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Abstract 

Background:  The tumor immunological microenvironment (TIME) has a prominent impact on prognosis and immu-
notherapy. However, the heterogeneous TIME and the mechanisms by which TIME affects immunotherapy have not 
been elucidated in hepatocellular carcinoma (HCC).

Methods:  A total of 2195 eligible HCC patients from TCGA and GEO database were collected. We comprehen-
sively explored the different heterogeneous TIME phenotypes and its clinical significance. The potential immune 
escape mechanisms and what genomic alterations may drive the formation of different phenotypes were further 
investigated.

Results:  We identified three phenotypes in HCC: TIME-1, the “immune-deficiency” phenotype, with immune cell 
depletion and proliferation; TIME-2, the “immune-suppressed” phenotype, with enrichment of immunosuppres-
sive cells; TIME-3, the “immune-activated phenotype”, with abundant leukocytes infiltration and immune activation. 
The prognosis and sensitivity to both sorafenib and immunotherapy differed among the three phenotypes. We also 
underlined the potential immune escape mechanisms: lack of leukocytes and defective tumor antigen presentation 
capacity in TIME-1, increased immunosuppressive cells in TIME-2, and rich in immunoinhibitory molecules in TIME-
3. The different phenotypes also demonstrated specific genomic events: TIME-1 characterized by TP53, CDKN2A, 
CTNNB1, AXIN1 and FOXD4 alterations; TIME-2 characterized by significant alteration patterns in the PI3K pathway; 
TIME-3 characterized by ARID1A mutation. Besides, the TIME index (TI) was proposed to quantify TIME infiltration 
pattern, and it was a superior prognostic and immunotherapy predictor. A pipeline was developed to classify single 
patient into one of these three subtypes and calculated the TI.

Conclusions:  We identified three TIME phenotypes with different clinical outcomes, immune escape mechanisms 
and genomic alterations in HCC, which could present strategies for improving the efficacy of immunotherapy. TI as 
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Background
Hepatocellular carcinoma (HCC) is the dominant histo-
logic type of primary liver cancer, with a high incidence 
and mortality rate [1]. Although there are various thera-
peutic modalities for HCC, including surgical resection, 
chemotherapy, radiofrequency ablation and liver trans-
plantation, its recurrence rate and prognosis remains 
unsatisfactory [2, 3]. Recently, immunotherapy has made 
great progress as a new treatment method in HCC. How-
ever, to date, this only benefited a subset of patients [4, 5]. 
The insufficient understanding of the tumor immunolog-
ical microenvironment (TIME) may be the main reason 
for disappointing results. At the individual level, HCC 
has significant TIME heterogeneity, and the comprehen-
sive understanding of the heterogeneity was crucial for 
clinical diagnosis, personalized treatment and prognosis 
prediction in HCC [6].

HCC is a typical inflammation-driven tumor, 
which  is  mainly  derived  from viral infections and liver 
fibrosis [7]. The transition from chronic hepatitis to HCC 
is accompanied by changes in local TIME [8]. Immune 
cells are the main components of TIME, and their num-
ber and status play a critical role in the progression of 
tumor development, invasion and metastasis. Previ-
ous researches have mainly focused on one or several 
immune cell types [9–12], which may bias the under-
standing of TIME due to the intensive cellular interaction 
between different cells. Hence, it is essential to be consid-
ered as a whole.

The rapid development of genomics and transcrip-
tomics has made it possible to systematically explore the 
TIME heterogeneity in HCC. In the present study, we col-
lected a total of 2,175 eligible samples from 15 cohorts, 
and combined with multi-omics data, hoping to explore 
different heterogeneous TIME phenotypes, further inves-
tigate the potential immune escape mechanisms of each 
TIME phenotype and what genomic alterations may 
lead to the formation of these different phenotypes. As a 
result, we successfully identified and validated three het-
erogeneous phenotypes based on the broad-spectrum 
immune cells in TIME. These three phenotypes exhibited 
different clinical outcomes, immune escape mechanisms 
and specific genomic alterations. In addition, the TIME 
index (TI) was developed to quantify TIME infiltration 
pattern, and it was a superior prognostic and immuno-
therapy predictor.

Methods
Data collecting and processing
The present workflow was shown in Additional file 1: Fig. 
S1. For the discovery cohorts, the HCC microarray data-
sets were recruited from the Gene Expression Omini-
bus (GEO) database with the following criteria: (1) only 
from Affymetrix platform; (2) primary liver cancer; (3) 
untreated patients; (4) the number of patients was ≥ 50; 
(5) with more than 12,000 protein coding genes. Finally, 
14 eligible datasets containing 1,821 patients were 
retrieved (Additional file  2: Table  S1). For the TCGA 
validation cohort, the TCGA-LIHC RNA-seq data was 
obtained from the UCSC Xena Portal. Please refer to 
Additional file  3: Materials and Methods for the data 
processing details. The corresponding clinical and sam-
ple information were obtained from the GEO and UCSC 
databases. For the TCGA-LIHC project, the somatic 
mutation data, copy number variation data, and DNA 
methylation data were obtained from the TCGA portal. 
In addition, we also downloaded the RNA-seq data and 
clinical information of the 32 other cancer types from the 
UCSC databases.

Integrated assessment of the TIME immune cell 
composition
In order to quantify the relative abundance of each 
immune cell population in TIME, we applied the single 
sample gene set enrichment analysis (ssGSEA) algorithm 
[13]. The gene sets for marking 24 immune cell types 
was recruited from Bindea et  al. study [14]. In order to 
ensure the rationality and robustness of the ssGSEA 
results, two different algorithms were utilized to further 
validate: CIBERSORT [15] and MCP-counter [16]. The 
details were described in Additional file 3: Materials and 
Methods.

Identification and validation of the TIME phenotypes
We used the ConsensusClusterPlus package to deter-
mine the optimum number of clusters in the GEO cohort 
[17]. The results were further detected using the cumu-
lative distribution function (CDF) curve, proportion of 
ambiguous clustering (PAC) score, and Nbclust [18]. To 
evaluate the reproducibility of the clusters generated 
from consensus clustering in the GEO cohort, the in-
group proportion (IGP) statistical analysis was employed 
to further validate the existence of these clusters in the 
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TCGA validation cohort [19]. The details were described 
in Additional file 3: Materials and Methods.

Gene set variation analysis (GSVA)
To further explore the potential biological function 
and progress variations of each phenotype, we con-
ducted the GSVA analysis via GSVA package [20]. The 
gene sets, including the Hallmark and KEGG gene sets, 
were derived from the Molecular Signatures Database 
(MSigDB). The limma package was implemented to iden-
tify the significantly altered pathways between each phe-
notype and the others with the following threshold: log 
FC > 0.2 and adjusted P-value < 0.05. The resulting P-val-
ues from Benjamini-Hochberg (BH) multi-test correction 
were adjusted for multiple comparisons using the false 
discovery rate (FDR).

Assessment of immunotherapy and sorafenib
The Tumor Immune Dysfunction and Exclusion (TIDE) 
web application (http://tide.dfci.harva​rd.edu) was 
employed to predict the immunotherapy response of 
each patient [21]. TIDE algorithm was a computational 
method to model two primary mechanisms of tumor 
immune evasion: the induction of T cell dysfunction in 
tumors with high infiltration of cytotoxic T lymphocytes 
(CTL) and the prevention of T cell infiltration in tumors 
with low CTL level. The Subclass Mapping (SubMap) 
method was utilized to evaluate the expression similar-
ity between the three phenotypes and the patients with 
different immunotherapy responses [22]. The SubMap 
employ GSEA algorithm to deduce the extent of com-
monality of the two groups. An adjust P-value < 0.05 
suggest the significant similarity between two groups. 
We further applied pRRophetic package to estimate the 
chemotherapeutic response of sorafenib, which fitted the 
ridge regression model based on baseline gene expression 
and drug sensitivity of the cell line, thus allowing the pre-
diction of the clinical chemotherapeutic response using 
only patients’ baseline gene expression data.

Analysis of immunogenomic features
We calculated or collected tumor mutation burden 
(TMB), SNV or Indel neoantigen load, aneuploidy scores 
(AS), homologous recombination defects (HRD) score, 
microsatellite instability (MSI), TCR or BCR diversity, 
cancer/testis-antigens (CTAs) level, antigen process-
ing and presenting machinery scores (APS), and MHC-
related molecules, in order to investigate the tumor 
immunogenicity of HCC. The details were described in 
Additional file 3: Materials and Methods.

Multi‑omics profiling of immunomodulators
A total of 62 immunomodulators (including 12 MHC 
class I genes, 11 MHC class II genes, 27 checkpoint stim-
ulator genes, and 12 checkpoint inhibitor genes) were 
recruited [23]. We investigated the multi-omics regu-
lation landscape (including genes expression, somatic 
mutation, copy number variation (CNV), DNA methyla-
tion and miRNA expression) of 62 immunomodulators 
in three phenotypes. The Kruskal–Wallis test was per-
formed for the mRNA expression, and Fisher’s test was 
performed for the somatic mutation and CNV of immu-
nomodulators. The adjusted P-values were acquired 
using the BH multi-test correction. To survey the cor-
relation between DNA methylation and gene expres-
sion of immunomodulators, each methylation site was 
matched to the corresponding gene. Most of the single 
genes had multiple methylation sites. In each phenotype, 
we assessed the Spearman’s correlation between each 
immunomodulator expression and all the correspond-
ing methylation sites. Subsequently, we obtained a single 
correlation value for every gene by averaging the corre-
sponding correlation coefficients. Next, we estimated the 
pattern that the miRNA modulated the immunomodu-
lator expression. The significant inversely correlative 
pairs of miRNA and immunomodulator were included 
(Spearman correlation ≤ -0.2 and BH-corrected P < 0.05) 
within each phenotype. Then, according to the predicted 
blinding targets for miRNA, these were curated from the 
miRDB database.

Driver mutation genes and mutation signatures
We utilized MutSigCV (version 1.41) to identify the sig-
nificantly mutated genes (SMGs) for three phenotypes 
of TCGA-LIHC cohort [24], and a q-value of < 0.05 was 
considered as the threshold. Subsequently, the Mutation-
alPatterns R package was applied to extract the mutation 
signatures of each phenotype [25]. The mutational signa-
tures can be extracted from mutation count matrix using 
non-negative matrix factorization (NMF). The optimal 
factorization rank, which was the number of mutational 
signatures, can be determined using the NMF package. 
After calculating the pairwise cosine similarity between 
the extracted mutation signatures and the 30 COSMIC 
signatures previously reported (http://cance​r.sange​r.ac.
uk/cosmi​c/signa​tures​), these extracted mutation signa-
tures were then named based on the COSMIC signature.

Copy number variations
The TCGAbiolinks R package was used to download the 
CNV data based on the segment mean value (log2(copy-
number/2)) obtained from TCGA database. The ABSO-
LUTE algorithm was implemented to estimate tumor 
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ploidy for each sample [26]. To quantify the overall frac-
tion of genomic alteration in three phenotypes, we cal-
culated the fraction of genome alteration (FGA), fraction 
of genome gained (FGG), and fraction of genome lost 
(FGL). The FGA for a sample was defined as the ratio 
of the number of bases with CNVs to the number of all 
bases. The FGG or FGL considered only CNVs that were 
gained or lost. The GISTIC 2.0 was applied to define the 
recurrently amplified and deleted regions of each pheno-
type [27].

Methylation profiling
We downloaded the HumanMethylation450 array for 
HCC in TCGA. The global methylation level (GML) was 
estimated through averaged beta values of the specific 
probes, as described by Jung et al. [28]. The CD8+ T cell 
infiltrate status and proliferation score were both derived 
from Thorsson et al. study [23]. For each phenotype, we 
identified the epigenetically silenced genes (ESGs) using 
the following criteria: (1) excluding the CpG sites methyl-
ated in normal tissues (mean β-value of > 0.2) or less than 
10% of the tumor samples; (2) the DNA methylation data 
was divided into the methylation group and unmethyla-
tion group, according to the cutoff (β-value = 0.3); (3) for 
each probe, if the difference between the correspond-
ing gene mean expression in the unmethylated group 
and that in the methylated group was > 1.64 standard 
deviations of the unmethylated group, the probe would 
be labeled as epigenetically silenced; (4) when multiple 
probes were assigned to the same gene, the gene with 
more than half of the corresponding probes were labeled 
as epigenetically silenced, and identified as ESG.

TIME index
We applied the limma package to identify the differ-
entially expressed genes (DEGs) between each pheno-
type and the others using the following thresholds: |log 
FC|> 1.5 and adjusted P-value < 0.05. Based on these 
DEGs, ssGSEA was performed to obtain the TIME index 
(TI) for each patient. Then, we assessed the prognostic 
value of TI in both the HCC and pancancer cohort. The 
performance of TI in predicting the response to immu-
notherapy was further evaluated in six pre-treatment 
melanoma cohorts with the gene expression profile and 
immunotherapy information (Additional file 3: Materials 
and Methods). The immunotherapy response prediction 
accuracy of the TI was compared with 11 other known 
biomarkers (CD274, PDCD1, CTLA4, CD8, TMB, T 
cell clonality, B cell clonality, TIDE, MSI Score, cytol-
ytic activity (CYT)and APS; the details were described in 
Additional file 3: Materials and Methods). The area under 
the ROC curve was used as the quality metric of predic-
tion. In addition, based on the nearest centroid method 

and Pearson’s correlation, we developed a pipeline to 
classify single patient into one of these three subtypes 
and calculated the TI (https​://githu​b.com/Zaoqu​-Liu/
TIME).

Results
Immune cell infiltration patterns of TIME
We applied the ssGSEA method to assess the infiltration 
abundance of 24 immune cell types for 1821 HCC sam-
ples. The correlation between these immune cells was 
presented in Additional file 1: Fig. S1A. It was observed 
that several pairs strongly correlated with immune cells, 
such as T cell-cytotoxic cells, B cell-T cells and mac-
rophage-immature DC cells. Subsequently, we performed 
a consensus cluster analysis, in which all HCC samples 
were initially grouped into different k (k = 2–9) clusters. 
The CDF curves of the consensus score and PAC value 
suggested that the optimal division was achieved when 
k = 3 (Fig.  2a–c). The same result was obtained from 
NbClust (Additional file  1: Fig. S1B). The three clusters 
of samples were separated from each other on the two-
dimensional principle component plot (Fig.  1d). Thus, 
based on the infiltration profiles of 24 immune cells in 
TIME, 1,821 HCC samples were finally classified into 
three TIME phenotypes (TIME-1 = 721, TIME-2 = 530, 
TIME-3 = 570). As shown in Fig. 1e, f, TIME-1 presented 
as an immune deficiency phenotype due to the lowest 
infiltration in almost all immune cells. On the contrary, 
it was found that TIME-3 had a significantly higher infil-
tration level in the majority of immune cells, especially 
adaptive immune cells (e.g. CD8+ T cells and B cells), 
suggesting that TIME-3 was associated with immune 
activation and superior cytotoxic potential. TIME-2 was 
in an intermediate status of immune infiltration between 
TIME-1 and TIME-3, and was characterized by higher 
infiltration immunosuppressive cells that contain Treg 
and TH17. In addition, it was also observed that there 
was a richer infiltration in some innate immune cells that 
contain DC and NK cells in TIME-2. Two other differ-
ent algorithms were further applied: CIBERSORT and 
MCP-counter. The results shared a consistent immune 
infiltration pattern with the ssGSEA method in HCC 
(Additional file 1: Fig. S1C, D).

In order to ensure the reproducibility and robustness 
of the TIME phenotypes derived from the GEO cohort, 
we further conducted the IGP statistical method to 
validate the TIME phenotypes in the TCGA cohort. 
The three phenotypes were highly consistent between 
the discovery and validation cohorts, with the cor-
responding IGP values at 95.6%, 93.3% and 94.7%, 
respectively, and the three phenotypes were deemed to 
be of high-quality due to the statistically significance 
(all, P < 0.001). The immune cells infiltration patterns 

https://github.com/Zaoqu-Liu/TIME
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in the TCGA cohort exhibited a very similar pattern 
of immune infiltration to the GEO cohort (Additional 
file 1: Fig. S1E, F). Furthermore, the NbClust also indi-
cated that the three clusters configuration was “opti-
mal” in the TCGA cohort (Additional file 1: Fig. S1G).

Specific functional pathways of each TIME phenotype
We further explored the specific functional status and 
biological mechanisms of each phenotype in the GEO 
cohort (Fig. 2g and Additional file 2: Table S2). TIME-1 
was prominently enriched in pathways, such as Myc 

Fig. 1  Workflow of our research
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targets, G2M checkpoint, and DNA repair. These path-
ways were remarkably associated with MKI67, and 
thereby with proliferation (Fig. 2h). Furthermore, it was 
observed that the immune-relevant pathways were sig-
nificantly downregulated in TIME-1 (Additional file  2: 
Table S2). Combined with the lack of immune cell infil-
tration, we inferred that TIME-1 may present an immune 
deficiency phenotype. On the contrary, TIME-3 enriched 
intensive pathways related to immune activation, and 
these pathways had a remarkably positive association 
with the immune score assessed through the ESTIMATE 
algorithm [29] (Fig.  2i), suggesting that TIME-3 may 
exhibit a state of immune activation. Notably, TIME-2 
was significantly upregulated in metabolic-relevant path-
ways. It was observed that there was significantly nega-
tive correlation between the immune score and these 
specifically activated pathways in TIME-2 (Fig. 2i). More-
over, TIME-2 was rich in immunosuppressive cells (e.g., 
TH17 cell and Treg), which is known from the previ-
ous descriptions. Hence, it was concluded that TIME-2 
may present as an immune-suppressed phenotype. The 
KEGG results was in accordance with the above (Fig. 2j 
and Additional file 2: Table S3), and similar results were 
achieved in the TCGA cohort (Additional file  4: Fig. 
S2A, B and Additional file  2: Table  S4, S5). Overall, we 
identified three TIME phenotypes in HCC showing sig-
nificantly different immune cell infiltration and biologi-
cal functions, respectively. TIME-1 was categorized as an 
immune-deficiency phenotype, characterized by immune 
cell depletion and proliferation; TIME-2 was categorized 
as an immune-suppressed phenotype, characterized by 
enrichment of immunosuppressive cells; TIME-3 was 
categorized as an immune-activated phenotype, charac-
terized by abundant leukocytes infiltration and immune 
activation.

The clinical value of TIME phenotypes
We explored the prognostic value in the two independ-
ent cohorts (TCGA-LIHC and NCI cohort), which con-
tained the complete overall survival (OS) and relapse free 

survival (RFS) information. The Kaplan–Meier analysis 
of both OS and RFS exhibited that HCC patients had an 
increasingly favorable prognosis from TIME-1 to TIME-3 
(Fig.  3a–d). Furthermore, we assessed the sensitivity to 
sorafenib in TIME phenotypes by the pRRophetic pack-
age. TIME-1 was found to be more sensitive to sorafenib 
than the other phenotypes (Fig. 3e and Additional file 5: 
Fig. S3A). Notably, TIME-1 exhibited the highest expres-
sion in sorafenib related target genes (Fig. 3f ). Therefore, 
this suggested that patients in TIME-1 may benefit from 
sorafenib the most. As formerly mentioned, TIME-3 had 
higher levels of immune cell infiltration abundance (e.g. 
CD8+ T cells). Hence, we speculated that patients in 
TIME-3 might be more responsive to immunotherapy. 
The TIDE algorithm was applied to infer the response 
to immunotherapy. As respected, TIME-3 had a higher 
response rate than the other phenotypes (Fisher’s exact 
test: P = 0.009) in the GEO cohort (Fig. 3g), and consist-
ent results was found in the TCGA cohort (Fisher’s exact 
test: P = 0.048) (Additional file 5: Fig. S3B). We also uti-
lized the submap algorithm to compare the similarity of 
the expression profiles between the three TIME pheno-
types and 47 previous melanoma patients with detailed 
immunotherapeutic information, and revealed that 
patients in TIME-3 were more responsive to anti-PD1 
treatment (Bonferroni corrected P = 0.008)[30] (Fig. 3h). 
The submap analysis on the TCGA cohort also achieved 
similar results (Additional file 5: Fig. S3C).

Potential extrinsic immune escape mechanism
To further research the regulatory mechanisms of the 
TIME phenotypes, we focused on the TCGA cohort, 
which possessed multiple omics data and comprehensive 
clinical data.

We firstly investigated the extrinsic immune escape 
mechanisms. Previous studies indicated that extrinsic 
immune escape may include three major aspects: absence 
of leukocytes, presence of immunosuppressive cells, 
and release of abundant immunosuppressive cytokines 
[31, 32]. As described above, TIME-1 was characterized 

(See figure on next page.)
Fig. 2  The immune cells infiltration and biological function landscape of the TIME phenotypes. a The consensus score matrix of all samples when 
k = 3. A higher consensus score between two samples indicates they are more likely to be grouped into the same cluster in different iterations. b 
The cumulative distribution functions of consensus matrix for each k (indicated by colors). c The proportion of ambiguous clustering (PAC) score, 
a low value of PAC implies a flat middle segment, allowing conjecture of the optimal k (k = 3) by the lowest PAC. d two-dimensional principle 
component plot by infiltration profile of 24 immune cell subsets. Each point represents a single sample, with different colors indicating the TIME 
phenotypes. e The infiltration abundance of 24 immune cell subsets evaluated by ssGSEA algorithm for three TIME phenotypes in the GEO cohort. 
f The differences of 24 immune cell subsets infiltration among three TIME phenotypes in the GEO cohort. g The activation states of Hallmark 
pathways of distinct TIME phenotypes in the GEO cohort. h Spearman correlation of specific Hallmark pathways in TIME-2 with MKI67 (*P < 0.05). 
i Spearman correlation between specific Hallmark pathways in three TIME phenotypes and immune score assessed by ESTIMATE algorithm. j The 
activation states of KEGG pathways of distinct TIME phenotypes in the GEO cohort. For the boxplot, the asterisks represented the statistical p value 
(*P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001)
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by deficient immune cell infiltration and then lack of 
immune mediated elimination. TIME-2 was character-
ized by higher levels of immunosuppressive cells (e.g. 
TH17 cell and Treg; Additional file 6: Fig. S4A, B), which 
indicated a role of immunosuppressive cells in immune 

escape. In addition, TIME-2 lacked immune active cells 
(e.g. CD8+ T cells). Therefore, it was speculated that 
TIME-1 and TIME-2 probably reflect the absence of 
recruitment or activation of innate immune cells, induc-
ing failure of adaptive anti-tumor immune responses. 
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The low expression of molecules in TIME-1 and TIME-2, 
such as AIM2, TLR7 and TLR8, was potentially involved 
in priming of innate immunity, which further confirmed 
our speculation (Fig.  4a). TIME-3 was characterized by 
the presence of abundant innate and adaptive immune 
cells. In addition, TIME-3 had a higher expression of both 
immunostimulatory and immunoinhibitory cytokines, 
while these cytokines were all relatively low in TIME-1 
and TIME-2 (Additional file  6: Fig. S4C). These results 
implied that high concentrations of immunoinhibitory 
cytokines might contribute to the immune escape in 
TIME-3. It was noteworthy that the differential expres-
sion of cytokines in these three phenotypes could not 
be explained by the CNV and mutation frequency (all, 
P > 0.05; Additional file 2: Table S6). Overall, our analysis 
revealed that the extrinsic immune escape mechanisms 
of three phenotypes were lack of tumor-infiltrating leu-
kocytes, increased immunosuppressive cells, and rich in 
immunoinhibitory cytokines, respectively.

Potential intrinsic immune escape mechanism
We further explored the potential intrinsic immune 
escape mechanisms in two major facets: tumor 
immunogenicity and the expression level of immune 

checkpoint molecules [33]. First, a series of elements 
associated with tumor immunogenicity were esti-
mated: genomic instability degree, neoantigen burden, 
genomic viral content, CTA level, and tumor antigen 
presentation competence [34]. The first four elements 
were the main source of tumor-specific antigens. It was 
found that the genomic instability degree presented a 
decreasing trend from TIME-1 to TIME-3 (HRD, AS 
and MSI; all, P < 0.05; Fig.  4b–d). Similarly, TIME-3 
had a lower TMB, when compared to TIME-2 (P < 0.05, 
Fig. 4e). In terms of genomic viral content, TIME-3 had 
more HBV read counts than TIME-1 (mean viral read 
counts, 44.365 vs. 20.907, P < 0.05; Additional file 6: Fig. 
S4D), in contrast to the HCV read counts (mean viral 
read counts, 12.931 vs. 16.111, P < 0.1; Additional file 6: 
Fig. S4E). Of note, the neoantigen burden was relatively 
lower in TIME-3, although the statistical difference 
among the three phenotypes in SNV or indel neoan-
tigens was not reached (Additional file  6: Fig. S4F, G). 
There was also not distinct variation among the CTAs 
overall expression of the three phenotypes (Additional 
file  6: Fig. S4H). Overall, these above indicators had 
little difference in the TIME phenotypes. We further 
investigated the tumor antigen presentation capacity 

Fig. 3  The clinical significance of the TIME phenotypes. a, b Kaplan–Meier curves for OS (a) and RFS (b) among three TIME phenotypes in the TCGA 
cohort. c, d Kaplan–Meier curves for OS (c) and RFS (d) among three TIME phenotypes in the NCI cohort. e Distribution of the estimated IC50 of 
sorafenib among three TIME phenotypes in GEO cohort. f The expression of sorafenib-related targets in three TIME phenotypes. g Distribution of 
the immunotherapy response results predicted by TIDE algorithm among three TIME phenotypes in the GEO cohort. h Submap analysis of the GEO 
cohort and 47 previous melanoma patients with detailed immunotherapeutic information. For the boxplot, the asterisks represented the statistical 
p value (*P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001)
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of the three phenotypes, and observed that TIME-3 
had the highest APS and MHC-related molecules 
expression level, as opposed to TIME-1 (all, P < 0.01; 
Additional file 6: Fig. S4I and Fig. 4f ), which was con-
sistent with the CYT value and BCR/TCR diversity (all, 
P < 0.05; Fig. 4g–i and Additional file 6: Fig. S4J, K). This 
indicated that defective tumor antigen presentation 
capacity may be an intrinsic immune escape mecha-
nism for TIME-1.

Subsequently, the genomic alterations of 62 immu-
nomodulators were further summarized within the 
three TIME phenotypes (Fig.  4f ). It was found that 
TIME-3 had higher costimulatory and coinhibitory mol-
ecules than the other phenotypes. This suggested that 
TIME-3 may overexpress the immune checkpoint mol-
ecules (such as CTLA4, CD274 and PDCD1; all BH-
adjusted P < 0.001) to evade the immune elimination after 
immune activation. All somatic mutations and CNVs 

Fig. 4  Potential immune escape mechanisms of each phenotype. a The mRNA expression of molecules potentially involved in priming of 
innate immunity. The distribution of HRD (b), AS (c), MSI score (d), and TMB (e) in three TIME phenotypes. f, From left to right: mRNA expression 
(z-score), mutation frequency, amplification frequency, deletion frequency, and expression versus methylation (gene expression correlation with 
DNA-methylation beta-value) for 62 immunomodulators in the TIME phenotypes. The distribution of CYT value (g), BCR diversity (h), and TCR 
diversity (i) in three TIME phenotypes. j Regulation of immunomodulators by miRNA. Associations are shown between commonly implicated 
miRNAs and immunomodulators for each TIME phenotype. All associations shown represent BH-adjusted p-value < 0.05 and Spearman 
correlation ≤ -0.2; each miRNA included is negatively correlated with a gene for which it is predicted to bind in miRDB. For the boxplot, the asterisks 
represented the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001). For the heatmap, the asterisks represented the 
statistical p value (*P < 0.05, **P < 0.01, *** P < 0.001)
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did not significantly differ among the three phenotypes, 
and most of immunomodulators exhibited rare somatic 
mutations and CNVs, which indicated that the mutations 
and CNVs in the immunomodulators had little effect on 
TIME. Of note, DNA methylation negatively regulated 
many immunomodulators, such as CD27, CD226 and 
TNFSF8, implying epigenetic silencing. The associations 
were shown between miRNAs and immunomodulators 
for each TIME phenotype (BH corrected P-value < 0.05; 
Fig. 4j), such as miR-17 negative correlated with CD274 
and PDCD1LG2. It was also observed that the three phe-
notypes shared a common TNFSF4 negative regulator: 
miR-204. Compared with the mutation and CNV, meth-
ylation modification and miRNA sponges played leading 
roles in regulating the immunomodulators, indicating a 
new perspective for the development of immune check-
point inhibitors.

Genomic alterations of the three TIME phenotypes
We separately determined the SMGs among the three 
phenotypes using MutSigCV (Fig.  5a). All SMGs had 
mutation rates greater than 5% in three phenotypes. 
Among these three TIME phenotypes, the common 
SMGs (including TP53, CTNNB1 and ALB) had the 
top three significant MutSigCV q-value and frequent 
mutation rates, indicating that the mutation of TP53, 
CTNNB1 and ALB was broad in HCC. Additionally, the 
three phenotypes also displayed distinct SMGs, such as 
RB1, ACVR2A and CREB3L3 were SMGs of the three 
phenotypes, respectively. Besides, two newly identi-
fied SMGs, namely, BRD7 and RASA1, were classified 
as tumor suppressor genes, and these were associated 
with chromosome remodeling and cell proliferation [35, 
36]. Based on the NMF, we isolated the mutation signa-
tures of each phenotype. The age-related mutational pro-
cesses (spontaneous deamination of 5-methylcytosine for 
signature 1 and unknow aetiology for signature 5) were 
prevalent in three phenotypes (Fig. 5b). TIME-1 had the 
least proportion than the other phenotypes (Fig.  5c). In 
addition, the three phenotypes also shared a common 
mutation profile (signature 22) associated with expo-
sures to aristolochic acid. This may be associated with 
high-proportioned Asian patients in three phenotypes 
(Additional file 7: Fig. S5A), and the aristolochic acid was 
mainly derived from herbal drugs of traditional Asian 
medicine [37]. Notably, signature 24, which represented 
the mutational pattern related with aflatoxin, was identi-
fied only in TIME-1, and possessed the maximum pro-
portion (40.4%) (Fig. 5c). This implied that HCC patients 
in TIME-1 were more likely to be exposed to aflatoxin.

Tumor ploidy was estimated by ABSOLUTE, suggest-
ing that a larger scale of HCC presented genome dou-
bling, and that the doubling pattern was more frequent in 

TIME-1 compared with the other phenotypes (P = 0.018, 
Additional file  7: Fig. S5B). As shown in Fig.  4d–f, the 
FGA, FGG and FGL in TIME-1 were significantly higher 
than the other phenotypes, which might promote the 
cell proliferation and immune escape [38]. We further 
applied GISTIC 2.0 to delineate the significant focal 
copy number alterations of each phenotype (Fig. 5g and 
Additional file  2: Table  S7). CNVs that were recurrent 
in TIME-1 contained the focal amplification of 8q24.21 
(MYC, ANXA13) and 13q34 (CDC16, TFDP1), and the 
focal loss of 14q22.1 (SAV1). Recurring focal arms CNVs 
in TIME-2 included the only amplification of 6p21.1 
(VEGFA), and the loss of 13q13.3 (CCNV1). The genes 
on the focal loss arms of TIME-1 and TIME-2 were 
mainly associated with chemokines and cytokine through 
the GO annotation. Hence, the loss of these genes may 
contribute to the low immune infiltration of TIME-1 and 
TIME-2. TIME-3 exhibited the focal amplification that 
involved 8q24.12 (MTBP) and the focal deletion that 
involved 5q13.2 (TERT) and 10q23.31 (PTEN). These 
phenotype-special CNVs may play a crucial role in the 
biological features of the three phenotypes.

Furthermore, the combination of mutation and CNV 
data revealed the frequent alterations in different path-
ways (Fig. 5h). It was found that some genome alterations 
distributed evenly in these three phenotypes, such as 
TP53, CTNNB1 and ALB. In addition to these common 
alterations, we also observed the diverse alteration pat-
terns in the pathways among three phenotypes. In TIME-
1, cell cycle regulatory factor CDKN2A mutated in 12% 
of the cases. In TIME-2, VEGFA and its downstream 
genes PIC3KA and PTEN were frequently altered, and 
all of which were known to activate the PI3K pathway. 
APOB consumes an abundant cellular energy to facili-
tate very low-density lipoprotein (VLDL) secretion, and 
we found that APOB was frequently altered in 19% of the 
cases for TIME-2. Overall, the diverse genomic altera-
tion preferences in three phenotypes might contribute to 
shape the TIME, and lead to differences in immune cell 
infiltration.

Methylation modification and regulation of the TIME 
phenotypes
As tumor cells divide, the loss of global methylation levels 
(GMLs) can result in chromosomal instability, and affect 
immune cell infiltration [39–41]. The GMLs in TIME-3 
was significantly higher than the other phenotypes 
(P < 0.001, Fig. 6a). Furthermore, there was a positive cor-
relation between tumor-infiltrating CD8+ T cells and 
GMLs (Fig. 6b). In contrast, the decrease in GML might 
promote tumor cell proliferation (Fig. 6c). Subsequently, 
we identified 31, 25 and 39 ESGs in TIME-1, TIME-2 
and TIME-3, respectively (Additional file 2: Table S8 and 
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Fig. 5  Genomic alterations of the TIME phenotypes. a Significantly mutated genes (SMGs) in three TIME phenotypes. b Mutation signatures 
extracted from three TIME phenotypes. c The pie chart shows the proportion of mutation signatures in three TIME phenotypes. The distribution of 
FGA (d), FGG (e) and FGL (f) in three TIME phenotypes. g Gain (red) or loss (blue) frequencies of copy number variations (CNVs) in the autosomes 
of HCC patients. h Integrated molecular comparison of genomic alterations in signaling pathways across the TIME phenotypes. Each gene box 
includes three percentages representing the frequency of activation or inactivation in TIME-1, 2, and 3. All changes are tallied together in calculating 
the percentages of altered cases within each TIME phenotype. Genomic alterations include mutations and copy-number changes. Missense 
mutations are only counted if they have known oncogenic function, have been reported in COSMIC, or occur at known mutational hotspots. Genes 
are grouped by signaling pathways, with edges showing pairwise molecular interactions. For the boxplot, the asterisks represented the statistical p 
value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001)
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Fig. 6d, e). It was noted that CPS1, FURIN and PHYHD1 
were shared by the three phenotypes. As a liver-specific 
enzyme, CPS1 can facilitate cell division by instituting the 
pyrimidine synthesis pathway [42]. In TIME-1, FOXD4 
was marked as epigenetically silenced in 85% of the cases, 
and its methylation silencing may lead to immune system 
dysfunction and tumor proliferation [43] (Fig. 6f ). Tumor 
suppressors L1TD1 and PARP6, also the specific ESGs of 
TIME-1, and their methylation may promote tumor pro-
liferation and low immune infiltration [44, 45] (Fig.  6g, 
h). SEMA3B belonged to the ESG of TIME-2, and its 
methylation can accelerate the progression of HCC [46]. 
FER1L is an another ESG of TIME-2, which can activate 
the PI3K/AKT pathway, further leading to the formation 

of the immunosuppressive microenvironment [47]. These 
results suggested that ESGs exhibit diversity among the 
three phenotypes, which may be involved in shaping the 
TIME, and these specific ESGs may also be potential 
therapeutic targets.

A robust prognostic and immunotherapy signature: TIME 
index
We identified 98 phenotype-related DEGs (Additional 
file  2: Table  S9). These genes, which significantly var-
ied within the three phenotypes, possibly contributed 
to form the heterogenous TIME of HCC. In addition, 
many genes have been reported to be critical in immune 
response, such as CD27, CD8A, GZMA and IL7R 

Fig. 6  Methylation modification and regulation of the TIME phenotypes. a The distribution of global methylation level in three TIME phenotypes. 
Correlation of GML with CD8 T cells (b) and proliferation score (c). d The epigenetically silenced genes (ESGs) in three TIME phenotypes. Correlation 
of global methylation level (GML) with CD8 T cells and proliferation score. e The number of ESGs in three TIME phenotypes. f Differences in CD8 T 
cells and proliferation scores between FOXD4 methylated and FOXD4 unmethylated groups. g Differences in CD8 T cells and proliferation scores 
between L1TD1 methylated and L1TD1 unmethylated groups. h Differences in CD8 T cells and proliferation scores between PARP6 methylated 
and PARP6 unmethylated groups. For the boxplot, the asterisks represented the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** 
P < 0.0001)
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[48–51]. The GO and KEGG annotation also dis-
played intensive immune phenotypes (Additional file  2: 
Table S10, S11, Additional file 8: Fig. S6A, B). Based on 
these DEGs, the ssGSEA was performed to obtain the TI 
of each patient. The TI presented a gradual increase from 
TIME1 to TIME3 (Fig. 7a, b). HCC patients with low TI 
were mainly distributed in TIME-1 (Fig.  7C). Accord-
ing to the optimal cut-off determined by the survminer 
package, we classified HCC patients into high and low 
TI groups. As expected, patients in the high TI group 
exhibited a tendency to better outcomes in the two inde-
pendent cohort (Log-rank P < 0.001, Fig.  7d, e). Besides, 
the multivariable Cox regression revealed that the TI was 
an independently prognostic factor in HCC (P = 0.018, 
Additional file  2: Table  S12). We further assessed the 
TI of 10,121 patients that involved 33 differing types of 
cancers. Obvious TI diversity was observed in different 
cancers (Fig.  7f ), which indicated that heterogeneous 
immune infiltration existed not only within the tumor, 
but also between tumors. The survival analysis for pan-
cancer indicated that patients with a higher TI had a bet-
ter prognosis (Log-rank P < 0.001, Fig.  7g) and that the 
TI could independently affect the prognosis in the mul-
tivariable Cox regression (P = 0.006, Additional file  2: 
Table S12). Furthermore, it was found that 24 of 33 can-
cers presented a statistical significance in the Kaplan–
Meier analysis (Additional file 9: Fig. S7), and univariate 
Cox’s regression indicated that the TI was a protective 
factor in many different tumors (Fig. 7h).

We further explored the predictive ability of the TI 
for immunotherapy. In order to determine the predic-
tive power, we also computed the response prediction 
of 11 other known biomarkers. The area under the ROC 
curve (AUC) was used as the quality metric of predic-
tion. We found that the TI exhibited robust predictions 
in the six cohorts (Fig.  7i). Especially in the Riaz et  al. 
cohort, the TI reached the highest prediction accuracy 
with AUC = 0.955. It was also observed that although the 
AUC value of TI in the Liu et al. cohort was less than 0.7, 
this was still the highest, when compared to the other 
markers. In addition, the TI displayed the highest mean 
AUC value compared with the other biomarkers (Fig. 7j). 
Hence, the present work strongly suggests that the TI 
was a potential and robust biomarker for the prognosis 
and clinical response assessment of immunotherapy.

In addition, to advance clinical application, we devel-
oped a R package termed “TIME” in the GitHub web-
site (https​://githu​b.com/Zaoqu​-Liu/TIME). The pipeline 
could classify single patient into one of these three sub-
types and calculated the TI.

Discussion
The hepatocellular carcinoma (HCC) ecosystem is 
diverse, complex and dynamic in nature, and is mainly 
composed of tumor cells and immune cells [52]. Immune 
cells are the main components of TIME, and their num-
ber and status play a crucial role in the progression of 
tumor development, invasion and metastasis. To the best 
of our knowledge, the present study is the first to sys-
tematically investigate the heterogeneity of TIME from 
the dimension of broad-spectrum immune cells, and 
comprehensively explore the potential immune escape 
mechanisms and specific genomic alterations of differ-
ent TIME phenotypes. In addition, the TI was proposed 
to quantify TIME infiltration pattern, and it was also a 
superior prognostic and immunotherapy predictor. These 
results can enhance the understanding of TIME, and 
guide more effective personalized immunotherapies.

As described, TIME-1 was characterized by immune 
cell depletion and proliferation, corresponding to the 
immune-deficiency phenotype, TIME-2 was character-
ized by enrichment of immunosuppressive cells, cor-
responding to the immune-suppressed phenotype, and 
TIME-3 was characterized by abundant immune cell 
infiltration and immune activation, corresponding to 
immune-activated phenotype. We underlined the poten-
tial immune escape mechanism of each phenotype: lack 
of leukocytes and defective tumor antigen presentation 
capacity in TIME-1, increased immunosuppressive cells 
in TIME-2, and rich in immunoinhibitory molecules 
in TIME-3. The distinct immune escape mechanism 
among TIME phenotypes could provide strategies for 
improving the efficacy of HCC immunotherapy. In addi-
tion, it was also found that methylation modification and 
miRNA sponges may play leading roles in regulating the 
immunomodulator expression, when compared to muta-
tions and CNVs, suggesting that the development of 
ICIs should consider the methylation modification and 
miRNA regulation of immunomodulators.

Fig. 7  The distribution and clinical significance of TIME index (TI). The TI distribution of three TIME phenotypes in the TCGA cohort (a) and NCI 
cohort (b). c Alluvial diagram showing the changes of TI and the three TIME phenotypes. Kaplan–Meier curves for OS of HCC patients in the TCGA 
cohort (d) and NCI cohort (e). f The TI distribution in 33 cancer types. G Kaplan–Meier curves for OS of pancancer patients. h The univariate Cox’s 
regression result of TI in 33 cancer types. i The accuracy of TI and 11 other biomarkers in predicting immunotherapy, each cell represents the 
corresponding AUC value of one biomarker in one cohort. j The mean AUC of TI and 11 other biomarkers. For the boxplot, the asterisks represented 
the statistical p value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001)

(See figure on next page.)

https://github.com/Zaoqu-Liu/TIME
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The TIME phenotypes also exhibited a significant het-
erogeneity at the genomic level, which may drive the for-
mation of different phenotypes. TIME-1 was dominated 
by the alterations of TP53, CDKN2A, CTNNB1 and 
AXIN1. CDKN2A could inhibit the tumor-promoting 
behavior of CDK4/6, and given that the CDKN2A altera-
tion is frequent in HCC, CDK4/6 inhibitors are presently 
being tested in advanced HCC [53]. Thus, it was sus-
pected that TIME-1 may be more sensitive to CDK4/6 
inhibitors. Previous studies showed that the mutations of 
CTNNB1 and AXIN1 might be characteristic of immune 
exclusion, and represent the biomarkers of innate resist-
ance to immunotherapy [54, 55]. Besides, the FOXD4 
methylation was also associated with the immune dys-
function and cell proliferation. These genomic events 
might contribute to the immunodeficiency and prolif-
eration of TIME-1. TIME-2 was characterized by sig-
nificant alteration patterns in the PI3K pathway, such as 
PIK3CA, VEGFA and PTEN. The mutation of PIK3CA 
may serve as a reliable biomarker for relatively poor 
response to immunotherapies, such as PD-L1 antibodies 
[56]. VEGFA, as a tumor angiogenic factor, also plays a 
pivotal role in the formation of the tumor immunosup-
pressive microenvironment. Its alterations induce the 
proliferation of TH17 and Treg, and inhibit CD8 + T cell 
function, resulting in immune escape [57–59], which in 
line with the immune cell infiltration characteristic of 
TIME-2. Of note, TIME-2 might be more sensitive to the 
VEGFA-targeting monoclonal antibody Bevacizumab 
due to its significant VEGFA amplification [60]. ARID1A 
was the SMG of TIME-3, and its inactivating mutations 
can lead to remarkable increases in CD8 and PD-L1, and 
tumors with ARID1A deficiency were also more sensitive 
to PD-L1 antibodies [61]. Overall, these results suggested 
that distinct genomic alterations might not only lead to 
different immune cell infiltration and functional status, 
but also explain the potential reasons for the sensitivity 
or resistance of different phenotypes to immunotherapy, 
which provide references for the precise treatment of 
HCC.

The TIME phenotypes have significant clinical value. 
Consistent with the immune infiltration of three phe-
notypes, TIME-1 indicated the worst prognosis, while 
TIME-3 had the most favorable prognosis. TIME-1 was 
predicted to be most sensitive to sorafenib, which was 
consistent with higher expression of drug targets. Unsur-
prisingly, in line with the higher level of immune cells 
infiltration and immune checkpoint molecule expression, 
TIME-3 exhibited a superior response to immunother-
apy. In addition, we proposed a scoring scheme to quan-
tify the TIME infiltration pattern termed TIME index 
(TI). The TI was not only an independent prognostic bio-
marker for both HCC and pancancer, but also performed 

well in predicting the response to immunotherapy. 
Hence, the TI could guide clinical management and per-
sonalized immunotherapy of HCC. In addition, for the 
purpose of facilitating clinical application, we developed 
a pipeline to classify single patient into one of these three 
subtypes and calculated the TI.

The present study also had some limitations. First, we 
only considered the inter-individual heterogeneity due 
to the lack of data, but did not consider the intra-tumor 
heterogeneity, which is common in multifocal HCC [62]. 
Second, although machine learning algorithms were 
applied to predict the sensitivity of the TIME pheno-
types to sorafenib and immunotherapy, further clini-
cal validation is need. Finally, potential genomic drivers 
require further functional verification. Clinical studies 
and related experiments are ongoing in our hospitals and 
laboratories.

Conclusions
In summary, our research revealed the three heterogene-
ous TIME phenotypes with different clinical outcomes, 
immune escape mechanisms, and genomic alterations in 
HCC, which could present strategies for improving the 
efficacy of immunotherapy. The TI as a novel prognostic 
and immunotherapeutic signature that could guide clini-
cal management and personalized immunotherapy.
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algorithm among three TIME phenotypes in the TCGA cohort. C, Submap 
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P < 0.0001).

Additional file 6: Fig. S4. Potential immune escape mechanisms of each 
phenotype. A, B, The difference of TH17 (A) and Treg (B) among the three 
TIME phenotypes. C, The mRNA expression of chemokines, interleukins, 
interferons, and other important cytokines and their receptors for each 
TIME phenotype. The distribution of HBV read counts (D), HCV read counts 
(E), SNV neoantigens (F), indel neoantigens (G), CTA score (H), APS value 
(I), BCR-Richness diversity (J) and TCR-Richness diversity (K) in three TIME 
phenotypes. For the boxplot, the asterisks represented the statistical p 
value (nsP > 0.05, *P < 0.05, **P < 0.01, *** P < 0.001, **** P < 0.0001). For 
the heatmap, the asterisks represented the statistical p value (*P < 0.05, 
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