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While the concept of a conscious machine is intriguing, producing such a machine 
remains controversial and challenging. Here, we describe how our work on creating a 
humanoid cognitive robot that learns to perform tasks via imitation learning relates to 
this issue. Our discussion is divided into three parts. First, we summarize our previous 
framework for advancing the understanding of the nature of phenomenal conscious-
ness. This framework is based on identifying computational correlates of consciousness. 
Second, we describe a cognitive robotic system that we recently developed that learns 
to perform tasks by imitating human-provided demonstrations. This humanoid robot 
uses cause–effect reasoning to infer a demonstrator’s intentions in performing a task, 
rather than just imitating the observed actions verbatim. In particular, its cognitive com-
ponents center on top-down control of a working memory that retains the explanatory 
interpretations that the robot constructs during learning. Finally, we describe our ongoing 
work that is focused on converting our robot’s imitation learning cognitive system into 
purely neurocomputational form, including both its low-level cognitive neuromotor com-
ponents, its use of working memory, and its causal reasoning mechanisms. Based on 
our initial results, we argue that the top-down cognitive control of working memory, and 
in particular its gating mechanisms, is an important potential computational correlate 
of consciousness in humanoid robots. We conclude that developing high-level neuro-
cognitive control systems for cognitive robots and using them to search for computa-
tional correlates of consciousness provides an important approach to advancing our 
understanding of consciousness, and that it provides a credible and achievable route to 
ultimately developing a phenomenally conscious machine.

Keywords: machine consciousness, artificial consciousness, neural network gating mechanisms, cognitive 
robots, cognitive phenomenology, imitation learning, computational explanatory gap, working memory

inTrODUcTiOn

In this paper, we use the word “consciousness” to mean specifically phenomenal consciousness 
unless explicitly indicated otherwise. The term “phenomenal consciousness” has been used histori-
cally to refer to the subjective qualities of sensory phenomena, emotions, and mental imagery, for 
example the color of a lemon or the pain associated with a toothache (Block, 1995). Searle has 
presented a list of essential/defining features of consciousness, including subjectivity, unity, 
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qualitativeness, situatedness, and sense of self (Searle, 2004), and 
a detailed analysis of this term can be found in Chapter 3 in Tani 
(2017). Recent work in philosophy has argued for an extended 
view of phenomenology that includes one’s cognitive processes 
and hence is referred to as cognitive phenomenology, as we will 
elaborate below. In the following, we focus on conscious qualities 
specific to cognitive phenomenology in particular, as opposed to 
the more historically emphasized aspects of consciousness such 
as sensory qualia.

How can research based on cognitive humanoid robots con-
tribute to our understanding of consciousness? Consciousness is 
not well understood at present, and many philosophers have ques-
tioned whether computational studies or cognitive robots can play 
a significant role in understanding it. Such arguments cannot be 
refuted at present because there is currently no convincing imple-
mentation of instantiated consciousness in a machine, as described 
in Reggia (2013). Conversely, none of these past arguments appear 
sufficiently strong to convince many current investigators that 
machine consciousness is impossible (Reggia et  al., 2015). For 
this reason, it seems prudent to us to push ahead investigating this 
issue until the matter can be definitively resolved one way or the 
other, and it is in that context that we describe our research efforts  
below.

Here, we describe how our past and ongoing work on creat-
ing a humanoid cognitive robot that learns to perform tasks 
via imitation learning relates to consciousness studies. Our key 
contribution here is to expand and develop a concrete framework 
for investigating the nature of consciousness in cognitive robots. 
Our discussion is divided into three parts. First, we summarize 
our framework for advancing the understanding of the nature of 
phenomenal consciousness based on studying the computational 
explanatory gap (CEG) (Reggia et al., 2014). The main goal in this 
work is to identify neurocomputational correlates of conscious-
ness. We believe that identifying such correlates will be possible 
in cognitive robots, based on concepts that have emerged recently 
in the philosophical field of cognitive phenomenology, and we 
explain why that is so.

The core idea of our framework for studying consciousness 
in robots is that investigating how high-level cognitive processes 
are implemented via neural computations is likely to lead to the 
discovery of new computational correlates of consciousness. 
Accordingly, in the second part of this paper, we describe a 
cognitive robotic system that we recently developed that learns 
to perform tasks by imitating human-provided demonstrations. 
This humanoid robot uses cause–effect reasoning to infer a dem-
onstrator’s goals in performing a task, rather than just imitating 
the observed actions verbatim. Its cognitive components center on 
top-down control of a working memory that retains the explana-
tory interpretations that the robot constructs during learning. 
Because, as we explain below, both cause–effect reasoning and 
working memory are widely recognized to be important aspects 
of conscious human thought, we suggest that exploring how the 
cognitive and memory mechanisms embodied in our imitation 
learning robot provide an excellent test of our framework for 
studying consciousness in machines.

Finally, in the third part of this paper, we describe our recent and 
ongoing work that is focused on converting our robot’s imitation 

learning cognitive system into purely neurocomputational form, 
including its causal reasoning mechanisms and cognitive control 
of working memory. We summarize our initial results exploring 
the feasibility of this idea. Based on these results, we argue that the 
top-down cognitive control of working memory, and specifically 
its gating mechanisms, is potentially an important computational 
correlate of consciousness in humanoid robots that merits much 
further study. We conclude that developing neurocognitive 
control systems for cognitive robots and using them to search for 
computational correlates of consciousness provides an important 
approach to advancing our understanding of consciousness, and 
that it provides a credible and achievable route to ultimately 
developing a phenomenally conscious machine.

a cOMPUTaTiOnal aPPrOach TO 
UnDersTanDing The naTUre OF 
cOnsciOUsness

In the following, we propose a computational framework for inves-
tigating consciousness. We begin by summarizing the concept  
of a CEG, and we explain why recent advances by philosophers 
interested in cognitive phenomenology makes this barrier rel-
evant to consciousness studies. We then describe our proposed 
framework for studying consciousness that is based on identify-
ing its computational correlates.

computation, Mind, Brain, and Body
We have previously suggested that there is an important obstacle 
to understanding the prospects for machine consciousness that 
we call the CEG (Reggia et  al., 2014). The CEG is defined as 
our current inability to understand how higher-level cognitive 
computations supported by the brain can be accounted for by 
lower-level neurocomputational processes. We use the term 
“higher-level cognition” to refer to cognitive processes including 
decision-making, reasoning, intent-directed problem solving, 
executive control of working memory contents, plan generation, 
and language. These cognitive processes are viewed by many 
psychologists as being consciously accessible. In contrast, we use 
the term “lower-level neurocomputational processes” to refer to 
the types of computations that can be implemented using artifi-
cial neural networks like those currently studied in fields such 
as neuroscience, computer science, psychology, and engineering.

The CEG is related to past work in philosophy, neuroscience, 
and psychology, addressing various aspects of the mind–brain 
problem. In philosophy, the CEG differs from the philosophical 
explanatory gap, the latter referring to the difficulty we have 
in explaining how physical systems in the objective world can 
support the subjective qualities of consciousness (Levine, 1983). 
The philosophical explanatory gap relates to how difficult it is to 
understand how subjectivity can emerge from the brain or poten-
tially from other physical systems such as machines. The CEG 
differs in that it is not a mind–brain issue. Instead, the CEG is 
our current inability to understand how computations supporting 
high-level cognitive processes like those described above can be 
implemented via the lower-level computations that neural net-
works provide. Put otherwise, it deals only with computational 
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issues, and it applies both to people and to machines. Historically, 
philosophers have tended to deprecate the CEG, characterizing it 
as part of the “easy” problem of interpreting how the brain gener-
ates intelligent behavior (Chalmers, 1996). This viewpoint fails 
to account for why the CEG has been so difficult to bridge over 
the last 50 years in spite of an enormous research effort to do so. 
It also ignores the possibility that the philosophical explanatory 
gap and the CEG are not two independent issues, but that instead, 
the CEG might ultimately prove relevant to understanding the 
mind–brain problem. It is this latter issue that we discuss in the 
following, arguing that the CEG is relevant to obtaining a deeper 
understanding of the mind–brain problem. More recently in 
philosophy, work in cognitive phenomenology has argued that our 
phenomenal experiences are not limited to classical qualia such as 
those of sensory perception, but also include high-level cognition 
(Bayne and Montague, 2011; Jorba and Vincente, 2014; Chudnoff, 
2015). It is this idea more than anything else that makes the CEG, 
a purely computational issue, of relevance to understanding 
consciousness. Accepting that some facets of cognition reach 
conscious awareness is what makes computational studies of 
the CEG important in consciousness studies. The hypothesis 
guiding our work described below is thus that bridging the CEG 
provides a pathway to deeper comprehension of consciousness 
and eventually possibly even a phenomenally conscious machine. 
This hypothesis makes research that is directed at creating 
neurocomputational implementations of higher-level cognitive 
processes, including our own work with adaptive cognitive 
robots as described below, relevant to the issue of phenomenal 
consciousness.

The CEG also relates to recent work in the neurosciences and 
psychology. In the neurosciences, our current state of knowledge 
can be characterized as knowing a lot about how high-level cog-
nitive functions correlate with different macroscopic brain areas 
(e.g., language comprehension and Wernicke’s area, planning and 
prefrontal cortex) and a great deal about the microscopic neuro-
biological networks in these same areas. However, what we do 
not currently understand is how the brain implements the high-
level cognitive processes using the underlying neural circuitry. 
We view this situation as an example of the CEG, quite separate 
from any considerations about consciousness. In psychology, 
related work has been done to investigate the differences between 
information processing that is unconscious and information 
processing that is conscious (Dehaene and Naccache, 2001; 
Baars, 2002). Unconscious information processing is fast and can 
support multiple concurrent tasks, and these tasks can be done 
simultaneously without interfering with each other. It tends to 
involve localized brain regions and is often not reportable (people 
cannot explain how they carried out a task). In contrast, conscious 
information processing is much slower, restricted to one task at 
a time, involves widespread cortex activation, and is generally 
taken to be cognition that a subject can report. Again, we view 
such findings as being related to the CEG. The computational 
properties associated with unconscious processes often match up 
well with those of neural computations (e.g., the opaqueness or 
“non-reportability” of what a neural network has learned). The 
computational properties during conscious, reportable cognitive 
activities are much closer to what is seen with symbolic artificial 

intelligence (AI) systems, and do not relate well to how neural 
networks process information. To be clear, we are not suggesting 
that consciousness can be explained by symbolic reasoning or 
language—we just intend to convey that conscious, reportable 
cognitive activities need to be accounted for by resolving the CEG. 
Further, we are only considering the existence of consciousness in 
adults and do not relate our work to the mechanisms underlying 
the emergence of consciousness in infants.

Symbolic AI models are often used on computers devoid of 
any remotely human- or animal-like embodiment. However, all 
compelling and widely accepted examples of consciousness in the 
real world occur in embodied biological systems. Even propo-
nents of cognitive phenomenology still consider it plausible that 
conscious cognitive processing has some basis in sensorimotor 
experience (Prinz, 2011). From a purely practical standpoint, 
studying the CEG in the context of embodied robotic systems 
may be the most efficient route to ecologically valid input data for 
cognitive models. And it stands to reason that humanoid robots 
in particular will be best for studying machine consciousness that 
is as human-like as possible. At a deeper level, there are serious 
philosophical positions that consider embodiment to be intrinsi-
cally related to cognitive phenomenology (Nagataki and Hirose, 
2007). In sum, studying cognition in the context of humanoid 
robots specifically may be an important factor in bridging the 
CEG and potentially understanding/engineering consciousness.

a Framework for investigating 
consciousness
An implication of the ideas presented in the preceding section is 
that much recent research involving neurocomputational models 
of high-level cognition becomes relevant to comprehending the 
properties of consciousness. The basic idea is that these com-
putational investigations could discover neurocomputational 
mechanisms occurring with phenomenally conscious aspects of 
cognition that are not also found to be present during cognitive 
processes that are unconscious. We have proposed elsewhere 
that this could provide examples of computational correlates of 
consciousness, in the same way that neuroscientists have identi-
fied neural correlates of consciousness (Reggia et al., 2014, 2016).

A computational correlate of consciousness has been defined 
previously to be an aspect of information processing associated 
with conscious but not unconscious information processing 
(Cleeremans, 2005). In general, a computational correlate of con-
sciousness is not the same thing as a neural correlate as described 
by neuroscientists. Previously described neural correlates 
have included biological concepts that are not computational,  
e.g., regions of the brain, biochemical processes, and electrical 
activity patterns in the brain (Chalmers, 2000). On the other hand, 
the definition of computational correlates above is fairly general. 
For example, it might include logical reasoning algorithms like 
those studied in traditional AI. In this context, previous research-
ers have suggested that cognitive processes can be separated into 
neurocomputational processes representing unconscious facets  
of cognition, and symbolic processes representing conscious fac-
ets of cognition (Kitamura et al., 2000; Sun, 2002; Chella, 2007), 
i.e., symbolic information processing is viewed as a computational 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


4

Reggia et al. Cognitive Robots and Consciousness

Frontiers in Robotics and AI | www.frontiersin.org January 2018 | Volume 5 | Article 1

correlate of consciousness. However, from our perspective, such 
models do not provide a way to bridge the CEG. The central idea 
in bridging the CEG as we defined it above is to identify how 
higher-level reasoning is implemented via underlying, purely 
neurocomputational mechanisms, much as the brain does. This 
is the crux of the matter.

Thus, in the rest of this paper we use the term “computational 
correlates of consciousness” to refer solely to neurocomputational 
mechanisms that occur only with conscious facets of higher-level 
cognitive processes and are not found with neurocomputational 
processes involved with other unconscious information process-
ing (not with neurocomputational mechanisms associated with 
implementing the normal pupil light reflex, for example). These 
correlates may be implemented in the brain, but are independent 
of the physical mechanisms that implement them (robot control 
circuitry, biological brain circuitry, and so forth). Our proposal 
is that uncovering computational correlates of consciousness will 
provide insight into the nature of consciousness (as per cogni-
tive phenomenology) and possibly even the development of a 
plausibly conscious physical machine.

We have recently given a fairly detailed description of previ-
ously proposed computational correlates of consciousness (Reggia 
et al., 2016) and refer the interested reader to that work. Here, we 
just briefly give a few examples that illustrate the central ideas 
involved. One widely known proposal is that global information 
processing is a computational correlate of consciousness, inspired 
by findings that information processing during conscious mental 
activities (and not unconscious cognitive processes) occurs widely  
across the cerebral cortex and is also correlated with enhanced 
communication between brain regions (Baars et  al., 2003; 
Massimini et al., 2005; Tagliazucchi et al., 2016). Another promi-
nent past suggestion is that information integration in a neural 
network is what distinguishes conscious from unconscious sys-
tems in general (Tononi, 2004). Still others have suggested that 
having a self-model is a computational correlate (Searle, 2004; 
Samsonovich and Nadel, 2005), even showing that physical robots 
controlled by neural networks can pass the “mirror test” of self-
awareness used with animals (Takeno, 2013). Other researchers 
have suggested that higher-order representations of one’s knowl-
edge about the world correlate with consciousness (Cleeremans 
et al., 2007; Pasquali et al., 2010). Additional studies have argued 
that attention mechanisms are potential computational correlates 
(Taylor, 2007; Haikonen, 2012). All of these ideas are intriguing 
and may provide important clues as to the fundamental nature of 
consciousness, and the fact that so many ideas are emerging in 
this area is quite encouraging.

a cOgniTiVe hUManOiD rOBOT ThaT 
learns BY iMiTaTing

In the previous section, we described a framework for studying 
aspects of consciousness based on developing computational/
robotic systems that account for high-level cognitive functions in 
neurocomputational terms. To pursue this approach, two things 
are needed: a physical robotic system that supports some aspects 
of high-level cognitive functionality, and an underlying neural 
control mechanism that implements that functionality.

Here, we describe our recent work on the first of these two 
requirements: Our efforts to create a cognitive humanoid robot 
that that can be used to explore consciousness-related and other 
issues (Katz et  al., 2017a,b). Why would one want to consider 
studying the CEG in a robot instead of simply going the easier 
route of computer simulations? One answer is that a cognitive 
system in a robot is embodied: It interacts with and causally acts 
on a real external environment, and in that sense there is a true 
“mind-body” problem, at least to the extent that one is willing to 
call a robot’s cognitive control system a mind. Further, it has been 
claimed that the ability to ground a cognitive robotic system’s 
symbols in the robot’s sensory data stream is a computational 
correlate of consciousness (Kuipers, 2008). While this suggestion 
is controversial (Chella and Gaglio, 2012), it suggests that some 
computational correlates may be particularly evident in a cogni-
tive system that interacts with the real world as part of a physical 
system.

Our own robot learns to perform tasks by imitating human-
provided demonstrations. During learning, it uses cause–effect 
reasoning to infer a demonstrator’s goals in performing a task,  
rather than just imitating the observed actions literally. Importantly 
for our own research as described in subsequent sections, the 
robot’s cognitive components center on top-down control of a 
working memory that retains the explanatory interpretations that 
the robot constructs during learning. We first briefly summarize 
this work here and then, in the next section, we relate this work to 
the search for computational correlates of consciousness.

imitation learning via cause–effect 
reasoning
Our work in robotics is motivated in part by the fact that it is 
currently very hard to program humanoid robots to carry out 
multi-step tasks unless one has a great deal of expertise in 
robotics. A potential solution to this problem is to use imitation 
learning (learning from demonstrations) rather than manually 
programming a robot. With imitation learning, a robot watches 
a person perform the task to be learned, and then imitates what 
it observed. An important mode of imitation learning occurs at 
the sensorimotor level, when the learning robot closely imitates 
the motions, gestures, and perhaps even the facial expressions 
of the demonstrator. Much work on robotic imitation learning 
has focused on this level. While important, this level does not 
involve an understanding of the demonstrator’s intentions, and 
hence suffers from limited ability to generalize to new situations 
where the robot must use different actions to carry out the same 
intentions.

Figuring out what a demonstrator’s goals are is a kind of 
cause–effect reasoning known as “abduction” in AI. The issue 
is to postulate what the demonstrator’s goals are in a way that 
is consistent with these goals causing the observed actions. AI 
researchers have extensively studied cause–effect reasoning (also 
called abductive reasoning) like this, including its use to infer 
the goals of an acting agent (Kautz and Allen, 1986; Peng and 
Reggia, 1990; Carberry, 2001). While some aspects of cognition 
have been simulated during past studies of imitation learning 
(Chella et al., 2006; Friesen and Rao, 2010; Dindo et al., 2011), to 
our knowledge, the utility of causal reasoning during imitation/
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goal learning has not been studied substantially. However, in 
other application domains such as medical diagnosis or circuit 
fault localization, causal reasoning systems often rely on finite 
databases of background knowledge that exhaustively describe all 
of the possible causal events that might occur. In robotic imitation 
learning, this amounts to a finite list of general purpose primitive 
actions that a demonstrator or robot might perform, as well as 
the direct causal relationships between those actions and higher-
level goals, and the possible objects that might be present in the 
environment. The full spectrum of possible goals, actions, and 
objects involved in general human imitation learning is probably 
too rich and variable to be adequately encoded in a finite database. 
However, for specific applications, there will likely be a finite set 
of possible objects to be manipulated and a finite set of actions 
and goals that can be applied to those objects. In this case, it is 
feasible to adapt existing causal reasoning approaches to robotic 
imitation learning. Moreover, individual actions and goals within 
a finite list can still admit continuous-valued parameters, such 
as object positions and rotations, in order to approximate some 
of the richness and variability inherent in true human imitation 
learning. This is the causal knowledge representation supported 
in our existing work described below. A detailed description of 
the encoded knowledge as well as the algorithms used in our 
applications can be found in Katz et al. (2017a). Future work on 
underlying neural mechanisms for the causal reasoning func-
tionality could incorporate generative neural models to produce 
novel situation-specific actions that need not be anticipated in a 
finite database by a human knowledge engineer.

In this context, we recently suggested that causal reasoning 
is an important part of cognitively oriented imitation learning. 
To examine whether this idea can support imitation learning, we 
developed and studied an approach to imitation learning based 
on abductive cause–effect reasoning as illustrated in Figure  1 
(Katz et al., 2016, 2017a). During the observation of a demon-
stration, our approach assembles a parsimonious explanation for 
what was observed where the demonstrator’s intentions (goals) 
serve to explain the actions performed by the demonstrator. We 
refer to our cognitive learning model as CERIL, for Cause–Effect 
Reasoning in Imitation Learning. The basic idea with CERIL is 
that the inferred demonstrator’s goals (rather than the specific 
actions the demonstrator performed) can subsequently be used 
in related but new situations that may need different specific 
action sequences to achieve the same goals. Given that our pri-
mary interest here is in the role played by high-level cognition 
during imitation learning, our focus is on that and we largely take 
low-level sensorimotor processing as a given.

Figure 1 illustrates an example of CERIL learning about and 
then subsequently performing actions on a disk drive docking 
station. CERIL learns to maintain this disk drive dock, for exam-
ple replacing hard drives that experience a hardware fault. The 
objective of learning is to replicate a teacher’s goals in subsequent 
post-learning situations rather than to produce a literal repetition 
of the demonstrator’s actions. For example, if the demonstrator 
replaces a failing disk drive, CERIL must do the same thing, even 
if the spare drive has to come from a different location, and even 
if the faulty drive is in a different slot. CERIL may use a differ-
ent arm for certain steps, or transfer objects from one “hand” to 

another, even though the demonstrator did not take these specific 
actions.

As illustrated at the bottom left in Figure 1, a person provides 
a demonstration to CERIL by using a graphical computer pro-
gram with GUI controls in which the demonstrator manipulates 
objects on a virtual tabletop (Huang et al., 2015a,b). CERIL uses 
the event record from this demonstration to infer an explana-
tion for the demonstrator’s actions in terms of high-level goals 
for the shown task (labeled A in Figure 1). The high-level goals/
intentions/schemas have parameters, such as with grasp (object, 
location, gripper). In constructing explanations, CERIL uses pre-
defined goals/intentions and their sub-goals/sub-intentions that 
are defined a priori in its knowledge base. Explanations typically 
consist of a novel sequence of instantiated/grounded high-level 
goals that CERIL constructs through abductive causal reason-
ing. In particular, the inference process is an extended version 
of parsimonious covering theory (Peng and Reggia, 1990). The 
term “parsimony” refers to the fact that the simplest explana-
tions are to be preferred, while “covering” refers to the fact that a 
plausible explanation must be able to cause (cover) the observed 
demonstrator actions. Adapting parsimonious covering as the 
basis of imitation learning required substantial extensions to the 
original theory (Katz et  al., 2017a). These extensions included 
incorporating real-valued variables such as object locations 
and orientations, integrating causal chaining and temporal 
constraints, and accounting for spatial transformations related to 
manipulating objects.

Does it Work?
The right side of Figure 1 illustrates what happens after imitation 
learning of a task is complete. CERIL can learn and retain mul-
tiple tasks over multiple environments, but here we just consider 
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the single disk drive task described above as an example. After 
learning, CERIL can be given situations in the real world that are 
similar to what it was trained with (labeled B in Figure 1). It will 
then match its parameterized object models to the objects in the 
physical environment, which grounds its top-level goals in the 
new situation. It then uses its grounded explanation (a sequence 
of goals to be achieved in the order specified) to generate a plan 
for performing the specific task it has been given by using a 
hierarchical task network (HTN) planner (Ghallab et al., 2004). 
This is labeled C in Figure 1. From the viewpoint of parsimoni-
ous covering theory, this HTN planning process is using CERIL’s 
cause–effect relations in the opposite direction from what was 
done during learning (i.e., reasoning now goes from causes to 
effects rather than the opposite which was done during learning). 
Unlike during the learning phase, HTN planning now involves 
using goals and actions that are specific to the robot, not to the 
human demonstrator.

We have systematically tested CERIL using a humanoid  
physical robot (Baxter, Rethink Robotics™; pictured at the lower 
right of Figure  1) on a set of different tasks, and the detailed 
results can be found in Katz et al. (2017a). These tasks include 
learning basic maintenance skills on the disk drive station illus-
trated above, learning maintenance tasks on a pipe-and-valve 
plumbing configuration, and learning to construct toy block 
configurations. In addition, we used computer simulations to test 
CERIL’s ability to interpret correctly action sequences taken from 
a data set of 5,000 emergency response plans (Blaylock and Allen, 
2005). CERIL was able to function effectively and efficiently in 
all of these situations (Katz et al., 2017a). Most compelling is that 
CERIL is often able to learn and generalize to modified initial 
situations (spare disk is in a different initial location, a different 
indicator light is on, etc.) from a single demonstration, much as 
a person can do. Further computational simulations comparing 
different parsimony criteria have investigated the impact of using 
different criteria for what it is that makes an explanation “parsi-
monious” (Katz et al., 2017b), and we are currently conducting 
an experimental study to compare how CERIL’s learning and 
subsequent imitation compare to what is done by human subjects 
in the same situations.

Finally, a potential benefit of using a cognitive model of the 
kinds of cause–effect reasoning performed by humans during 
learning and planning is that it should allow a robot to explain 
to a human observer why it is carrying out certain actions with 
justifications that are intuitively plausible. Such an ability is 
critical to making the simulated reasoning mechanisms of robots 
and other autonomous systems transparent to people, and this 
transparency is often an important aspect of machine trustwor-
thiness. We have recently introduced methods by which CERIL 
can justify its actions to a human observer based on “causal plan 
graphs” (Katz et  al., 2017c). Figure  2 gives an example of this 
action sequence justification ability in its current form for a 
simple device maintenance task. We believe that such “report-
ability” of underlying inference processes will ultimately prove 
to be important to investigating the possibility of machine con-
sciousness. The reason for this is that in experimental psychology, 
investigators long taken a subject’s being able to report verbally 
his/her cognitive experiences to be an objective criterion for that 

subject to be subjectively aware of those experiences (Baars, 1988; 
Dehaene and Naccache, 2001).

BriDging The ceg

We believe that the imitation learning humanoid robot described 
above, when controlled by a purely neurocomputational high-
level cognitive control system and lower-level sensorimotor sys-
tem, provides an excellent context in which to study the CEG and 
to search for potential computational correlates of consciousness. 
It uses hierarchical causal knowledge, abductive inference, and 
intention/goal inference processes, all of which have long been 
widely viewed as modeling important aspects of human reason-
ing in general and involved in imitation learning specifically 
(Kassirer and Gorry, 1978; Peng and Reggia, 1990; Josephson 
and Josephson, 1994; Meltzoff, 1995; Baldwin and Baird, 2001; 
Bekkering and Prinz, 2002; Haikonen, 2003; Fuster, 2004; Fogassi 
et al., 2005; Iacoboni et al., 2005; Walton, 2005; Botvinick, 2008; 
Katz et al., 2017a). However, the control mechanisms instantiated 
by CERIL are currently implemented with traditional software: 
Our robot’s cognitive components are top-down symbolic AI 
algorithms for abductive inference and plan generation. In order 
to use our robotic learning system to study the CEG, the existing 
software needs to be converted into neurocomputational form, 
something that is currently in progress. At present, we have 
converted the low-level sensorimotor control of individual robot 
actions into neural network modules, replacing the correspond-
ing original software with a neural architecture, the DIRECT 
algorithm, that we have previously studied via non-robotic 
computer simulations (Gentili et al., 2015). Testing of the result-
ing robotic control system (i.e., the top-down symbolic cognitive 
components plus the neural sensorimotor components instanti-
ated in our robot) on tasks such as maintenance operations on 
the disk drive dock and pipe-and-valve system described above 
show that the robot’s behavior with a neural sensorimotor system 
is virtually unchanged from the original.

We have concurrently also been studying, so far only via non-
robotic computer simulations, neural mechanisms for cognitive 
control of working memory and other behaviors that are intended 
to serve as purely neurocomputational replacements for CERIL’s 
existing executive control system. In the rest of this section, we 
first describe the neurocomputational systems we are developing 
that are inspired by both cortical and subcortical processes that 
are believed to underpin human cognitive control mechanisms. 
We then describe a key hypothesis of our work addressing the 
CEG: that top-down gating of working memory is an important 
computational correlate of consciousness. This hypothesis is 
motivated in part by the recognition by many psychologists that 
working memory is a significant aspect of conscious human 
cognition, as we explain further below.

neurocomputational implementation of 
Top-Down gating
The current implementation of our robotic system for imitation 
learning provides a good illustration of the CEG as we por-
trayed it above: high-level cause–effect reasoning and planning 
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FigUre 2 | Because of its use of cause–effect knowledge and abductive inference methods that are arguably models of human knowledge and reasoning, CERIL 
can generate simple intuitive justifications of its actions to a person who is observing a humanoid robot at work. While the English is a bit stilted, in the example 
shown here CERIL is responding to a question as to why it closed a ball valve by describing its reasons (causative factors based on its goals).
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successfully implemented using symbolic AI operations, and 
low-level sensorimotor control successfully implemented using 
neural network methods. Given the framework that we have out-
lined above (see A Framework for Investigating Consciousness), 
our specific research agenda is clear: search for computational 
correlates of consciousness by replacing CERIL’s causal reason-
ing and planning algorithms with a purely neurocomputational 
system that provides the same functionality. Such a replacement 
is beyond the reach of current neurocomputational technology 
and is a very challenging target. However, it provides a concrete 
example of attempting to bridge the CEG, and in this context it 
has the potential to reveal candidates for computational correlates 
of consciousness as per our research framework and cognitive 
phenomenology.

Given this challenge, we are taking inspiration from what is 
known about the neurobiological mechanisms underlying human 
cognitive control. Of course, current understanding of these 

biological mechanisms is incomplete, but what is known provides 
a powerful foundation for addressing how CERIL’s mechanisms 
might be implemented using neural computations. Here, we give 
two examples of the results we have obtained so far using this 
approach, explaining for each how they relate specifically to the 
issue of top-down control of cognitive mechanisms.

First, we created and studied a neurocomputational system 
named GALIS that models executive control functions and can 
be related to the CEG (Sylvester et al., 2013; Sylvester and Reggia, 
2016). We have studied this model in computer simulations, and 
the goal now is to adapt an extended version of the methods 
used in GALIS as the top-level neural control mechanisms in 
CERIL. As illustrated in Figure 3, this model is centered on an 
executive system that gates (turns on or off) the functions of the 
other components of the system, including working memory. The 
working memory module is an autoassociative recurrent network 
that adopts one-step Hebbian synaptic changes to quickly store 
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FigUre 3 | The top-level architecture of GALIS’ neural control system. The 
operational components of an intelligent agent’s control system, such as 
visual information processing, motor control, and working memory, are gated 
by an executive system at the upper right. Our work focuses on the 
top-down gated control of working memory in particular.
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in the context of past suggestions that some activity state trajec-
tories in neural systems might be computational correlates of 
consciousness (Fekete and Edelman, 2011). What our model adds 
to this suggestion is the specific idea that temporal sequences of 
attractors (itinerant attractor sequences) used by executive mod-
ules instantiating top-down gating might be the specific property 
that makes activity state trajectories become computational 
correlates of consciousness. This idea is related to recent work 
suggesting that sequences of attractor states in recurrent neural 
networks can shed light on controversies surrounding cognitive 
phenomenology (Aleksander, 2017). The executive system in 
GALIS is sufficiently robust even in its current implementation 
to store and use multiple instruction sequences as appropriate as 
different conditions arise during problem solving.

Figure  4 elaborates on GALIS’ top-level architecture that is 
illustrated in Figure 3. Sensory inputs enter at the upper left, and 
motor control (e.g., “pointing” at a card) leaves at the bottom left. 
The internal structure of the recurrently connected networks 
forming working memory is shown, indicating that this memory 
stores associated pairs of object-location information. The 
memory for instruction sequences, or “programs,” is a recurrent 
neural network shown on the right as part of the control module. 
Not only does it store individual instructions as attractor states 
(much like the working memory, via symmetric synaptic weights 
produced by one-step Hebbian learning), but it also stores the 
transitions between one instruction to the next. Representing a 
sequence of attractor states in memory could be done in various 
ways, e.g., Tani has suggested that compositionality and discrete 
action sequences (sequences of a nonlinear neural system’s states) 
can be supported via chaotic dynamics (Tani, 2017). In GALIS, 
sequencing between instructions is instead based on asymmetric 
weights on recurrent connections in the instruction sequence 
memory’s network. These asymmetric weights are learned via 
temporally asymmetric Hebbian learning. Thus, during perfor-
mance of a task, the instruction memory goes to an attractor 
state (an instruction) corresponding to a local minimum of the 
network’s energy function and performs the specific action(s) 
indicated by that instruction. The underlying energy landscape 
governing dynamics then shifts, making the current attractor/
instruction unstable since it is no longer an energy minimum 
state. Guided by the learned asymmetric weights, the state of 
the network then transitions to a new local energy minimum 
that is the next instruction in the sequence/program. Multiple 
instruction sequences can be stored simultaneously in GALIS’ 
control memory. The detailed network structure and equations 
governing GALIS’ activity dynamics and synaptic changes during 
learning can be found in Sylvester and Reggia (2016).

Most importantly for our discussion here, as the executive 
system transitions through an instruction sequence, it exerts 
top-down influences on the functionality of other modules in the 
system. This control is exerted by gating connections leaving the 
executive system and traveling to other parts of the system. These 
gating connections originate at the lower right in Figure 4 and are 
labeled gx in the illustration, where gx is the activity state of con-
nection x. For example, the executive system turns on learning 
in the working memory, directing working memory to store the 
currently seen object’s identity and location, by having an output 

and recall problem-solving information such as what objects 
are in the workspace and their locations. The executive control 
module, of primary interest here, is trained to activate/de-activate 
the functions of the other components in the system. This gating 
control mechanism thus determines whether or not inputs are 
saved in working memory, when information stored in working 
memory is to be deleted, and when outputs are to be produced. 
Using Hebbian learning methods, it is possible to “program” 
GALIS to carry out tasks that require a sequence of motor actions 
to be executed that are specific to solving a given problem. For 
example, we trained GALIS to play simple card games that 
required it to retain in working memory the previous cards that 
it had seen, and to base decisions about its actions on the contents 
of working memory. Not only did GALIS perform the task well 
in solving hundreds of randomly generated card game problems, 
but it was also found to exhibit some significant similarities to 
people in terms of how many steps it took to solve card game 
problems of various difficulty levels (Sylvester and Reggia, 2016) 
as well as in memory capacity in separate experiments simulating 
human n-back problem solving (Sylvester et al., 2013).

The executive component, shown at the upper right in 
Figure  3, is the most interesting aspect of GALIS’ underlying 
neurocomputational system in the context of the CEG. It exerts 
top-down control over the functions of other operational parts of 
the overall system. This executive has an internal structure that is 
more complex than illustrated in Figure 3. It consists of multiple 
components, the most important of which is an associative mem-
ory that stores task instructions as attractor states. Each instruc-
tion indicates which system components should be activated/
de-activated (via the gating mechanism) at various times during 
a task in order to solve whatever problem is under consideration. 
The executive is trained to represent and remember sequences of 
instructions (“programs”) as sequences of attractor states. Like 
working memory, learning is based on Hebbian synaptic changes. 
Subsequently, the executive sequentially visits those learned 
attractor states in the correct order during problem solving. In 
effect, this procedural memory allows the executive to learn to 
represent simple tasks (sequences of instructions or “programs”) 
as sequences of transient attractor states. This is of special interest 
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FigUre 4 | An elaboration of the details of Figure 3 above. Each rectangle with darker gray shading corresponds to a neural module, where thick semi-circular 
arrows indicate recurrently connected networks. Thin arrows indicate the connectivity between modules. The working memory of Figure 3 is depicted on the left, 
while the executive system (control module) is shown on the right. The connections leaving the decoder module at the lower right of the illustration implement gating 
actions as explained in the main text. Figure from Sylvester and Reggia (2016).
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gtrain = 1, while it directs working memory to instead ignore the 
current visual input by having an output of gtrain = 0. Gating like 
this in GALIS is implemented via “multiplicative modulation” 
(Akam and Kullmann, 2014), where the gx values occur in the 
equations governing activity dynamics and learning in other 
modules. As an example, if unit k in the motor module has an 
activity ak, then what the external world actually sees at that time 
is the value gmotor  ×  ak that incorporates gmotor as a multiplying 
factor. If gmotor = 1, then the actual output from unit k at that time 
is ak, while if gmotor = 0, the actual output is 0. The specific details 
of how module functionality is gated in the equations controlling 
system behaviors are given in Sylvester and Reggia (2016).

The core ideas behind GALIS—using top-down gating pat-
terns to encode instructions, and using itinerant attractors to 
represent sequences of instructions and other data—make for a 
highly versatile model of computation that can support symbolic 
reasoning systems like CERIL. For example, suppose that activity 
patterns are used to represent individual actions and goals that 
might occur. Itinerant attractor sequences could then be used to 
store a list of actions that carry out a particular goal, or the list 
of goals that might cause a particular action, thereby encoding 
background causal knowledge. Moreover, during reasoning, a 

working memory could be used to incrementally accumulate a 
list of conjectured goals that are mutually consistent and account 
for all actions observed in a demonstration. Finally, instruction 
memory could be used to store the sequences of gating patterns 
that carry out the reasoning algorithms. For example, un-gating 
learning or activation dynamics could be used to store or retrieve 
background knowledge, respectively. Similarly, during reasoning, 
un-gated sequence learning in working memory could be used 
to append new goals when constructing an explanation, and 
un-gated interactions between background knowledge, working 
memory, and conflict detection regions could be used to check 
for inconsistencies before an explanation is modified. Of course, 
many more subtleties and details will have to be accounted for in a 
successful implementation. The foregoing examples are intended 
just to convey the high-level implementation strategy and bolster 
our claim to its feasibility.

However, a significant limitation to GALIS’ executive module 
is its inability to handle ambiguity. There is no need for a complex 
decision-making process in the card matching task described 
above because it could be specified with a simple set of deter-
ministic rules to carry out based on the state of the environment. 
More realistic tasks often necessitate decision-making to resolve 
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conflicts between potential responses, and often depend on rein-
forcement learning mechanisms to determine the relative value 
of these responses. For this reason, our second effort to imple-
ment neural mechanisms that could replace CERIL’s symbolic 
algorithms focuses on the role of subcortical structures like the 
basal ganglia in cognitive control, such as with decision-making 
and action selection.

Decades of research have implicated the basal ganglia in a 
wide array of cognitive and motor functions, many of which  
are associated with conscious processing (Schroll and Hamker, 
2013). Most notably, deficits observed in disorders such 
as Parkinson’s disease suggest a role of the basal ganglia in 
voluntary movement initiation (Wurtz and Hikosaka, 1986), 
sequential action performance (Benecke et al., 1987; Jin et al., 
2014), attention (Tommasi et al., 2015; Peters et al., 2016), and 
working memory (Lewis et  al., 2005; Gruber et  al., 2006). In 
many cases, the functionality of primitive sensorimotor reflexes 
in Parkinson’s disease patients is correlated with increases in 
cognitive impairment, suggesting a decreased ability to exert 
top-down control over unconscious behavior (Vreeling et  al., 
1993). In addition, there is evidence that abnormal inhibition 
in the striatum of the basal ganglia is associated with the con-
scious compulsions reported in tic disorders such as Tourette’s 
syndrome (Vinner et  al., 2017). Taken together, this evidence 
suggests that the basal ganglia comprise an important instru-
ment for conscious top-down control over the central nervous 
system that could offer a number of potential benefits to a neu-
rocognitive system, including a mechanism for biasing attractor 
landscapes like those used in GALIS toward reward associated 
trajectories (goal-directed behavior) and controlling the main-
tenance and capitulation of salient states (working memory). 
While the neural mechanisms underlying these processes are 
not fully understood (Goldberg et al., 2013), past computational 
models incorporating basal ganglia have been shown to capture 
important behavioral patterns associated with top-down control 
(Wiecki and Frank, 2013).

We are currently incorporating such a model into GALIS by 
dividing the executive module into components correspond-
ing to the prefrontal cortex and the basal ganglia. The latter is 
intended to address the aforementioned ambiguity issues that 
arise in complex environments by providing a competitive 
decision-making component that resolves conflicts arising in the 
former. In addition, such a component functions as a detector of 
salient states, thereby providing cues for the timing of behavioral 
execution, serving as a gate on the gating mechanism itself to 
prevent premature responses or to interrupt ongoing execution 
when appropriate. This is particularly relevant to the sensorimo-
tor level of imitation learning. As mentioned above, we replaced 
traditional low-level motion planning with the DIRECT neural 
algorithm (Bullock et al., 1993; Gentili et al., 2015), which learns 
in an unsupervised fashion using exploratory “babbling.” Much 
of the robotic motion planning done during imitation learning of 
maintenance tasks (like those we described above) requires the 
use of an inverse kinematics solver that determines a joint trajec-
tory for a given end-effector starting position and target. DIRECT 
learns this coordinate transformation in a self-organizing map 
architecture by training on a randomly generated set of joint 

movements and their consequential end-effector transformations. 
It computes inverse kinematics by finding a difference vector and 
adjusting the end-effector position using the transformed kin-
ematic information for the appropriate movements that must be 
made to reach the goal state. Once trained, the resulting model is 
capable of producing iterative joint movements that approximate 
the shortest path to the target position.

We have developed an augmented version of the DIRECT 
model that controls imitation of coordinated bimanual move-
ments (Gentili et al., 2015) to support end-effector orientations, 
which are critical to performing the demonstrated tasks. This 
allows the planner to provide joint trajectories that orient the 
robot’s grippers for fine motor tasks, such as manipulating 
screws, coordinating exchanges of objects between grippers, 
and fitting objects into tight spaces. However, these additional 
dimensions were found to pose a unique problem due to the 
rotational limits of the robot’s wrists in the absence of high-level 
decision-making and top-down control. The DIRECT model is 
trained to approximate the shortest path to the target position 
and orientation, but this path may be blocked by the rotational 
boundary of the wrists, in which case they must be rotated in the 
opposite direction. Furthermore, a given task may call for a par-
ticular rotational direction (for example, unscrewing demands 
counterclockwise rotation, regardless of the shortest path to the 
target rotation). Importantly for our work, these considerations 
motivate the need for top-down control by indicating situations 
in which top-down control over sensorimotor processing can be 
used to resolve planning conflicts and override habitual behavior: 
a gating signal may be used to force the motion planner to take 
the longer, suboptimal path. It is this kind of context-dependent 
control over top-down gating that we are currently implementing 
in the simulated basal ganglia components of our model, which 
is work in progress.

Top-Down gating of Working Memory
A key hypothesis of our work addressing the CEG described  
above is that the top-down gating of working memory (and 
potentially of other operational components) is an important 
computational correlate of consciousness. At the least, we believe 
that studying this aspect of the CEG will lead to the discovery of 
such correlates. Why is that?

The term working memory can be defined as the memory 
mechanisms that store and process information for a brief period 
of time. Human working memory has very strict capacity limita-
tions: Psychologists have found that we can only retain about 
four separate items in our working memory at any point in time 
(Cowan et al., 2005). If one tries to store more information, the 
individual items stored may interfere with each other and, in 
any case, the items will be replaced or decay away over time as 
problem solving evolves.

The important point here in terms of our work concerning the 
CEG is that psychologists consider the information processing 
done by the working memory system to be part of our conscious 
cognitive processes. They have found that storing, manipulating, 
and recalling information from working memory is conscious 
and reportable (Block, 2011; Baddeley, 2012). Thus, according 
to the tenets of cognitive phenomenology (discussed in Section 
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“Computation, Mind, Brain, and Body”), the computational 
processes that control working memory deserve consideration 
as possible computational correlates of consciousness. Further, 
working memory operations are largely managed via cognitive 
control systems that are biologically most clearly associated 
with prefrontal cortex “executive functions” that manage other 
cognitive processes in general (Schneider and Chein, 2003). In 
terms of the CEG, the issue becomes: can we identify neuro-
computational mechanisms that might implement the control of 
working memory functionality? Elaborating on the hypothesis 
stated at the beginning of this section, our proposal is that top-
down gating like that described above, which determines what is 
saved and discarded by working memory, furnishes the compu-
tational machinery that is used by executive cognitive processes 
in controlling working memory operations during conscious 
information processing and is thus a potential computational 
correlate of consciousness. With top-down gating, an executive 
module controls the functions of other modules. An executive 
system may use gating to enable/disable the connectivity between 
modules, to determine when they remember/forget information, 
when they generate outputs such as motor actions, and when 
they learn.

Our specific neurocomputational models described in the 
preceding subsection envision gating functions, guided by a 
neurodynamical executive system that sequentially visits attrac-
tors that represent instructions (i.e., that represent a procedure 
for carrying out a task), as corresponding to conscious aspects of 
cognition that involve working memory. In addition, the gating 
of working memory in a top-down fashion is reminiscent of the 
idea of mental causation considered by philosophers deliberating 
on the topic of free will (Kane, 2005; Murphy et al., 2009). These 
observations and the finding that control of working memory 
using top-down gating works effectively in neurocomputational 
systems and produces behavioral measurement results similar 
to those observed in humans during n-back memory tasks and 
card matching tasks (Sylvester et al., 2013; Sylvester and Reggia, 
2016) as described above, suggest to us that further investigation 
of these gating mechanisms may be profitable in the search for 
computational correlates of consciousness.

DiscUssiOn

Current understanding of phenomenal consciousness is widely 
recognized to be very incomplete, and its relationship to cognition 
and the core neuroanatomical structures that support it continue 
to be the focus of recent work (Spreng et  al., 2008; Wang and 
He, 2014; Gomez-Marin and Mainen, 2016). This holds both with 
respect to consciousness in people and with respect to issues that 
surround the question of whether machines or animals can be 
conscious. The primary suggestion in this paper is that the CEG is 
an important contributing reason for our limited progress toward 
a better understanding of phenomenal consciousness. This view-
point runs counter to some past philosophical arguments that 
understanding the mechanisms of human cognition will not 
get us any closer to solving the “hard problem” of conscious-
ness. However, the growing recognition among contemporary 
philosophers who support the idea of cognitive phenomenology 

suggests, to us at least, that cognition and consciousness are suf-
ficiently intertwined that computational exploration of the CEG 
may productively lead to insights about the nature of conscious, 
both in machines and people. It is for this reason that we have 
suggested a framework for studying consciousness that is based 
on searching for neurocomputational correlates of consciousness 
in cognitive-level machines. Ultimately, this general framework, 
if applied broadly, may turn out to be critically important to 
providing new knowledge about our basic notions of conscious-
ness. Our view is that the CEG is a central issue for consciousness 
studies, and one that merits substantial investigation over coming 
years. Doing this should lead us to discoveries about the compu-
tational correlates of consciousness.

More specifically, in this paper we have emphasized the 
importance of searching for neurocomputational correlates of 
consciousness, and suggested that one direction in which such a 
search may prove to be productive is the investigation of execu-
tive gating of working memory functions. To our knowledge, very 
little past work in cognitive robotics or involving computational 
modeling has examined this specific issue. There have been past 
computational studies motivated by higher-order thought (HOT) 
theory that relate cognitive mechanisms to working memory. But 
these past neurocomputational models based on HOT theory 
have, to our knowledge, only developed “metacognitive networks” 
that monitor one another, and have not considered the possibil-
ity of top-down gating architectures where executive modules 
control other modules’ actions. Top-down gating as we describe 
it here also differs from previously proposed computational 
models of attention, including proposals that the production of 
an “efference copy” by control mechanisms (Taylor, 2007) or that 
having multiple components of a system simultaneously focus on 
a single subject (Haikonen, 2012), are computational correlates 
of consciousness. Such models do not explicitly focus on using 
top-down gating as described in this paper as a control mecha-
nism. As we noted earlier, other past related work includes the 
suggestion that some activity state trajectories in neural systems 
might be computational correlates of consciousness (Fekete and 
Edelman, 2011), and the temporal sequences of attractors used by 
executive modules instantiating top-down gating in our system is 
consistent with such a suggestion.

There is much room for further work in this area. For 
example, at the present time the mechanisms by which a corti-
cal/subcortical region may directly or indirectly control/gate 
the functions of other regions is not completely clear. Gating 
interactions in the brain could possibly be implemented by 
direct pathways between cortical areas, indirectly via actions 
of basal ganglia and thalamic nuclei, by functional mechanisms 
such as synchronized cortical oscillations, or by some mixture 
of these and other yet-to-be discovered mechanisms. An 
important future research topic would be to undertake a more 
detailed examination of the implications of using alternative 
gating mechanisms. This relates to the broader issue of what 
features must be incorporated into computational neural net-
work models to make them adequately representative of brain 
functions. Current neural network technology spans a broad 
range of biological realism, running from the relatively realistic 
Hodgkin–Huxley models incorporating spiking neurons with 
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multi-compartment dendritic trees to the relatively implausible 
use of linear models or backpropagation learning. In our own 
work, we have tried to strike a balance regarding this issue, but it 
remains an important question as to the level of complexity and 
biological realism in neural computation that will ultimately be 
best related to the investigation of consciousness. Further future 
work in neuroscience and psychology is also needed to sharpen 
our understanding of which cognitive processes are conscious 
and which are not as a prerequisite for validating computational 
correlates of consciousness.
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