess the performance of our model beyond human, we

apply it on two additional poly(A) datasets from C57BL/6J (BL) and

SPRET/EiJ (SP) mouse strains, respectively. Overall, there are

46 224 genomic sequences in the BL mouse dataset and 40 230

sequences in the SP dataset. Both datasets consist of an equal num-

ber of true PAS and pseudo-PAS sequences. The positive sequences

are generated based on the poly(A) sites identified in the previous

study, which applies a well-established genome-wide experimental

approach to capture the poly(A) sites (Xiao et al., 2016). In brief,

the poly(A) containing RNAs, which are extracted from the fibro-

blast in C57BL/6J and SPRET/EiJ mouse, are fragmented and only

the 3’-end is captured for high throughput sequencing. The 200 nt

genomic sequences flanking the poly(A) sites are abstracted from the

BL and SP genome, respectively. We obtain the pseudo-PAS sequen-

ces by scanning the genomic sequences of the transcripts expressed

in the same cell lines and selecting those that are not close to any

annotated transcription end in GENCODE or any poly(A) sites

identified by the experimental data. The same number of pseudo-

PAS sequences, which also contain the same PAS motifs, are then

randomly retrieved. Note that for the mouse data, there are 13 po-

tential PAS motif variants instead of 12 for the human poly(A) data.

2.5 Transfer pre-trained models to new datasets
Transfer learning has been widely used (Do and Ng, 2006; Li et al.,

2018; Yosinski et al., 2014). The idea of transfer learning is that one

can solve a problem with the knowledge gained by solving another

similar problem. There are two major advantages of applying the

transfer learning idea in the PAS recognition problem. First, inte-

grating the information from two related datasets with transfer

learning is likely to further boost the performance as we will show

in Section 3.3. Most importantly, in many species there are only a

limited amount of annotated poly(A) data (Ji et al., 2014), which

poses great challenges to most machine-learning methods, especially

the data hungry ones, such as deep learning. One possible solution

is to transfer an available model learned from a larger dataset

(e.g. human poly[A] data and mouse poly[A] data) to the other spe-

cies, and then fine-tune the network with a small set of new data

(Section 3.3).

To investigate the efficacy of pre-training and transfer learning

in PAS identification, we adopt transfer learning in two different

scenarios. In the first scenario, we incorporate a different dataset to

increase the classification accuracy. Specifically, we transfer a model

pre-trained on one dataset and then fine-tune it with the whole tar-

get dataset (cross-species or not). The fine-tuned model is then eval-

uated on the target dataset in comparison with baseline models

which is trained only on target data without pre-training.

Fig. 1. The architecture of the proposed DeeReCT-PolyA network. The output feature channels (shown as a column) of the conv layer is divided into groups (green

arrows) and each group is jointly normalized by the group normalization layer. After tunable parameters are learned from the data, two visualization methods

(shown as dashed lines in green and gray) are applied to the model without normalization to extract cis-elements and variants for the regulation of polyadenyla-

tion (Color version of this figure is available at Bioinformatics online.)
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In the second scenario, we evaluate whether transfer learning

can address the problem of insufficient training dataset, in which we

are limited by the number of annotated PAS sequences in the target

species. The experiment is conducted on the dataset of a new spe-

cies, a rat poly(A) dataset proposed very recently by Wang et al.

(2018). Models are pre-trained on human or mouse data and tested

on the new rat dataset. We investigated scenarios where we have dif-

ferent numbers of training sequences to fine-tune the pre-trained

model. We split one fifth of the rat dataset as the test dataset, on

which all pre-trained and fine-tuned models are evaluated. Different

numbers of rat sequences are sampled from the rest of the dataset

for fine-tuning. The detailed procedure of transfer learning is pre-

sented in Supplementary Material S4.

2.6 Visualization of oligomer importance at different

positions
A particular advantage of our model is that it can provide a charac-

terization of critical features in the sequence context flanking the

poly(A) motif. Following Xie et al. (2013), we investigate the im-

portance of all possible 2 nt subsequences at different locations. As

shown by the green arrows in Figure 1, the method we use is to con-

struct a special sequence to feed the trained model and take the out-

puts for visualization (Supplementary Material S5). We have also

visualized the importance of positions by examing where the convo-

lutional filters are mostly ‘looking at’ (Supplementary Material S5

and Supplementary Fig. S2).

2.7 Convolutional filter visualization and similarity

measurement
Convolutional filters, which directly scan through the whole genom-

ic sequence, are believed to carry abundant information for polyade-

nylation. We generate sequence logos for the interpretation of such

information. Specifically, for each particular filter of DeeReCT-

PolyA, we derive a position frequency matrix (PFM) by inputting all

genomic sequences in the validation dataset to that filter. The filter

will assign a score to every fixed-length subsequence of the input se-

quence. The subsequence with the maximum score (if larger than 0)

is considered as an instance of the cis-element captured by that filter

from the input sequence. Instances captured by a filter for all valid-

ation data are aligned to generate a PFM and transformed into a se-

quence logo subsequently (Supplementary Material S5). We

empirically find that only 11 filters are active in the model trained

with the Dragon human data. This is probably due to the limited

size of the dataset.

Furthermore, we quantify the similarity of the extracted cis-ele-

ments by measuring the correlation between convolutional layers in

different models. This can be directly computed with the PFM of

each filter. There are many works on measuring similarity of PFMs.

We adopt the one proposed in Pape et al. (2008). Since each model

has 16 filters, when comparing two models (e.g. A and B), for each

filter in model A, we compute its similarity against all 16 filters in

model B and take the maximum similarity score as the score for this

filter. Then we average the score for each filter in A.

3 Results

We comprehensively evaluated the performance of DeeReCT-PolyA

on the Dragon and Omni human datasets, and the SP and BL mouse

datasets. We first showed that DeeReCT-PolyA outperforms the

state-of-the-art PAS recognition methods on both Dragon and Omni

human datasets (Section 3.1). We then evaluated the robustness of

DeeReCT-PolyA by evaluating it on the SP and BL mouse datasets,

challenging it to recognize unseen motifs by cross-motif validation

and testing it on noisy regions in sequencing data (Section 3.2).

Transfer learning across datasets and species was evaluated under

two scenarios where we had sufficient and insufficient number of

sequences for training in Section 3.3. Results showed that with

transfer learning, DeeReCT-PolyA could achieve significantly better

performance than models without pre-training when there are insuf-

ficient training data. The importance of dimers at different positions

is measured in Section 3.4. We finally interpreted the deep learning

model by constructing the sequence logos from the convolutional fil-

ters and measuring the similarities of the logos between human and

mouse species (Section 3.5).

3.1 Performance comparison on human PAS prediction
We first evaluated our model, DeeReCT-PolyA, on two human

poly(A) benchmarks. We reported the average error rates over the 5-

fold cross-validation. As shown in Table 1, our model gives a signifi-

cantly higher accuracy than previous state-of-art methods on the

Dragon human poly(A) dataset (Kalkatawi et al., 2012) with a

2.86% improvement. Note that while RF, HSVM and Omni-PolyA

each trained 12 PAS variant-specific models for the 12 PAS motif

variants of human, DeeReCT-PolyA uses a single generic model that

deals with all variants simultaneously which is much more challeng-

ing. Our results show that in spite of this, our variant-agnostic

model still outperforms variant-specific models of Omni-PolyA on

most PAS motif variants (11 out of 12).

Similar conclusions can be drawn from Table 2 in which we eval-

uated our model on the recent Omni human poly(A) dataset

(Magana-Mora et al., 2017). Results for RF and HSVM were

reported by Magana-Mora et al. (2017). Result shows that our gen-

eric model consistently performs better than variant-specific models

over the majority of the PAS motif variants, which leads to a clear

improvement for the average error rate. Although our model is ag-

nostic to PAS motif variants, we still tried to investigate the

Table 1. Error rate comparison between RF, HSVM, Omni-PolyA

and our model (DeeReCT-PolyA) on the Dragon human poly(A)

data

Variants Size Error Rate (%)

RF HSVM Omni-

PolyA

DeeReCT-

PolyA

Rel

AATAAA 5190 20.06 18.59 14.02 11.81 2.21

ATTAAA 2400 18.42 16.21 12.50 9.00 3.50

AAAAAG 1250 16.64 9.36 10.80 5.77 3.59

AAGAAA 1230 11.06 5.45 4.87 7.76 �2.89

TATAAA 880 19.55 15.34 13.52 7.69 5.83

AATACA 780 19.36 11.15 13.85 10.45 0.70

AGTAAA 690 27.83 16.96 14.49 9.55 4.94

ACTAAA 670 22.09 14.33 13.13 10.72 2.41

GATAAA 460 20.00 9.57 8.48 8.04 0.44

CATAAA 410 18.54 9.27 13.41 9.02 0.25

AATATA 410 24.88 12.68 14.39 8.78 3.90

AATAGA 370 18.38 5.14 11.62 4.59 0.55

Average – 19.19 14.42 12.43 9.57 2.86

Note: Rel denotes the improvement of DeeReCT-PolyA with respect to the

best of the other three methods. Bold indicates the error rate of the best model

for each PAS motif variant. Average is the weighted average of all motif var-

iants with the size as weights. While results of all three previous methods are

reported for 12 variant-specific models, the results of DeeReCT-PolyA are the

performance of one single generic model that deals with all 12 variants.
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differences between different PASs. Specifically we visualized if the

model ‘looks for’ different cis-elements and ‘looks at’ different posi-

tions for different PAS motifs (Supplementary Material S6).

3.2 Robustness of DeeReCT-PolyA to PAS variants and

different species
To demonstrate the robustness of our model, we validated

DeeReCT-PolyA on two mouse poly(A) datasets, i.e. SP and BL

(Section 2.4), which cannot be handled by conventional human-fea-

ture-based methods. Table 3 shows that our model achieved an error

rate of 24.11 and 23.49% on SP and BL mouse data, respectively.

While there is no existing method for poly(A) identification of SP

and BL data, for the purpose of comparison we trained a linear re-

gression (LR) model. The LR model yielded an average error rate of

27.26 and 26.98% on SP and BL mouse data, which is significantly

worse than DeeReCT-PolyA. We have also tried adding some hand-

crafted features to our DeeReCT-PolyA model; however, the im-

provement is marginal. Detailed results can be found in

Supplementary Material S7.

Although results from four benchmarks show that our model

can generalize over PAS motif variants, we want to ask a further

question: is the model able to recognize a PAS motif that it has never

seen before? If so, then it would be an interesting idea to use

DeeReCT-PolyA to process non-annotated DNA sequences which

may help us find PASs that are currently unknown. We answered

this question by evaluating our model with a leave-one-motif-out

validation on the Dragon human data. Specifically, we trained a

DeeReCT-PolyA model with human poly(A) data that contains only

11 types of PAS variants. All data for the remaining left-out variant,

which our model did not see during training, was used as the test

set. For each PAS motif variant, Table 4 reports the prediction error

rate for two models evaluated on the data of this variant: one was

trained with the regular 5-fold cross-validation (Section 3.1) and the

other model was trained with data of all PAS motif variants exclud-

ing this held-out variant. The results show that our model works

surprisingly well even on PAS motif variants that were not included

in the training dataset. Notably, for most PAS motif variants (8 out

of 12), the model trained with leave-one-motif-out data surpasses

the model in 5-fold cross validation. The reason is that although the

network could not see any sequence containing the test motif, it did

see more training examples because all the data from the remaining

11 variants were included in the training. As an example, when test-

ing the motif AATACA, the leave-one-motif-out model was trained

with 14 740 – 780 ¼ 13 960 sequences while the 5-fold cross-

validation model only had 14 740 � 4/5 ¼ 11 792 examples for

training. The similarity of these twelve leave-one-motif-out models

is visualized in Supplementary Material S5 and Supplementary

Figure S3.

We further investigated if the proposed model is robust to noise

by introducing mismatches in the whole sequence or certain sub-

regions. Results show that in general DeeReCT-PolyA is robust to

mismatches as even if there are 40 mismatches in the whole se-

quence; DeeReCT-PolyA still only has an around 18% error rate on

the Dragon human data (Supplementary Material S8).

Table 2. Error rate comparison between RF, HSVM, Omni-PolyA

and our model (DeeReCT-PolyA) on the Omni human poly(A) data

Variants Size Error Rate (%)

RF HMM Omni-

PolyA

DeeReCT-

PolyA

Rel

AATAAA 24310 25.49 27.91 23.96 21.99 1.97

ATTAAA 7098 25.59 33.48 24.20 23.01 1.09

AAAAAG 1640 26.52 36.83 25.86 27.76 �1.90

AAGAAA 1306 26.67 34.77 23.07 26.80 �3.73

TATAAA 682 30.88 38.38 26.91 23.60 3.31

AATACA 634 24.41 36.98 22.06 22.00 0.06

AGTAAA 528 28.11 37.31 23.26 20.21 3.05

ACTAAA 368 32.97 33.89 24.72 25.79 �1.07

GATAAA 342 31.18 41.76 29.41 22.15 7.26

CATAAA 314 28.89 39.03 24.51 25.54 �1.03

AATATA 250 31.60 36.00 26.80 17.82 8.98

AATAGA 100 34.00 40.00 23.00 20.00 3.00

Average – 25.93 30.43 24.15 22.64 1.51

Note: Rel denotes the improvement of DeeReCT-PolyA with respect to the

best of the other three methods. Bold indicates the error rate of the best model

for each PAS motif variant. Average is the weighted average of all motif var-

iants with the size as weights.

Table 3. Error rate of DeeReCT-PolyA on SP and BL mouse poly(A)

data

Variants SP BL

Size Error Rate (%) Size Error Rate (%)

AATAAA 17 708 26.50 20 250 25.48

ATTAAA 7550 25.30 9056 24.89

TTTAAA 2336 19.95 2688 18.19

TATAAA 2178 22.91 2518 22.44

AGTAAA 2224 22.88 2376 21.63

CATAAA 1432 20.53 1760 19.77

AATATA 1334 23.55 1528 23.23

AATACA 1210 21.40 1326 22.55

GATAAA 1032 17.84 1176 18.54

AAGAAA 1022 15.07 1126 15.81

AATGAA 982 18.84 1108 18.86

ACTAAA 728 19.37 776 20.24

AATAGA 494 18.64 536 21.24

Average – 24.11 – 23.49

Table 4. DeeReCT-PolyA with leave-one-motif-out test on the

Dragon human dataset

Variants Size Error Rate (%)

5-fold cross-validation leave-one-motif-out

AATAAA 5190 11.81 14.20

ATTAAA 2400 9.00 8.17

AAAAAG 1250 5.77 5.45

AAGAAA 1230 7.76 7.52

TATAAA 880 7.69 7.18

AATACA 780 10.45 8.86

AGTAAA 690 9.55 7.46

ACTAAA 670 10.72 11.16

GATAAA 460 8.04 8.04

CATAAA 410 9.02 11.46

AATATA 410 8.78 8.54

AATAGA 370 4.59 4.05

Average – 9.57 10.08

Note: For the leave-one-motif-out test, for each PAS variant, a DeeReCT-

PolyA model was trained with data of all the other motif variants and then

test only on this variant. Bold indicates the error rate of best model for each

PAS variant.
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3.3 Transfer learning for PAS recognition
To validate the idea of transfer learning in the PAS recognition prob-

lem, we tested its performance in two cases in which we have suffi-

cient and insufficient target training sequences. In the first case, we

evaluated transfer learning on three similarly sized datasets, Omni

human and the SP and BL mouse dataset. Dragon human dataset

was not considered in this scenario since its size is relatively small.

Table 5 shows the performance of transferred models evaluated on

SP dataset. We first pre-train the model on Omni human or BL

mouse dataset and then fine-tune it with all SP training data. Note

that the model before fine-tuning has not seen any SP data which the

model is evaluated on. Yet, even without fine-tuning the transferred

model still gets a comparative result comparing to the baseline

model, which is trained only on the target dataset with no pre-

training, especially when we transfer the model between close spe-

cies. After fine-tuning, the transferred model yields superior per-

formance than the model without pre-training. Similar conclusions

can also be drawn from Tables 6 and 7 where we transfer models to

BL data and Omni human data, respectively. The consistent results

in these tables illustrate that while we already have sufficient data

for training, transferring the pre-trained model from a relative data-

set can further improve the prediction accuracy, even when the

transferring is cross-species (human to mouse or mouse to human).

In the second case, we addressed the problem of insufficient

training data by transferring a pre-trained model to a new species.

Specifically, models are pre-trained on human or mouse data and

tested on the new rat dataset. We investigated scenarios where we

have different numbers of rat sequences to fine-tune the pre-trained

model. The baseline is a model without any pre-training. Results

(Table 8) show that without pre-training, CNN fails when there are

insufficient training data. However, by pre-training on a different

species, even if the pre-trained model itself (e.g. model pre-trained

on the Dragon human data) is not suitable for prediction on the new

dataset, after fine-tuning with a very small number of sequences the

model is able to achieve much better performance. As expected, as

the number of training data increases, the error rate of fine-tuned

models becomes smaller.

We also observed that if the model is pre-trained on a less similar

species, e.g. pre-trained on human data and tested on rats, fine-

tuning is crucial as it can adapt the pre-trained model to the new

data even when we only have very limited data for fine-tuning.

While for similar species, i.e. mice to rats, the pre-trained model is

already quite good. Note that here we did not perform any hyper-

parameter (such as learning rate, dropout rate) search for fine-

tuning because of insufficient data, instead we just used the best set

of hyper-parameters found during pre-training. In general, the

results not only demonstrate that our proposed DeeReCT-PolyA

model can generalize across species, but also offer us an effective

method for solving the issue of the shortage of PAS annotation in

some species.

3.4 Visualizing importance of dimers and positions
One advantage of our method is it can extract important patterns of

polyadenylation by learning from data. Thus it provides us a direct

way to understand the underlying regulatory elements of polyadeny-

lation through the visualization of the trained model.

Figure 2 presents the importance of all 16 dimers at different

positions surrounding the PAS motif. Several interesting patterns

can be observed here. For the Dragon human poly(A) dataset, dimer

AA is found to be an informative subsequence in Xie et al. (2013)

within 30 nt downstream of the candidate PAS motif. The same ob-

servation was also obtained by our deep learning model. Another

finding is that when GT or TG appears in the downstream region of

the PAS motif, it strongly suggests a true PAS motif. This finding

coincides with Hu et al. (2005), where their result shows that there

are many GU-rich elements in the downside of poly(A) sites.

On the other hand, our model also suggested some novel pat-

terns that have not been observed before. Dimer CT, as an interest-

ing subsequence, is very informative when occurring 20–nt

downstream the PAS especially for the BL mouse data. And in gen-

eral, the downstream region contains more information than the up-

stream one which makes sense since the cleavage site usually resides

10–30 nt downstream the PAS motif. More importantly, it is clearly

shown in Figure 2 that human, BL mouse and SP mouse share many

similar poly(A) patterns. The importance of positions can be found

in Supplementary Figure S2. We have also visualized the importance

of some known motifs, i.e. RNA-binding protein motifs

(Supplementary Material S5 and Supplementary Fig. S1).

3.5 Interpreting convolutional filters and measuring

similarities between human and mouse
Deep learning models are often criticized to be ‘black-box’ models,

which lack interpretability. Here we tried to overcome this bottle-

neck by interpreting the learned convolutional filters as cis-elements

and visualizing them as sequence logos (Section 2.7). We presented

sequence logos for each filter of the four DeeReCT-PolyA models

trained with different datasets in Figure 3.

As shown in Figure 3, our model reveals many cis-elements,

including some subsequences that have been found and validated be-

fore. Evidently, U-rich elements are essential for PAS motif

Table 5. Evaluation of transferred DeeReCT-PolyA models on SP

mouse poly(A) data before and after fine-tuning

Average Error Rate (%)

Pre-trained on None Omni BL

Before fine-tuning – 30.23 23.67

After fine-tuning 24.11 24.04 22.57

Note: None denotes a model of no pre-training and trained with SP mouse

data. Models respectively pre-trained on Omni and BL dataset are evaluated

on SP mouse dataset before and after fine-tuning with SP data. Average error

rate over all PAS motif variants is reported.

Table 6. Evaluation of transferred DeeReCT-PolyA models on BL

mouse poly(A) data before and after fine-tuning

Average Error Rate (%)

Pre-trained on None Omni SP

Before fine-tuning – 29.75 23.13

After fine-tuning 23.49 23.38 22.08

Table 7. Evaluation of transferred DeeReCT-PolyA models on Omni

human poly(A) data before and after fine-tuning

Average Error Rate (%)

Pre-trained on None SP BL

Before fine-tuning – 29.58 29.07

After fine-tuning 22.64 22.40 22.44
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recognition for both human and mouse, which is in line with many

previous studies. Other elements, like GU-rich elements which are

shown to have great importance in Figure 2 and Hu et al. (2005),

can also be found in the sequence logos. Specifically, the UGUA

element, which is implicated by Hu et al. (2005) and Venkataraman

et al. (2005) in human poly(A) site recognition, is also shown to be

an informative cis-element in both human and mouse datasets by

our model. Our results also indicate some novel elements that have

not been reported before, such as the UC and AAUA elements.

Our results in Figure 3 clearly demonstrate that there are high

similarities among the cis-elements in human, BL mouse and SP

mouse. To quantitatively measure the similarity of patterns

extracted from different datasets, we adopted the measurement

method proposed in Pape et al. (2008). For the purpose of baseline

comparison, we generated two additional sets of sequence logos

with two randomly initialized deep neural networks. Similarity

scores are reported in Table 9. As expected, the similarity of human

and mouse poly(A) cis-elements are much higher than that of the

randomly initialized models. In addition, the similarities of cis-ele-

ments between the human datasets and between the mouse datasets

are often higher than that between human and mouse datasets.

Interestingly, the similarity between the sequence logos of the Omni

human model and that of the BL mouse model is higher than that

between the Omni human model and the SP model, which is consist-

ent with the visual similarity between the 2-mer importance distribu-

tions of the Omni human and the BL mouse (Fig. 2).

4 Discussions and conclusions

Here we highlight the main differences of our method to a recent

work (Leung et al., 2018) which also makes use of deep neural net-

works for human poly(A) code inference. The problem they tried to

solve is also a binary classification problem, but a different one, i.e.

to determine which of the two true poly(A) sites has a higher usage.

Additional supervision is required for training their model as it is

trained on sequences containing true poly(A) sites and the strength

of each site, while our model is trained with only the sequences.

They also did an experiment for poly(A) site discovery, but the dis-

covery task is indeed a much simpler problem than the PAS recogni-

tion problem studied in this paper, because in the former, to identify

a false sequence one often only needs to search if there is a PAS hex-

amer (e.g. AATAAA) upstream the center of the sequence. In add-

ition, their study focused on human data only, whereas we propose

Table 8. Transfer learning for insufficient amount of sequences in the rat poly(A) dataset

Average Error Rate (%)

Pre-trained on None Dragon Omni SP BL

n ¼ 0 – 40.55 29.30 22.11 22.40

n ¼ 100 50.0060.00 39.3261.84 28.9460.31 22.6560.74 22.2760.12

n ¼ 500 48.9061.47 29.7263.79 25.6160.36 22.6360.37 22.2260.22

n ¼ 1000 49.7160.76 26.4460.68 24.7760.22 22.1060.16 22.0360.18

n ¼ 2000 49.0661.40 25.2660.54 24.3560.23 22.0460.20 22.4360.33

n ¼ 5000 26.8868.74 24.2560.22 23.6560.16 21.9160.21 21.9060.25

n ¼ 10 000 22.6360.16 23.1360.36 22.6860.08 21.6760.34 21.4060.18

n ¼ 42 233 20.23 20.48 20.38 19.82 19.99

Note: n denotes the number of rat sequences used for fine-tuning. For every n except 0 and 42 233 (the total size of rat training data), n sequences are randomly

sampled from the rat training dataset and used to fine-tune the pre-trained model. Such step is repeated 10 times for every n. The table shows the average error

rate of these 10 repeats with the standard deviation on the rat test set. None indicates a model without any pre-training.

Fig. 2. Visualization of the importance of different dimers at different positions for models trained with four datasets. The colors denote the contribution of the

dimer at that position to determining a true PAS motif. The darker blue, the more contribution the dimer at that position has to determining a true PAS motif. The

more white, the less contribution. The x-axis shows the positions of the dimer in the sequence, where Position 0 is the first base of the PAS motif. The y-axis lists

all possible dimers
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a robust PAS recognition method across different motifs and differ-

ent species.

In this study, we proposed a deep learning model, DeeReCT-

PolyA, along with a novel filter-GN method for automatic feature

extraction and PAS recognition that is applicable to multiple species.

The proposed method is generic, PAS variant agnostic and outper-

forms the state-of-art variant-specific methods on two standard

human benchmarks.

We obtained two additional poly(A) datasets for BL and SP

mouse and showed that DeeReCT-PolyA can consistently achieve

high accuracy across species. Furthermore, our results demonstrate

that transfer learning can further improve the PAS recognition ac-

curacy on each individual dataset. In particular, by transferring a

pre-trained model, DeeReCT-PolyA can outperform the previous

state-of-the-art method while using much less training data in the

target dataset, which also provides us a way to address the problem

of insufficient data in many species.

Visualization methods were applied to DeeReCT-PolyA which

revealed some interesting features including several novel cis-ele-

ments. We visualize the convolutional filters as sequence logos and

quantitatively measure the similarity of trained models to show that

human, BL mouse and SP mouse share a number of similar features

in polyadenylation.
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