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Simple Summary: Paradoxically, although the steroid hormone 17β-estradiol (E2) regulates many
aspects of male and female physiology, it is described in the chemical indexes as a carcinogen. By the
analysis of the literature, we unveil here a novel concept for which E2 possesses a dual nature for
which it is both a toxic and a homeostatic regulator controlling DNA stability. Therefore, cancer could
arise as a consequence of the deregulation of this delicate equilibrium between cellular pathways.

Abstract: 17β-estradiol (E2) regulates human physiology both in females and in males. At the same
time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of
cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development
of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the
foundations of the physiological definition of “hormone” as E2 works both as a homeostatic regulator
of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this
double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies
of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this
hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes
required to maintain genome integrity belong to the E2-controlled cellular signaling network and are
essential for the appearance of the E2-induced cellular effects. This concept requires an “upgrade” to
the vision of E2 as a “genotoxic hormone”, which balances physiological and detrimental pathways
to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways
would determine the E2 pathological effects.

Keywords: 17β-estradiol; estrogen receptor alpha; breast cancer; DNA damage; DNA repair

1. Introduction

The sex hormone 17β-estradiol (E2) exerts diverse pleiotropic physiological effects in-
cluding the control of the reproductive system in females and the development of primary
and secondary sexual characteristics in humans. E2 regulates a plethora of physiological
functions in non-reproductive tissues including heart, bone, and brain systems. Accord-
ingly, E2 can exert beneficial effects being protective against osteoporosis, cardiovascular
and neurodegenerative diseases [1].

The E2 effects occur mainly as the result of hormone binding to estrogen receptor
subtypes α and β (i.e., ERα and ERβ), which display different patterns of expression in
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tissues although the two receptors show a high degree of sequence homology. The E2
molecular action through ERα and/or ERβ justifies the diverse and sometimes contrasting
effects of this hormone. As an example, E2 can both induce or inhibit cell proliferation by
binding to ERα or ERβ, respectively [1].

Thus, it is not surprising that E2 is involved in the growth and survival of several
types of human cancers including breast cancer (BCs) [2]. Although BC is a heterogeneous
disease with different molecular phenotypes, the most frequent BCs (i.e., 75%) express the
ERα at the diagnosis. The ERα is an important prognostic factor because its expression
drives the treatment (i.e., the endocrine therapy), which aims to block different aspects of
the E2:ERα proliferative signaling [3].

Conversely, the increased plasma level of E2 is a well-defined risk factor for BC [4–6].
Although the mechanisms through which this hormone determines its detrimental effects
are not completely understood and imply also its interplay with other hormones (e.g.,
progestins) [4–6], E2 has been shown to cause directly or indirectly DNA damage [7]. E2
could contribute to the initiation and progression of BC through the induction of DNA
double-strand breaks (DSBs) and genomic instability [8–10]. Indeed, E2 can induce the
production of oxidative metabolites, which cause DNA adducts and/or oxidative DNA
damage [9]. Also, the hyperactivated E2:ERα signaling provokes excessive proliferation
in turn promoting DNA damage accumulation (e.g., replication fork stalling-dependent
DSBs) [11,12].

To face DNA damage, cells have evolved a complex set of mechanisms termed DNA
damage response (DDR), which allows the detection of the lesions, activates the damage
signaling, and regulates the DNA repair [13,14]. It has been suggested that E2 signaling
inhibits the DDR to induce chromosomal instability and aneuploidy, which are typical
cytogenetic prerequisites for BC initiation and progression [7]. Moreover, E2 induces a
physiological transcriptional and replicative stress (RS) on nucleic acids [15]. Remarkably,
RS commonly occurs in cells and causes DNA damage, which is rapidly counteracted by
the RS response (RSR) [16]. Therefore, this evidence suggests a complex E2-dependent
modulation of the cellular pathways controlling both DDR and RSR for the fine regulation
of the E2-induced cell proliferation. Nonetheless, it is difficult to reconcile how E2, which
controls crucial physiological processes both in females and males and contributes to body
homeostasis, could work as a carcinogen inducing the development of BC.

The mechanisms by which E2 elicits DNA damage and protect cells from genomic
instability as well as the ability of this hormone to directly control the signaling underlying
DDR and RSR are reviewed here. Reported evidence allows proposing that E2 balances
DNA damage and genome stability via an intertwined cross-talk involving ERα, DDR, and
RSR signaling.

2. The Molecular Pathways of E2:ERα Signaling to Cell Proliferation

E2 induces cell proliferation by activating both nuclear and extra-nuclear ERα activities
(Figure 1).

ERα is a ligand-activated transcription factor belonging to the nuclear receptor su-
perfamily. E2 binding to ERα induces E2-dependent gene transcription by triggering
ERα association to the promoters containing the estrogen-responsive-element (ERE) se-
quence. The association of specific transcriptional co-activators and co-repressors to ERα
contributes to the modulation of gene transcription (Figure 1). ERα can also modulate
genes that do not possess the ERE-sequence in their promoters because the hormone-bound
receptor can associate with other transcription factors (e.g., AP-1, SP-1, and NF-kB), which,
in turn, expand the repertoire of the E2-regulated genes [1]. The E2:ERα transcriptional
activity is further controlled by the membrane-starting signaling activated by E2 [2]. ERα is
also located at the plasma membrane through lipid modification (i.e., palmitoylation) medi-
ating, upon E2 binding, the activation of a plethora of signaling cascades (e.g., ERK/MAPK;
PI3K/AKT pathways) [17–19] (Figure 1). In mice models harboring the mutation of ERα
palmitoylation site (i.e., C447 to A in human ERα and C451 to A in murine ERα) it has
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been firmly demonstrated that the extra-nuclear plasma-membrane-dependent signaling
of the E2:ERα plays paramount roles in the regulation of the physiological effects of E2
in vivo [20,21] as they intimately integrate with the transcriptional functions of the E2:ERα
complex [18].
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Figure 1. E2:ERα nuclear and extra-nuclear signaling to cell proliferation. The nuclear (left) and extra-nuclear (right)
signaling pathways are indicated. Localization of the ERα to the cell plasma membrane by palmitoylation is indicated
(blue sign). E2:ERα-dependent transcription of the genes containing or non-containing the estrogen response element (ERE)
within their promoters as well as E2:ERα-dependent activation of the classic PI3K/AKT and ERK/MAPK kinase cascades
are indicated. 17β-estradiol (E2); estrogen receptor α (ERα); Activator Protein 1 (AP-1); estrogen responsive element (ERE);
phosphatidyl-inositol-3-kinase (PI3K); v-akt murine thymoma viral oncogene homolog 1 (AKT); mitogen-activated protein
kinase (MAPK); extracellular regulated kinase (ERK).

The activation of the above-mentioned E2-induced cellular signaling ultimately results
in the induction of DNA synthesis, which allows cell cycle progression, cell duplication,
and cell proliferation (for extensive review, please see for example [22,23]).

Context-Dependent Effects of E2

The pleiotropic nature of E2 implies that this hormone can produce diverse effects in
different cellular contexts. Although the specific molecular details linking the repertoire of
E2-dependent effects with the structure-function relationships played by the ERs within
the cellular environments are still not completely understood, numerous evidence can
explain the context-dependent effects of E2.

The ERα and the ERβ are differentially expressed in different tissues. Indeed, the ERs
can be singularly expressed in one tissue or co-expressed at different levels in a specific
cellular context and their intracellular levels can vary as a function of time and tissue
physiological state [24].

Moreover, at the cellular level, it is well known that the ERα and the ERβ possess a
high number of interacting partners [25–27]: the complexity of the ERs interactomes is not
only correlated to the regulation of the expression of the ERs interacting partners in the
different cellular contexts but also to the biochemical properties of the ERs. The ERs are
modular proteins, which contain only two folded domains (i.e., the DNA binding domain
-C domain; the ligand-binding domain: E domain) out of six (i.e., A to F) [28,29]. These two
structured parts of the proteins are then linked to the other domains through intrinsically
disordered regions (IDRs). IDRs confer to proteins a high degree of dynamic flexibility,
increase the possibility that the same protein could interact with various partners, allow
that the same protein could contribute to the regulation of many intracellular pathways,
and are the target of post-translational modifications (PTMs) [30]. The ERα and the ERβ
appear to have acquired all the properties of the IDR-containing proteins: the ERα and the
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ERβ expose different epitopes in different subcellular compartments [31]; they interact with
different binding partners both in different subcellular compartments and in different tissue
contexts [25–27], in this way contributing to the regulation of many different intracellular
pathways [1,2]; the ERα and the ERβ are the targets of a plethora of PTMs [32] and the
IDRs of the ERα can assume a different folding as a function of the specific receptor binding
partner [33].

Furthermore, the complexity of the ERs signaling is increased by the fact that (i) E2
plasma levels physiologically fluctuate as a function of time (see below), (ii) more than one
ligand-binding site has been suggested to be present within the ERs structure [34,35] and
(iii) E2 elicits complex transcriptional and non-transcriptional cellular responses [1,2].

Therefore, given the high heterogeneity of the functional panorama of E2 effects and
ERs structures as well as of the molecular actors mediating the effects of the E2-regulated
pathways in different cell types, in this work, the mammary gland cells are the main context
where the effects of E2 on the balance among DNA damage, protection from genomic
instability and control of DDR and RSR signaling are reported.

3. Relationships between E2 Concentrations and E2:ERα Signaling to Cell Proliferation

One possibility through which E2 can be at the edge between a hormone or a geno-
toxic compound could be its concentration-dependent effect. In fertile women, E2 plasma
levels physiologically fluctuate (from low pM to 1 nM at the ovulation peak), thus reg-
ulating female fertility [36]. In addition, the increase in plasma levels is a risk factor
for the insurgence of BC [4–6]. Therefore, one might expect deep knowledge of the E2
concentration-dependent effects on the E2:ERα signaling to cell proliferation, but instead, a
systematic analysis addressing this point is still lacking.

Nonetheless, it is well known that in vitro the concentration-dependent effects of E2
on both ERα-triggered ERE-based gene transcription and cell proliferation usually follow a
bell-shaped curve with low- and supra-physiological concentrations of E2 (i.e., pM and
µM, respectively) having the same effects. Remarkably, these observations have been also
confirmed in animal models where different tissues are differentially sensitive to low or
high levels of E2 [37].

In this respect, E2-induced gene transcription requires the ability of ERα to cycle
on-and-off its target gene promoters. This fluctuation of receptor binding to chromatin
occurs in an ordered way. Thus, the E2:ERα complex could sequentially recruit both
co-activators and proteins of the basal transcriptional apparatus (e.g., RNA Pol II) to
coordinate gene expression with the fluctuating plasma concentration of E2. The regulation
of this intricate network is controlled by E2 itself, which induces ERα degradation to
limit the excessive response to the hormone stimulation [38,39]. Genome-wide chromatin
immunoprecipitation sequencing (CHIP-seq) confirms that ERα interacts with millions of
chromatin binding sites with or without E2 [40–42], thus controlling the genomic landscape
of the E2-target cells.

Interestingly, although the E2 concentration-dependent modulation of these molecular
circuitries has not been studied, real-time live-cell analyses of E2:ERα-mediated ERE-based
transcription demonstrated that the activation of the transcriptional activity dependent
on the E2:ERα complexes is rapid and detectable as early as 3 h after administration of
10 pM E2 [43]. E2-dependent transcriptional activity occurs with an effective dose 50 (ED50)
of ~5 pM at 24 h (Figure 2a) [43]. The gene transcription then induces the activation of
processes required for DNA synthesis. In addition, in this case, the regulation of DNA syn-
thesis induced by different E2 concentrations has not been thoroughly investigated. Recent
evidence in mice shows that supraphysiological concentrations of E2 inhibit uterine epithe-
lial cell proliferation and, consequently, the E2-induced increase of uterine weight [37]. In
ERα overexpressing cells, E2-induced DNA synthesis occurs as rapid as 6 h [44,45]. In BC
cells endogenously expressing the ERα, the DNA synthesis occurs 24 h after the admin-
istration of ~20 pM E2 (Figure 2b). Thus, picomolar concentrations of E2 are sufficient to
activate via ERα intense waves of both gene transcription and DNA synthesis.
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Figure 2. The E2 concentration-dependent effect on gene transcription and DNA synthesis. (a) ERα ERE-dependent
transcriptional activity has been measured at 24 h in MCF-7 cells as described in [43] as a function of the indicated doses
of 17β-estradiol (E2); (b) Bromodeoxyuridine incorporation (BrdU) in DNA has been measured at 24 h in MCF-7 cells as
described in [43] as a function of the indicated doses of 17β-estradiol (E2). Red and green lines indicate half-maximal effect.
For detail, see the text. 17β-estradiol (E2); estrogen receptor α (ERα); estrogen responsive element (ERE).

Because nanomolar concentrations of E2 at the ovulation peak (i.e., 1 nM) activate
E2:ERα complex-dependent gene expression and DNA duplication at maximal levels and
supra-physiological concentrations of E2 can inhibit cell proliferation [37], high concentra-
tions of E2 could be detrimental for cellular and tissue functions by damaging the genome
through physical breaks on the DNA helix (please see below).

4. Molecular Pathways for Genome Stability Maintenance

The DNA damage is recognized and processed by spatially and temporally controlled
pathways that are collectively called DNA damage response (DDR) (Figure 3).

DDR is required: (i) to detect the DNA lesion; (ii) to guide the correct damage signal-
ing, (iii) to coordinate transcriptional and post-translational activation of genes involved
in the DNA repair; (iv) to promote the activation of the cell cycle checkpoint; and (v)
to eventually induce apoptosis or senescence to deplete or to semi-permanently arrest
irreversibly damaged cells [7,46,47]. Of note, these pathways are activated also during the
RSR. Under pathological conditions, such as cancer, the regulation of DDR is impaired or
abrogated and the risk for genome instability is increased due to the lack of the proper
DNA repair mechanism.

ATM, ATR, and the catalytic subunit of DNA-PKcs, which associates with the Ku70/80
heterodimer (Ku) to form the DNA-PK holoenzyme [48], are large Ser/Thr kinases and
members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family. These kinases
are central regulators of DDR that activate, through redundant mechanisms, three possible
signaling axes, i.e., the ATM-CHK2, the ATR-CHK1, and the DNA-PK cascades [48–53]
(Figure 3).

ATM kinase is recruited and activated in the presence of a DSB thanks to the
MRE11/RAD50/NBS1 (MRN) sensor complex [54–56]. ATR is activated together with
its partner ATRIP in response to a single-strand break (SSB) thanks to the presence of the
replication protein A (RPA) sensor [57–61]. DNA-PKcs is activated by DSB and is activated
by Ku [48,62]. Once activated, ATM, ATR, and DNA-PK phosphorylate H2AX (i.e., the
so-called γH2AX) and hundreds of mediator proteins (Figure 3).
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Figure 3. The DNA damage response (DDR) pathway involves sensor, transducer, mediator/amplifier, and effector proteins,
which act following the induction of a DNA lesion or replication stress. The induction of single-strand breaks (SSB) or
double-strand breaks (DSB) activates specific DDR kinases (i.e., DNA-PK, ATM, and ATR). In turn, this allows the activation
of genes and proteins involved in cell cycle control and DNA repair. In the presence of highly damaged cells, apoptosis
and senescence are activated to deplete or to semi-permanently arrest cells, respectively. For detail, see the text. X-Ray
Repair Cross Complementing 6 (Ku70); X-Ray Repair Cross Complementing 5 (Ku80); catalytic subunit of DNA protein
kinases (DNA-PKcs); phosphorylated H2A Histone Family Member X (γH2AX); Non-Homologous End Joining Factor
1 (XLF); X-Ray Repair Cross Complementing 4 (XRCC4); DNA ligase IV (DNA lig IV); MRE11/RAD50/NBS1 (MRN);
Ataxia Telangiectasia Mutated (ATM); Checkpoint Kinase 2 (Chk2); Replication Protein A (RPA); Rad3-Related-Interacting
Protein (ATRIP); DNA Topoisomerase II Binding Protein 1 (TOPBP1); Ataxia Telangiectasia and Rad3-Related Protein (ATR);
Checkpoint Kinase 1 (Chk1).

ATM and ATR trigger also a second wave of phosphorylation through the activation
of CHK2 and CHK1 protein kinases, respectively [63,64]. The ATM-CHK2 and ATR-CHK1
axes also stimulate the transcriptional activity of p53, which promotes a temporary arrest
in the cell cycle, thus allowing DNA repair and restoration of homeostasis [51]. Once the
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damage is repaired, all these post-translational modifications are reversed to stop the DDR
signal [13,65–68] (Figure 3).

5. The Interplay among E2, E2:ERα Signaling, and Genome Stability Maintenance

Notwithstanding the deep knowledge regarding the mechanisms through which the
E2:ERα controls gene expression and DNA duplication, only limited, scattered and uneven
information is available about the impact of E2 and/or E2:ERα signaling on the regulation
of both DNA damage and DNA damage response and repair.

5.1. E2 as a Source of DNA Damage

Many in vitro and in vivo studies have highlighted the ability of E2 to induce DNA
damage (Figures 4 and 5). E2 appears to induce DNA lesions by both its chemical prop-
erties (i.e., acting by a direct carcinogen independently on cell cycle) and its functional
activity (i.e., inducing RS and therefore, restricted to S-phase). In humans and rodents,
the E2 administration increases the incidence of mammary, ovarian, colon, prostate, and
endometrial tumors [4–6,8], thus it appears not to be context-dependent. The role of E2
in carcinogenesis occurs through the pro-carcinogen metabolic activation (i.e., genotoxic
“initiator”) and the E2:ERα complex activation (i.e., “promoter”) [37,40–45]. The two mech-
anisms of mammary carcinogenesis are not necessarily mutually exclusive and may even
concomitantly act [69].

5.1.1. E2 as a Direct Carcinogen

E2 is metabolized by phase I P450 enzymes in the liver, uterus, mammary gland, and
testis to generate catechol estrogens (CE) due to the oxidation at C-16 (16α-OHE2), C-2
(2-OHE2), and C-4 (4-OHE2). Their relative yield depends on tissue metabolism. In breast
tissues, CYP1A1 and CYP1B1 are mainly involved in the E2 conversion and, interestingly,
the enzyme levels are regulated by E2 via ERα [70]. Urinary levels of 2-OHE2 and 4-OHE2
are elevated in BC patients compared to healthy controls [71] and elevated concentrations
of 4-OHE2 have been detected in BC biopsies [72]. In turn, hydroxyestradiols, particu-
larly 4-OHE2, undergo CYP1B1-mediated one electron-redox cycle to semiquinone (SQ)
intermediate and ortho-quinones derivatives (Catechol Estrogen Quinones, CEQs). The
SQs electrophilic metabolites E2-3-4-Q and at a lesser extent E2-2-3-Q are known to attack
DNA and form depurinating adducts at the N7-position of guanine and the N3-position
of adenine (4-OHE2-1-N7Gua, 4-OHE2-1-N3Ade) at picomolar concentrations, whereas
the lesser reactive E2-2,3-Q yields 2-OHE2-6-N3A adducts (Figure 4). Such DNA adducts
have been associated with increased cancer risk and appear ultimately to act as carcino-
genic metabolites. Therefore, apurinic sites are potentially mutagenic if not faithfully
repaired [73–75] (Figure 4).

In contrast, with hydroxyestradiols, the inability of E2 to damage isolated calf thymus
DNA demonstrates that its metabolic conversion is a prerequisite to act as a DNA-damaging
agent. CE oxidation to quinones is maintained in homeostasis by phase II enzymes, thus
minimizing the production of reactive species. In extrahepatic tissues, CE is inactivated by
catechol-O-methyltransferase (COMT) [76]. Of note, the COMT inhibitor Ro41-0960 impairs
metoxilathion of catechol estrogens leading to a significant increase of depurinating DNA
adducts [77]. However, such a protective mechanism is reduced by the capability of E2 to
act as a COMT down-regulator inhibiting its promoter DNA methylation [78]. The level of
circulating CEQs is also regulated by the catalytic action of glutathione S-transferase GSTP1,
which conjugates CEQs with glutathione (GSH) [79]. Also, plant-derived polyphenols
(e.g., resveratrol) may act as protective agents against E2-metabolites. Resveratrol has
antioxidant activity, positively modulates phase II enzymes, and efficiently counteracts
E2-DNA adducts formation and neoplastic transformation of cultured normal epithelial
breast MCF-10F cells [80,81].
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Figure 4. Metabolic byproducts of 17β-estradiol (E2) exerting genotoxic effects. 17β-estradiol (E2) is converted by cyto-
chrome P450 (CYP)-dependent hydroxylation to 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2). CYP en-
zymes or peroxidases convert these substrates into semiquinones (SQ), which may react with O2 to generate superoxide 
radicals (OH•) that are highly reactive and induces proteins and lipids oxidation, DNA bases oxidation, and single-strand 
breaks (SSB). SQ can be also converted to quinones (Q) that can covalently bind DNA thus inducing DNA and/or chro-
mosomal damage. Overall, these events cause genome instability and cell transformation. For details, see the text. 

The E2-induced-DNA damage is not restricted to the above-mentioned DNA-ad-
ducts. Indeed, reactive oxygen species (ROS) produced during E2 metabolization are po-
tent inducers of oxidized bases (e.g., 8-hydroxy-2’-deoxyguanosine (8-OHdG), 5-hy-

Figure 4. Metabolic byproducts of 17β-estradiol (E2) exerting genotoxic effects. 17β-estradiol (E2) is converted by cy-
tochrome P450 (CYP)-dependent hydroxylation to 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2). CYP
enzymes or peroxidases convert these substrates into semiquinones (SQ), which may react with O2 to generate superoxide
radicals (OH•) that are highly reactive and induces proteins and lipids oxidation, DNA bases oxidation, and single-
strand breaks (SSB). SQ can be also converted to quinones (Q) that can covalently bind DNA thus inducing DNA and/or
chromosomal damage. Overall, these events cause genome instability and cell transformation. For details, see the text.
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These processes appear to be general as even male sex hormone androgen can induce 
DNA damage in prostate cells. This androgen-induced DNA damage can represent the 
mechanism producing specific genomic rearrangements typical of prostate cancer. In-
deed, androgen signaling in neoplastic prostate cells induces TOP2B-mediated DSBs at 
many genomic loci. Therefore, it is possible that multiple different enzymatic activities, 
including that of TOP2B in the case of androgen signaling and that of other nucleases in 
the case of high levels of exogenous genotoxic stress, can cooperate with androgen signal-
ing to generate recombinogenic DSB, the most frequent rearrangements found in prostate 
cancers [97]. 

Therefore, E2 can promote the formation of DNA lesions through the induction of 
transcription and DNA synthesis, which represent perturbating conditions of the replica-
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Figure 5. The interplay among E2, E2:ERα signaling and DNA damage, DNA damage response (DDR), and replication
stress response (RSR). For details, see the text. 17β-estradiol (E2); estrogen receptor α (ERα); catalytic subunit of DNA
protein kinases (DNA-PKcs); Ataxia Telangiectasia Mutated (ATM); Ataxia Telangiectasia and Rad3-Related Protein (ATR);
Checkpoint Kinase 1 (Chk1); Checkpoint Kinase 2 (Chk2).

The E2-induced-DNA damage is not restricted to the above-mentioned DNA-adducts.
Indeed, reactive oxygen species (ROS) produced during E2 metabolization are potent in-
ducers of oxidized bases (e.g., 8-hydroxy-2’-deoxyguanosine (8-OHdG), 5-hydroxymethyl-
2’-deoxyuridine (HMdU)) inducing DNA single-strand breaks (SSBs) (Figure 4). E2 metabo-
lites can also oxidize proteins and lipids [8]. In particular, poly-unsaturated lipids are easily
peroxidized and may give rise to aldehyde DNA adducts [82]. The cellular antioxidant
status following E2 exposure is modulated by ERα. MCF-7 cell treatment with 10 nM
E2 leads to a significant reduction of cell ability to metabolize peroxide. This reduction
reflects the decrease of catalase activity and glutathione levels as well as the increased
peroxide-induced DNA damage. In this experimental setting, E2 increased levels of glu-
tathione peroxide, SOD1 and SOD2 [83]. Recently, it has been reported that E2 is also able
to increase mitochondrial ROS production in MCF-7C cells [84].

Induction of SSBs, alkali labile sites, and oxidized purines has been documented
by COMET assay in both ERα-positive (MCF-7) and ERα-negative (MDA-MB-231) cells
exposed to E2 (10–1000 nM) and 4-OHE2 (4–100 nM) [85]. However, it should be considered
that the concentration of E2 used in this study exceeded physiological levels of the hormone
occurring in healthy women (1 nM) [85]. Nonetheless, in a previous publication [86], it was
demonstrated by COMET assay that 0.1 nM of E2 induced DNA damage and micronucleus
formation in MCF-7 cells.

E2 and E2 metabolites can also cause DNA DSBs in human ERα-positive and -negative
cells. Ten nanomolar E2 causes DSBs in proliferating ERα-negative epithelial MCF-10A
cells, in which BRCA1 plays a major role in DNA repair to prevent genomic instability [74].
Interestingly, BRCA1 acts also as a repressor of CYP1A1 transcription. E2-induced DSBs
do not only occur exclusively in the S-phase cells via a possible transcription-collision
mechanism but also in G0/G1-phase cells. This ERα-dependent mechanism observed in
MCF-7 cells [87] relies on the formation of abortive TOP2B catalysis generating pathological
stalled TOP2-adducts at transcriptional regulatory sequences (promoters and enhancers). If
adducts are not properly repaired by BRCA1, BRCA2, Mre11, and by the non-homologous
end joining (NHEJ) pathway, unrepaired DSBs occur [88]. Therefore, the mechanism for
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DSBs formation after E2 exposure may be dependent on replication-transcription collision
during S-phase or TOP2B-adducts throughout the cell cycle (see below) [88].

Therefore, E2 can induce DNA damage (i.e., DNA adducts, SSBs, DSBs) through the
hormone cellular metabolism, which determines either the production of intermediates
potentially causing damage to the DNA or the increase in ROS, which can be, directly and
indirectly, detrimental for genome integrity (Figure 4). However, under conditions where
the catechol pathway is balanced by the set of the above-mentioned protective enzymes,
the formation of ultimate carcinogenic metabolites of E2 is minimized; furthermore, be-
cause CEQs are rapidly cleared by the liver and kidneys their half-life is relatively low.
Nonetheless, mutations in the enzymes that control E2 metabolism have been shown to be
a carcinogen [89,90]. Therefore, E2 mainly acts as an epigenetic carcinogen by stimulating
abnormal cell proliferation via the engagement of the E2:ERα-mediated pathways [75].

The DNA damaging effect of E2 can occur independently on ERα via the metabolic-
produced carcinogens, as well as through the signaling activity of the E2:ERα complex.
Thus, both mechanisms can coexist and can contribute to E2-mediated carcinogenesis.

5.1.2. E2 as a Source of Replicative Stress

RS is characterized by DNA synthesis slow down and/or replication fork stalling/collapse
and is triggered by many endogenous or exogenous events, which interfere with DNA repli-
cation and hamper its progression.

In the early stages of tumorigenesis, genomic instability occurs because of oncogene-
induced RS. As outlined above, the E2:ERα-mediated pathways induce a dramatic increase
in transcription and DNA synthesis, all these conditions possibly contributing to the
E2-dependent induction of RS [91–94]. Accordingly, one model proposed to explain
E2-induced genome instability suggests that the unrestrained proliferation driven by
deregulation of genes such as cyclin D1 causes RS and DNA damage [7,11].

A second model that could explain RS in ERα-positive BC cells implies that the E2-
induced transcriptional burst can contribute to RS and genome instability through the
E2-dependent increase of co-transcriptional structures formed by RNA-DNA hybrids.
These structures consist of nascent transcript hybridized to template DNA and are named
R-loops [15]. They are frequently observed in mammalian genomes and are thought to play
regulatory roles influencing the chromatin architecture of gene promoters and facilitating
the transcription termination [95,96]. E2 treatment rapidly induces R-loops mostly at E2-
responsive genes, but DNA damage arises only when cells enter in the S-phase, indicating
that RNA-DNA hybrids hinder replication fork progression. This supports the association
between R-loop-dependent DNA damage and DNA replication [15]. Interestingly, it has
also been demonstrated that exposure to E2 induces γH2AX foci, a well-known marker
of DSBs, in ERα expressing BC cells and in an S-phase-dependent manner [10]. The
formation of γH2AX foci requires ERα and TOP2B and is inhibited by the DNA polymerase
inhibitor aphidicolin [10], thus indicating a direct correlation between DNA damage
and replication. Furthermore, γH2AX foci colocalize with Rad51, suggesting that the
homologous recombination (HR) repair pathway faces E2-induced DSBs. Accordingly,
E2-dependent ATR downregulation does not completely turn off the signaling involved in
the RSR [10] (Figure 5).

These processes appear to be general as even male sex hormone androgen can induce
DNA damage in prostate cells. This androgen-induced DNA damage can represent the
mechanism producing specific genomic rearrangements typical of prostate cancer. Indeed,
androgen signaling in neoplastic prostate cells induces TOP2B-mediated DSBs at many
genomic loci. Therefore, it is possible that multiple different enzymatic activities, includ-
ing that of TOP2B in the case of androgen signaling and that of other nucleases in the
case of high levels of exogenous genotoxic stress, can cooperate with androgen signaling
to generate recombinogenic DSB, the most frequent rearrangements found in prostate
cancers [97].
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Therefore, E2 can promote the formation of DNA lesions through the induction of
transcription and DNA synthesis, which represent perturbating conditions of the replica-
tive process. Moreover, the reported evidence together with the fact that also androgen
determines effects like those elicited by E2 strongly indicates that sex steroid hormones can
induce genome instability by interfering with the RSR repair systems.

5.2. The E2-Dependent Regulation of DDR and RSR Signaling

Direct links exist between the E2:ERα signaling and the cellular DDR and RSR signal-
ing (Figure 5).

5.2.1. The E2-Dependent Control of the DNA Damage Response Signaling

Because E2 can directly or indirectly cause DNA damage, one might expect that E2
would act as a hormone inducing the activation of the signaling pathways required to
repair DNA lesions.

Recent data have shown that ATM is negatively regulated by the E2:ERα com-
plex [7,10] through the upregulation of miRNA 18a and 106a expression, as demonstrated
by cellular models and clinical samples of BC [10] (Figure 5). This regulation, besides
other mechanisms, could explain the resistance of ERα-negative BC to chemotherapy and
radiotherapy. Indeed, the high levels of ATM in ERα-negative BC suggest that this DDR
kinase could represent an interesting drug target in ERα-negative BCs: the usage of specific
ATM inhibitors in combination with chemotherapeutic agents and/or radiotherapy might
achieve more effective clinical benefits as the treatment might enhance tumor sensitivity to
both chemotherapeutics and radiotherapy [10].

DNA-PK plays a central role in RNA polymerase-dependent transcription [98]. The
catalytic subunit Ku70/Ku80 of DNA-PK (DNA-PKcs) possesses a high affinity for DNA
ends and rapidly interacts with DNA after DSBs induction [99]. Of note, E2 promotes ERα
binding to Ku70, which contributes to the transcriptional functions of the receptor [100]
(Figure 5). DNA-PK phosphorylates the Ser118 residue located in ERα, thus, promoting
receptor stabilization and full transcriptional activity [100]. Noteworthy, not only ERα
is a target of DNA-PKcs but also DNA-PK is a target of ERα. Indeed, two ERα-binding
sites in a region upstream of the DNA-PKcs transcriptional initiation site are necessary
for the E2:ERα-dependent regulation of the DNA-PKcs levels [101]. Physiologically, it has
been proposed that DNA-PK could limit excess ERα degradation to balance the cellular
response to E2 stimulation. However, during pathophysiological conditions accompanied
by excessive E2 stimulation or during irradiation, this delicate balance can be altered [100].
Therefore, although it has been shown that E2:ERα negatively regulates ATM, these find-
ings raise the possibility that E2:ERα signaling could sustain proliferation by promoting
DNA-PK-mediated NHEJ to maintain genome integrity, rather than engaging the ATM-
dependent high-fidelity DNA repair mechanisms [100]. In this way, E2 could activate the
DDR pathway to protect the genome.

In addition, cyclin D1 is recruited by E2 to contribute to the regulation of the DDR
pathway via an extra-nuclear mechanism [61]. Thus, ERα-cyclin D1 binding at the cytoplas-
mic membrane augments AKT phosphorylation (Ser473) and γH2AX foci formation. In the
nucleus, cyclin D1 enhances homology-directed high-fidelity DNA repair [61]. Cyclin D1 is
also recruited to γH2AX foci by E2 and induces Rad51 expression [10]. Moreover, E2:ERα
signaling antagonizes the anti-proliferative and pro-apoptotic DDR signals in tumors. Thus,
ERα signaling can sustain proliferation in situations where otherwise DNA damage would
induce a cell cycle arrest and apoptosis [7].

5.2.2. The E2-Dependent Control of the Replicative Stress Response Signaling

RS activates a surveillance pathway known as the replication checkpoint [102] that
ensures replication completion and prevents replication fork breakage. ATR is the central
kinase of the replication checkpoint pathway (Figure 3). ATR and its partner ATRIP are
recruited to stalled replication fork by the accumulation of RPA on single-stranded DNA.
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Activation of ATR depends on TOPBP1, a protein recruited at single and double-stranded
DNA junctions by the 9-1-1 complex (i.e., RAD1, RAD9, and HUS1) and its clamp loader
RFCRAD178. Active ATR phosphorylates the effector kinase CHK1 at Ser317 and Ser345,
a process also mediated by clapsin, Timeless (TIM), and TIPIN [103–105]. When fully
activated, the ATR-CHK1 pathway regulates fork stabilization and restart and inhibits the
cells from entering into mitosis, thus allowing the completion of DNA replication [102]
(Figure 3).

Oncogene-induced RS not only contributes to cancer development by promoting
genomic instability but it activates replication checkpoints, which slow down cell prolifera-
tion and trigger anti-cancer mechanisms leading to apoptosis or senescence [91,106–108].
Therefore, in cancer cells, RS is accurately regulated and a delicate equilibrium between RS
occurrence and tolerance is achieved to sustain cancer progression.

To establish this subtle equilibrium, cells adapt to oncogene-induced RS avoiding
severe replicative defects through a fine modulation of the ATR-CHK1 checkpoint re-
sponse [109–111], E2 and ERα act as endogenous inhibitors of the ATR signaling cascade of
the G2/M cell cycle checkpoint [112,113] (Figure 5). Indeed, the E2:ERα complex rapidly
activates PI3K/AKT pathway and the resulting TOPBP1 phosphorylation reduces the
DNA damage-dependent ATR:TOPBP1 association and the ATR kinase activity [112]. The
E2:ERα-meditated AKT signaling also prevents the association of claspin and CHK1 lead-
ing to the inhibition of ATR-mediated CHK1 phosphorylation at Ser345 and promoting
AKT-mediated CHK1 phosphorylation at Ser280. The latter event results in CHK1 seques-
tration in the cytoplasm and in the consequent overcoming of the checkpoint barrier also
in the presence of RS [112].

In addition, their role in checkpoint signaling, clapsin, and TIM play also a role in
the maintenance of replication fork integrity [50,114,115] increasing the resistance to RS
and decreasing DDR signaling [116]. TIM expression in human BC positively correlates
with ERα. Recently, TIM has been proposed as a novel key ERα interactor that enhances
receptor transcriptional activity [117].

Therefore, it is not surprising that these factors are upregulated in many different types
of cancer and that their overexpression is associated with a bad prognosis in BC [118–120].
TIM has been proposed as a molecular marker for predicting the response of ERα-positive
postmenopausal BC to tamoxifen; moreover, TIM overexpression was associated with
significantly shorter relapse-free survival [121].

5.3. Essential Functional Role of DDR and RSR Signaling in the Regulation of E2:ERα-Dependent
Cell Proliferation

The available data demonstrate that E2 modulates in different manners the key regu-
lators of the DDR and RSR pathways. E2 negatively modulates ATM and has protective
effects against DNA damage and activates both DNA-PK and cyclin D1. On the contrary,
E2 appears to inhibit the ATR-CHK1 signaling cascade via ERα, thus, reducing the activity
of the RSR pathway (Figure 5).

The fact that E2 has a role both as a suppressor and as an inducer of the DDR and
the RSR signaling implicates that the E2:ERα complex plays a critical role in balancing
the proliferative and damaging stimuli induced by both the E2 chemical nature and the
functional ERα activity. Consequently, the proteins regulating DDR and RSR pathways
could provide selective proliferative advantages during BC progression.

DDR and RSR Pathways in ERα-Positive BC

To understand the impact of all the genes in the DDR and RSR pathways in BC cells, it
is possible to inspect the publicly available CRISPR/CAS9 “dropout” screenings databases
at the Broad and Welcome Sanger Institutes. These research centers evaluated the impact
of all the genes encoded by the human genome on cell survival and proliferation in diverse
cancer models including BC cells. These genome-wide loss-of-function screenings allow to
define all the genes (and, therefore, pathways) essential for cancer cell proliferation and,
in turn, to discover potential targets for cancer treatment (https://depmap.org/portal,

https://depmap.org/portal
https://score.depmap.sanger.ac.uk/
https://score.depmap.sanger.ac.uk/
https://score.depmap.sanger.ac.uk/
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https://score.depmap.sanger.ac.uk/, accessed on 29 March 2021; [122,123]). Salvati and
co-workers systematically interrogated both datasets to identify molecular signatures cor-
responding to deregulated pathways enriched in ERα-positive BC [124]. Per each dataset,
the authors considered the effect of the silencing of ~18,000 genes on the survival and
proliferation of 11 ERα-positive BC cell lines and found 960 common essential genes. The
subsequent functional annotation analysis revealed that those 960 common essential genes
significantly enriched in 17 canonical pathways including those termed “estrogen receptor
signaling”, “cell cycle control” and “assembly of RNA polymerase II complex” [124]. More-
over, their analysis revealed a critical functional role for “CHK proteins” and “G2/M DNA
damage checkpoint” regulation in ERα-positive BC cell survival and proliferation [124].
Remarkably, 10 out of 17 pathways (i.e., 58,8%) contained at least one gene (e.g., ATR,
CHK1, TOPBP1) involved in the control of genome integrity. This global view, together
with the previously reported evidence, demonstrates that ERα-positive BC cells not only
become addicted to the E2:ERα signaling, but also to the presence of the genes involved in
the DDR and RSR pathways.

These observations not only underscore a critical connection in the genes regulating
the interplay among E2:ERα, DDR, and RSR pathways but also implicate DDR and RSR
pathways in the E2:ERα-dependent control of cell proliferation and survival signaling in BC.

6. Discussion

The evidence summarized in this review indicates that E2 could act as a DNA dam-
aging agent. Indeed, E2 can directly induce DNA damage causing genome instability
via different mechanisms (i.e., E2-dependent metabolic by-products and E2:ERα activity)
(Figure 5) [8–10,15]. Moreover, E2 down-regulates key effectors of DDR exacerbating its
role as a DNA damaging inducer [10,112,125]. Although the E2:ERα complex can inhibit
the activation of general repair pathways such as the ATR and/or ATM-related signaling, it
can activate the DNA-PK pathway [100,112,126] (Figure 5). These contrasting results could
be reconciled by considering the possibility that the redundant DDR pathways regulated
by ATM, ATR, and DNA-PK could be part of the E2:ERα network. The strong waves
of gene transcription and DNA synthesis occurring soon after E2 administration to BC
cells [44,45] (Figure 2) could generate an RS (e.g., R-loops [15]). This stress affecting genome
integrity could be resolved by the activation of the DDR and RSR pathways balancing,
in a synchronized manner, the E2 transcriptional and replicative effects required for cell
proliferation with the potential E2-dependent DNA damaging effects [16,100,127,128]. The
potential detrimental effects of E2 during the hormone-induced physiological effects could
be counteracted by the modulation of DDR pathways [124].

Although from the physiological point of view, it is very difficult to reconcile the E2-
induced DNA damage with its well-known regulatory and beneficial effects, we propose a
three-step model to explain the hypothesis formulated here (Figure 6).

(1) Under physiological conditions, the E2-induced DNA damaging effects caused
by the activation of the E2:ERα signaling are buffered as mentioned above by the parallel
ability of E2 to protect the cells from DNA damage (Figure 6, green). E2 plasma levels
fluctuate in women in a range of concentrations between pM to nM [36]. Interestingly,
E2 can work as a direct carcinogen both at physiological (i.e., <1 nM or lower) and sup-
raphysiological (i.e., >1 µM) concentrations [85,86]. Therefore, it is tempting to speculate
that E2 does not induce genotoxic effects only during the ovulatory phase (i.e., 48–72 h at
1 nM) in which the hormone exerts its physiological effects. From the evolutionary point of
view, this assumption implies that rather than the chronic exposure to E2, the time of E2
administration is the critical parameter to achieve the maximal ERα functionality [37,43].

https://score.depmap.sanger.ac.uk/
https://score.depmap.sanger.ac.uk/
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this phase, besides the genes regulating cell cycle and cell proliferation, the resulting ERα-
positive transformed cells overexpress DDR proteins (e.g., ATR and CHK1, BRCA1, 
TOBP1, and claspin) [124]. 

(3) Under pathological conditions (Figure 6, red) resulting from the transformed 
background described in the previous phase, the increased level of E2 in women with BC 
[4–6] is counteracted by a hyperactive E2-induced DNA repair activity [7,10,61,100]. In 
turn, this allows E2:ERα signaling to sustain BC tumor progression and spreading. In sup-
port of the model shown in Figure 6, it is important to recall that the treatment of BC 
consists in the inhibition of E2:ERα signaling either by reducing the circulating plasma E2 
levels (i.e., ovariectomy, chemical castration, aromatase inhibitors treatment) or by inhib-
iting the ERα transcriptional activity [3,94]. 
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(2) In the initial phase of the E2-dependent cellular transformation (Figure 6, blue), the
hormone and its metabolites induce DNA damage [4–6,8,129,130]. In addition, increased
E2 plasma levels hyperactivate ERα-mediated transcriptional activity and DNA synthesis,
thus further contributing to the initiation of breast carcinogenesis [37,40–45]. In this phase,
besides the genes regulating cell cycle and cell proliferation, the resulting ERα-positive
transformed cells overexpress DDR proteins (e.g., ATR and CHK1, BRCA1, TOBP1, and
claspin) [124].

(3) Under pathological conditions (Figure 6, red) resulting from the transformed
background described in the previous phase, the increased level of E2 in women with
BC [4–6] is counteracted by a hyperactive E2-induced DNA repair activity [7,10,61,100].
In turn, this allows E2:ERα signaling to sustain BC tumor progression and spreading. In
support of the model shown in Figure 6, it is important to recall that the treatment of BC
consists in the inhibition of E2:ERα signaling either by reducing the circulating plasma
E2 levels (i.e., ovariectomy, chemical castration, aromatase inhibitors treatment) or by
inhibiting the ERα transcriptional activity [3,94].

7. Conclusions

DDR and RSR pathways are intrinsically connected with the activity of the E2:ERα
signaling in BC cells and could be targeted to hamper BC cell proliferation. In this respect,
it could be interesting to exploit the effect of specific inhibitors of the DDR kinases as novel
drugs to be administered either alone/in combination with classic ET drugs (e.g., 4OH-
Tam) or with novel compounds (e.g., CDK4/CDK6 inhibitors) used for the management of
metastatic BC.
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