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Introduction

The year 2020 marked awarding the Nobel Prize in Physiology or Medicine for the discovery of hepatitis C virus (HCV). More than
30 years before, in 1989, Michael Houghton and others published the first HCV genome sequence (Choo et al., 1989; Houghton,
2009). This discovery of HCV was enabled by preceding developments and culminated work of more than a decade since the first
description in 1978, by Harvey Alter, of non-A non-B hepatitis as an agent transmissible by blood (Alter et al., 1978). However, after
the 1989 first identification of a HCV sequence, it took another 7 years, until 1996, for the viral genome to be fully characterized
(Kolykhalov et al., 1997). The many years required from clinical description to full genome characterization of HCV, by the end of
the 20th century, stand in stark contrast to the full genome characterization of SARS coronavirus-2 (SARS-CoV-2), the virus
responsible for coronavirus infectious disease 2019 (COVID-19), within a few weeks after the novel infection was recognized
(Zhou et al., 2020; Zhu et al., 2020). Such a rapid discovery is a result of multiple technological developments, reviewed in this
article. Moreover, immediate global sharing of the SARS-CoV-2 full genome sequence enabled the development of diagnostic tests
and was essential for the fastest ever development and licensing of vaccines.

Emerging infections can be defined as either new infections, newly diagnosed infections, or infections that have increased in their
geographic distribution, or which are increasingly found in vulnerable population groups, such as individuals with immunosup-
pression or intravenous drug users (Morens et al., 2004; Morse, 1995). Moreover, a combination of epidemiological evidence
with microbiological identification has often resulted in the discovery of novel disease associations of known infectious agents
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Table 1 Factors contributing to the emergence or re-emergence of pathogens.

Factor Emerging and re-emerging pathogens

Incursion into natural habitats Exposure to bat-borne paramyxoviruses such as Nipah virus, phyloviruses
such as Ebolavirus and Marburg virus

Global travel Rapid dissemination of 2009 H1N1 Pandemic (H1N1pdm09 virus);
SARS-CoV-2 global pandemic

Host immunosuppression: HIV, organ transplant, immune suppressive
therapies for cancer or connective tissue diseases

Opportunistic infections

Climate change Vector borne disease (e.g., arboviruses)
Live oral polio vaccination to achieve herd immunity Vaccine-derived polioviruses
Vaccine hesitancy Measles outbreaks
Exotic animal trade West African rodents: Monkeypox virus
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(Morens et al., 2004). The last 30 years saw the discovery of many new or emerging infectious diseases, or infections that re-emerged
or increased in incidence after periods of lower occurrence. The discovery and monitoring of novel and emerging pathogens have
been made possible by many new developments in diagnostics, of which some of the most significant will be reviewed in this
article.

Several factors are contributing to the emergence and re-emergence of pathogens (Table 1). Population growth has increased
human incursions into regions where they are at increased risk of zoonotic infections. Climate change has increased the distribution
of arthropod vectors and risk of human exposure to these pathogens. Global travel and trade networks have also resulted in an
increasingly connected world population with the rapid dissemination of pathogens once they become established in humans.
Changes in population vulnerability also contribute. HIV has resulted in the emergence of multiple opportunistic infections, which
have recently declined with wider availability of antiretroviral combination therapy. Aging populations in industrialized countries
may be increasingly vulnerable to particular pathogens due to immune senescence. Immune suppressive therapy is used in the
context of organ transplantation, chemotherapy for cancer, or treatment for connective tissue diseases. These factors provide
vulnerable populations to common and opportunistic pathogens (Morens et al., 2004). In addition, socio-economic development,
secular trends, and vaccination behavior may either result in overall changes in the risk of infections or in the age of acquisition of
particular infections, which influence whether individuals present with symptomatic or asymptomatic infection (Jacobsen and
Koopman, 2005). Changes in the age of infection influence whether infections would occur in women of child-bearing-potential
and resultant congenital infection, in case of rubella (Panagiotopoulos et al., 1999). Whereas vaccine campaigns have reduced the
burden of many infectious diseases, it may have contributed to lesser awareness of the risks of vaccine preventable disease.
Paradoxically the success of vaccination may have become the reason why people are less aware of real risks of acquiring infections
and more aware of possible risks of vaccination and susceptible to antivaccine propaganda. This has resulted in the re-emergence of
measles in settings where it has been eliminated especially among groups with a low vaccine coverage (Coombes, 2017; Lo and
Hotez, 2017). A lack of antibiotic stewardship, which involves the use of broad spectrum antibiotics, while not clinically indicated,
has contributed to the emergence of highly and broadly drug-resistant bacteria (Baur et al., 2017). It is therefore clear that the threat
of emerging and re-emerging infectious diseases is unlikely to diminish in the near future. Fortunately technological development in
the diagnosis and monitoring of infectious diseases may enable future rapid identification and response to these emerging health
threats.
Identifying agents and proving an etiological role in disease

Koch’s postulates, which require the presence of an infectious agent in cases with disease, and its absence in those without, and the
isolation of the agent in pure cultures, were initially very important to identify infectious etiologies. However, it had limitations.
Many organisms cannot be readily grown in cultures. Moreover, the association between infectious agent and disease is not always a
simple single agent deterministic association but could be more complex—infections could be present without causing disease or
may not be the only (or necessary cause) of a disease. In addition to infection, it may require other factors such as host risk factors to
cause disease. In the latter case the infectious agent is not a sufficient cause (Byrd and Segre, 2016; Falkow, 2004). Disease
complications may also be the result of chronic infections with a long time lag between infection and disease (O’Connor et al.,
2006) which makes it more difficult to directly associate the infectious agent and disease.

An adaptation of Koch’s postulates was therefore proposed based on molecular criteria that relied on identification of pathogen
sequences (Falkow, 1988). However, complex etiologies require epidemiological evidence that shows an increased risk in individ-
uals who have particular infections compared to those without. In the case of organisms that result in pathologies such as
neoplasms, or other delayed complications of infections a combination of molecular and epidemiological evidence is often
required. Cervical cancer is almost always the result of infection with oncogenic types of human papillomaviruses (Nicolás et al.,
2019) and hepatitis C virus and hepatitis B virus infections are strongly associated with liver cancer. However, other infections such
as human herpes virus 8 (HHV8) and Epstein bar virus (EBV) require cofactors before oncogenesis is likely (Mesri et al., 2014).
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Proving the association of chronic Helicobacter pylori stomach infection with duodenal ulcers and stomach cancer has required
epidemiological and intervention studies, in addition to identifying the infection in people with disease (Choi et al., 2018; Preda
et al., 2009). Recent developments in human genetics, the analysis of mRNA expression (transcriptomics), the study of protein
structure, function and interaction (proteinomics), and metabolic pathways (metabolomics) have resulted in increasingly rich data,
which help to explain the interaction of host genetics, infections, and the environment. In future, novel approaches to analyze such
rich data could allow for a better understanding of cellular level pathways of diseases with complex etiologies. This could also
provide novel drug targets to treat these diseases (Karczewski and Snyder, 2018).
Traditional approaches to identifying infectious diseases

The identification and diagnosis of infectious diseases have advanced along with technological development and innovations that
involve both biochemistry and engineering. Time-tested or traditional diagnostic approaches have their value and limitations,
summarized in Table 2 and discussed below. These methods remain valuable in the discovery and characterization of emerging
pathogens and are often complementary to more recently developed molecular assays.
Microscopy and culture-based isolation

Since the discovery of microorganisms by light microscopy and the germ hypothesis developed by Pasteur, Koch, and others, culture
media have been developed that allowed for the isolation of bacteria (Blevins and Bronze, 2010; Pasteur, 1881). However, viruses,
which are responsible for the majority of emerging infections, were initially elusive as they require living cells (either cell culture or
live animals) for growth and laboratory isolation. Viruses are also too small to be held back by bacterial filters or to be identified by
light microscopy (Lwoff, 1957). The development of cell culture systems greatly aided the identification of viruses from patient
samples (Leland and Ginocchio, 2007). Similarly intracellular bacteria, such as mycobacteria, chlamydia, mycoplasmas, and
rickettsiae, are difficult to grow and require special media and often long incubation periods or laboratory animals to isolate
them (Doern, 2000). Electronmicroscopy, which has a much higher resolution than light microscopy, allows the characterization of
viral structure and, based on the identified morphology, can then direct further investigations to identify the particular species
(Curry et al., 2006).
Immune-based diagnostics

Sera from patients with infections or who recovered from infections proved to be very valuable for diagnosing novel agents and the
earliest techniques involved immunodiffusion, precipitation, and counterimmunoelectrophoresis reactions that helped to identify
the causative agents (Gocke and Howe, 1970; Stanford, 1973). The underlying principle is the hybridization or binding of
antibodies from serum to an antigen. The study of antibody and antigen reactions is often called “serology” as antibodies were
initially identified from serum samples. The detection of antibodies would signify prior human exposure to an infectious agent,
whereas the detection of antigen using antibodies (often produced in laboratory animals or laboratory cultures) would indicate the
current presence of the antigen in a sample or culture isolate from a sample. Different technologies were developed to identify
antigen-antibody hybridization, which include immunofluorescence, enzyme immunoassays, and chemiluminescence. Although
serological methods were some of the first used for diagnosis of infectious agents, they remain relevant for the diagnosis of novel
infectious agents especially when used to determine the prevalence of antibodies as evidence of exposure to a particular pathogen.
Serological investigations are applied to determine the extent of exposure of the population to new agents and has been used to
assess the extent of COVID-19 spread, since many cases may remain asymptomatic or undiagnosed (Larremore et al., 2021; Metcalf
et al., 2016). The study of the presence of antibodies among human populations, referred to as seroepidemiology, is discussed in
more detail below.
Table 2 Value and limitations of traditional approaches to identify and diagnose infections.

Method Value in pathogen identification Limitations

Bacterial growth
media (serum
broths and other)

Pure cultures of fast growing bacteria Cannot isolate viruses or fastidious bacteria

Cell culture methods Isolation of particular viruses Many viruses do not show cytopathic effect; and others
do not grow in available cell culture systems

Polymerase chain
reaction (PCR)

Sensitive detection of low concentration agent Requires some prior knowledge of the sequence to
design primers

Serology Investigate the presence of antibodies in the community (seroprevalence
surveys); determine if newly discovered agent had been circulating in the
population before

Indirect evidence by detecting antibodies as part of the
immune response, which is variable and could wane
after infection.

Cross reactivity between related agents (e.g., from the
same family such as flaviviruses)
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Limitations of traditional diagnostic methods

Despite their value, traditional laboratory diagnostic methods have limitations (Table 2). Cell culture-based isolation of viruses and
culture of fastidious bacteria are cumbersome and slow and electron microscopy requires a high pathogen concentration and
therefore lacks sensitivity (Lipkin and Firth, 2013). Moreover, for many infectious agents, culture isolation systems are not readily
available. The identification of these organisms therefore relies on genetic identification, often referred to as molecular diagnostic
methods.
The rapid development in molecular methods

Nucleic acid amplification: The polymerase chain reaction and alternatives

The most important breakthrough in the rapid characterization of viruses and fastidious organisms was the development of the
polymerase chain reaction (PCR) by Kary Mullis in 1985 (Mullis et al., 1986; Mullis, 1990) for which he was awarded the Nobel
prize in 1993. PCR allows the efficient amplification of DNA to detect low concentrations of infectious agents, directly from
biological material, without requiring prior isolation in cell culture. An adaptation of this method, first reverse transcribing RNA to
DNA, followed by PCR, called reverse transcriptase PCR (RT-PCR), allowed for the identification of RNA viruses.

Alternatives to PCR are isothermal nucleic acid amplification reactions such as nucleic acid sequence-based amplification
(NASBA) or transcription-mediated amplification (TMA), which apply similar principles, loop-mediated isothermal amplification
(LAMP) and recombinase polymerase amplification (RPA). The benefit of these isothermal methods is that they may require
simpler instrumentation as thermocycling is not required (Gill and Ghaemi, 2008; Li and Macdonald, 2015).

When PCR is followed by nucleotide sequencing it allows for the full characterization of an agent and through phylogenetic
analysis a description of its relatedness to other agents. However as PCR amplification requires primers to bind to specific DNA
sequences in the template, it requires some prior knowledge of the infectious agent’s sequence to allow identification. Therefore,
identifying agents that are unexpected or distantly related to known agents offers a challenge and requires adaptation of PCR or
alternative approaches for molecular diagnosis (Allander et al., 2005; Reyes and Kim, 1991).

Improvements in biochemistry and engineering, which include automation of extraction and amplification in partially or fully
automated closed systems, resulted in nucleic acid amplification technology moving from specialized research laboratories to
high-throughput diagnostic laboratories. This had been evident in automated viral load monitoring of HIV and HCV to assess
treatment success, and multiplex molecular syndromic diagnosis of respiratory disease, meningitis, and sexually transmitted
diseases (Greub et al., 2016). In addition, blood banks make use of molecular methods for blood donor screening to ensure the
safety of blood products from donors, who may be in the antibody negative window period (Vermeulen et al., 2009). Recently the
importance of high-throughput molecular diagnostics has become most evident, when laboratories have been required to rapidly
scale up to test thousands of samples for SARS-CoV-2 by RT-PCR. This was necessary for individual diagnostic and epidemic control
purposes (Gorzalski et al., 2020; Opota et al., 2020). In contrast to large high-throughput automated laboratory instrumentation,
technological development has also resulted in smaller footprint and easy-to-use, near-patient molecular diagnostic instruments
that have become increasingly important in the diagnosis of emerging infectious diseases, at the bedside, or point of care (POC).
This has played a major role in the diagnosis of Ebolavirus in field hospital settings and rapid diagnosis of SARS-CoV-2, when
required for clinical diagnosis or cohort nursing of infected or uninfected individuals (Raftery et al., 2018; Zhen et al., 2020).

Methods that make use of nucleic acid amplification, primarily with PCR, have overcome some of the limitations of traditional
methods. Nevertheless, identification of unknown novel infections from clinical samples poses several challenges for which novel
solutions were sought (Table 3).
Dealing with human cellular background

Identifying pathogen genetic material among a much higher concentration of normal human cellular nucleic acid (DNA and RNA)
is a challenge. One approach to overcome this is representational difference analysis (RDA) developed in 1993. This approach
selectively enriches for DNA sequences that are unique to a particular type of diseased tissue (Lisitsyn et al., 1993). An infectious
etiology had long been suspected for Kaposi sarcoma (KS), but it was only when RDA was applied to these tumor tissues that it was
Table 3 Challenges to viral discovery from clinical samples.

Challenge Impact Solutions

High concentration of host
nucleic acid

Competing host material result in time-consuming
process of screening

Pre-analytical
Viruses : ultracentrifugation and DNAse treatment of samples (viral
particles are protected)
Subtraction : representational difference analysis (RDA)

Unknown sequence PCR amplification requires specific primer binding sites Sequence independent (unbiased) amplification methods; Random
PCR; degenerate PCR



Fig. 1 The first Hepatitis C virus (HCV) sequence was obtained from a bacteriophage library in 1989. Representational difference analysis (RDA) facilitated the
discovery of human herpes virus 8, in the presence of a high concentration of cellular DNA. The use of consensus primers (targeting conserved regions) and random
primers facilitated the discovery of Severe acute respiratory syndrome (SARS) coronavirus in 2003. Sequence independent single primer amplification (SISPA) was a
subsequent method that allowed for the non-specific amplification in samples where cellular background was reduced by DNAse treatment. Merkel cell associated
polyomavirus was identified by linker-mediated PCR, next generation sequencing of mRNA and digital (bioinformatics based) subtraction transcriptome data of
normal tissues from that of tumor tissue. Consensus PCR and next generation sequencing of cell-culture supernatant helped to identify SARS-coronavirus 3
(SAR-CoV-2) the cause of Coronavirus disease 2019 (COVID-19).
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found that a previously unidentified human herpes virus, called Human Herpesvirus 8 (HHV-8) or Kaposi Sarcoma-Associated
Herpesvirus, was present in all KS tissues (Chang et al., 1994). The secret of RDA is that it uses a modified PCR to selectively amplify
gene sequences that are present in diseased tissue but absent or at much lower concentration in healthy tissues. It starts with
hybridizing a low concentration of amplified products (tester amplicons) from the diseased tissue, ligated to primers, to an excess
concentration (driver amplicon) from normal tissues. DNA strands that are unique to the diseased tissue are then preferentially
exponentially amplified (Lisitsyn et al., 1993), which facilitates identification of the disease-specific sequences. Subsequently to
identifying HHV-8 as the cause of KS, it was found to be associated with Multicentric Castleman’s Disease (Soulier et al., 1995) and
Primary Effusion Lymphoma (Cesarman et al., 1995). Other viruses identified using RDA are human GB virus (GBV) (Simons et al.,
1995), a virus closely related to HCV, but which appears nonpathogenic, and TT virus (TTV) (Nishizawa et al., 1997), from the
family Anelloviridae, which is commonly found in blood and is of uncertain significance. Despite the value of RDA, it is very
cumbersome, whereas some recently developed biochemical methods are faster and more practicable (Fig. 1).
Unbiased amplification methods

DNase Sequence-Independent Single Primer Amplification (DNase-SISPA) was used to allow nonspecific amplification of viral
RNA or DNA from serum, which enabled the identification of human parvovirus 4 (Jones et al., 2005). In short, filtered plasma
samples were treated with DNAse to remove human DNA, whereafter viral RNA and DNA were extracted. Thereafter RNA was
reverse transcribed and complementary DNA (cDNA) synthesized with random primers, followed by restriction endonuclease
digestion of viral DNA or double-stranded DNA, reverse transcribed from RNA, and adaptor ligation to allow nonspecific
amplification, cloning, and sequencing. A similar approach: Virus Discovery based on cDNA-AFLP (Amplified Fragment Length
Polymorphism) (VIDISCA) was used to discover Coronavirus NL-63 in 2004. This method starts with blood plasma, serum, or
culture supernatant. Cellular material and mitochondria are first removed by centrifugation, followed by DNAse treatment to digest
mitochondrial or cellular DNA present in cell fragments, whereas nucleic acid in viral particles remains protected. Viral nucleic acid
is then isolated and viral RNA is reverse transcribed to cDNA, followed by second strand synthesis. Double-stranded DNA (either
directly from viral DNA or from reverse transcribed RNA) is digested with restriction enzymes, anchors are ligated, which contain
primer binding sequences. This is followed by PCR amplification and finally by nucleotide sequencing providing nucleotide
sequences from an unknown agent, without requiring any prior sequence knowledge (Van Der Hoek et al., 2004).
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Improvements in sequencing technology

First-generation sequencing

The first widely adapted sequencing method was the Maxam and Gilbert technique which relied on chemical treatment generating
breaks in a small proportion of DNA strands, separately for each of the four nucleotides. Each of these separately cleaved products is
then separated into individual fragments with polyacrylamide gel electrophoresis (Maxam and Gilbert, 1977). Fred Sanger
developed a method, which later largely replaced the Maxam and Gilbert method. This relies on DNA polymerase incorporating
a mix of normal and chain terminating nucleotides during the process of primer extension with complimentary DNA synthesis.
As the chain terminating nucleotides are incorporated, fragments of differing lengths are generated, each ending on a respective
chain terminating nucleotide (Sanger et al., 1977). Initially the terminating nucleotides were radiolabelled, but once this was
replaced by four different fluorescent labels (Prober et al., 1987) it opened the way for automated capillary electrophoresis, which is
the version of Sanger sequencing that remains in use today. Each capillary has as single readout, called an electropherogram, which
shows the respective nucleotides, in color, incorporated at each position. Scaling up automated Sanger sequencing relied on
increasing the number of capillaries run in parallel. This unfortunately increases instrument footprint and despite Sanger sequenc-
ing’s elegance exposed its limited scalability: in essence each sequencing reaction and capillary, in which electrophoresis takes place,
aims to provide one consensus sequence read. The multitude of automated sequencers therefore required for the human genome
project highlighted the limitations of automated Sanger sequencing. Making sequencing more scalable therefore required an
approach that would allow the simultaneous sequencing of multiple different templates in one reaction. Several different solutions
to this have been developed and have been referred to next-generation sequencing (NGS) or massive parallel sequencing (MPS)
(Thermes, 2014; von Bubnoff, 2008).
The development of next-generation sequencing

These sequencing methods employ different principles, all to achieve the objective of multiple simultaneous sequencing reactions,
which are physically separated and separately detected (Table 4). As NGS evolved, particular methods including PacBio Single
Molecule, Real-Time (SMRT) Sequencing, and Oxford Nanopore Technologies (ONT) developed approaches that enabled the
sequencing of very long reads of single genomes. Hence, these massive parallel sequencing methods became known as
third-generation sequencing or single molecule sequencing (SMS) to distinguish them from shorter read NGS methods.

When used for pathogen discovery, in principle two different approaches can be followed. The one relies on specific enrichment
for related pathogens, with a PCR or other amplification method that includes primers that bind to sequences that are conserved
across species or genera, which is then followed by sequencing to characterize the pathogen. The second is nonspecific, attempts to
detect all possible infectious agents, present in a sample, and relies on nonspecific amplification or direct sequencing of extracted
nucleic acid. This is followed by the alignment of these diverse genetic sequences to bioinformatics databases. This latter process is
referred to as metagenomics.
Table 4 Overview of next and third generation sequencing methods.

Method Separation Chemical principle Detection

454 sequencing DNA linked to beads separated on
picotiter wells

As the primer extends, pyrophosphate (PPi) is
released; ATP is generated and luciferase
mediates conversion of luciferin to
oxyluciferin

Light is released

Ion Torrent DNA is separated on beads in
micromachined wells

As primer extends, hydrogen (protons) are
released.

Semiconductor chip detects change in voltage

Illumina Oligonucleotides on nanowells
capture DNA (bind to adaptors)

Bridge amplification generates clusters.
Sequencing by extension of reversible
terminating dNTPs

Four dNTPs are tagged with different fluorophores;
laser excites fluorophores and fluorescent light is
recorded by a digital camera.

PacBio Single
Molecular
Real-Time
(SMRT)
sequencing

Flowcell with thousands of
transparent bottom picotiter
wells: Zero-mode wave guides
(ZMW)

Polymerase is immobilized on the bottom of
the ZMD and adds fluorescent nucleotides
by primer extension

Movie of light signals is detected as sequential
bases are added by immobilized polymerase

Oxford Nanopore
Technologies

Individual DNA molecules pass
through nanopores that bridge a
synthetic resistive polymer
membrane

Nucleotide bases occupy a nanopore, as they
pass through, resulting in a current change

Current changes associated with successive series
of bases passing through the nanopore are
resolved bioinformatically into a nucleotide
sequence.
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Applications of next-generation sequencing

The development of NGS and data from the human genome project made a new approach to the discovery of novel agents possible:
Merkel cell carcinoma (MCC), a rare but aggressive cause of skin cancer that affects immunocompromised or elderly persons, was
identified through digital transcriptome subtraction (DTS) (Feng et al., 2008). In short, RNA libraries from next-generation
pyrosequencing were aligned with expected transcriptomes (the transcriptomes representing expected mRNA sequences from
transcribed human genes from the National Center for Biotechnology Information (NCBI) databases). Of the remaining (sub-
tracted) mRNA transcripts one was found to match a polyomavirus sequence. Further investigations found this Merkel Cell
Polyomavirus (MCPyV) to be integrated in the large majority of MCC tissues (Feng et al., 2008).

NGS has offered a newmetagenomic approach to diagnostics and pathogen discovery. Nonspecific DNA amplification involving
transposase, used as library preparation, followed by NGS with Illumina, which uses solid-phase bridge amplification, allows the
direct sequencing of low concentration DNA libraries (Marine et al., 2011). This unbiased approach was used to identify a novel
arenavirus in cluster of three patients who died after receiving solid organ transplantation from the same donor (Palacios et al.,
2008). It has also allowed for the unbiased diagnosis of infections in returning travelers (Jerome et al., 2019). These metagenomic
approaches have been shown to correlate well with routine diagnostic methods such as multiplex PCR (Graf et al., 2016; Huang
et al., 2019) but works best if the viral loads are sufficiently high (Huang et al., 2019; Kustin et al., 2019). Sensitivity may be
increased by enriching first for viral sequences with probe capture before next-generation library preparation (O’Flaherty et al.,
2018; Wylie et al., 2015, 2018).

Metagenomic NGS nevertheless holds several remaining challenges which hamper its widespread adoption. A challenge of NGS
is the computational and bioinformatics needs to assemble sequence reads and match that to existing databases to identify known
and possible novel pathogens (Dutilh et al., 2017). Metagenomic NGS also yield information, including viral genome sequences
that are of unknown clinical significance, and which could be nonpathogenic, such as anelloviruses. Nevertheless, anellovirus viral
loads have been used to monitor the degree of immunosuppression in organ transplant recipients (Wylie et al., 2018).

Another potential use of metagenomic NGS is to identify agents in nonhuman hosts or arthropod vectors before they emerge
as human pathogens as part of a One Health Approach: Multiple emerging human pathogens may be of bat origin, such as
filoviruses Ebolavirus and Marburg virus, paramyxoviruses (Hendra and Nipah viruses), and coronaviruses (SARS-CoV, MERS, and
SAR-CoV-2). Therefore a metagenomics study of bat viruses may be able to identify viruses of possible zoonotic origin before these
spread amongst humans (Geldenhuys et al., 2018).

It is clear that improvements in nucleic extraction, amplification, and sequencing have facilitated the discovery and monitoring
of new pathogens. Fig. 1 summarizes a few highlights in this development process.
Developments in epidemiological evidence

Molecular epidemiology

Molecular epidemiology is the study of the genetic variation of infectious agents in human populations in terms of its occurrence: in
space, by person (age, gender, ethnicity, socio-economic factors and health-related) and occurrence in time. Organisms are sampled
to represent human populations and the genetic sequence characterized. Sequences are compared using phylogenetic analysis,
which describes the genetic relatedness in phylogenetic trees and ancestral association between variants. This has become an
increasingly valuable tool to characterize the distribution of emerging and re-emerging organisms and inform interventions to curb
their spread (Holmes, 1998). Improvements in sequencing technology that facilitate rapid sequencing and computing power that
allows for the fast and accurate construction of phylogenetic trees have made this increasingly practicable. A few of multiple cases
where this has informed public health interventions are discussed below. The sequencing of organisms in different populations,
studied in time, by geographic location and according to risk factor exposure has enabled the modeling of the origin of outbreaks,
based on the phylogenetic relationships of organisms. The study of how epidemiological processes, immune responses, and
evolution shape phylogenetic relationships has been called “phylodynamics.” When an infection emerges or is reintroduced,
phylodynamic analysis can help to establish the likely geographic origin and whether there are one or multiple origins. The overall
diversity and “date stamped” sample collection could be used to calibrate molecular clock models, which can be used to estimate
the date of emergence of the most recent common ancestor. This has been used to establish when particular infectious agents
entered human populations. From such studies it emerged that HIV-1 has entered human populations likely before 1930 in central
Africa (Gryseels et al., 2020; Worobey et al., 2008) and that circulating human coronaviruses infections such OC-43 and NL-63 are
likely the result of historic species jumps from bats (Huynh et al., 2012; Vijgen et al., 2005).
Seroepidemiology and sero-archeology

When an organism is newly identified, it is important to establish whether the infection is truly new or just previously undiagnosed.
Historic serum banks could help to determine whether an agent is truly new. This helped to determine that human metapneumo-
virus, an important respiratory infection in young children, although first identified in 2001, had been present in humans for at least
43 years before (Van Den Hoogen et al., 2001). In contrast, at the time when SARS CoV and SARS-CoV-2 were first detected, it was
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apparent that there had been no pre-existing population immunity toward these novel agents (Ip et al., 2004; Takahashi et al.,
2020). After SARS-CoV-2 had spread widely and had been classified as a pandemic, seroprevalence studies of SARS-CoV-2, when
adjusted properly for diagnostic error, proved to be very useful in assessing population immunity, the risk for local epidemic spread,
and the role of asymptomatic spread in transmission (Larremore et al., 2021).

Similarly, the strains involved in historic influenza pandemics have been studied by investigating birth cohorts and assessing the
influenza strains to which different age groups have antibodies. The most important antibodies toward influenza are directed
against surface proteins, hemagglutinin (H) and neuraminidase (N), which are used for influenza A typing. When pandemic
influenza A strains share similar antigens to prior strains, the older strains are often displaced by the new pandemic strain. Human
exposure to particular strains is assessed by performing hemagglutinin (H) inhibition and neutralizing antibody studies. Using this
approach it was discovered that H3 influenza strains circulated before 1891 and were reintroduced during the “Hong Kong”
pandemic of 1968 when influenza A H3N2 emerged (Reichert et al., 2012; Simonsen et al., 2004). During seasonal influenza
epidemics, mortality is higher at the extremes of age, in infants and elderly individuals. However during some influenza pandemic
years, older individuals showed lower excess mortality as they had been protected by prior exposure to previously circulating strains
that had antigens in common with the emerging pandemic strain (Reichert et al., 2012).
Case studies: Identification and monitoring of important emerging and re-emerging pathogens

The technological development required for the detection and monitoring of infectious diseases involves genomics and immunol-
ogy. The development of NGS with increased computer power and more robust bioinformatic algorithms and mathematical
models of evolution have had a major role in detecting and monitoring emerging infections. This coupled with faster automated
nucleic acid amplification technology and a robust biotechnology industry, which supplies reagents fast and have developed point
of care and large high-throughput instruments, have enabled an increasingly rapid response to emerging pathogens. A few examples,
where technology played a role in the detection and response to emerging or re-emerging infections, are discussed below, but there
are multiple other examples, which cannot be covered in a single article.
SARS and other coronaviruses

Prior to 2002, the known human coronaviruses 229E and OC43 were associated with mild upper respiratory viral disease. The first
time when a coronavirus was associated with severe pneumonia in humans was when an atypical pneumonia, later named Severe
Acute Respiratory Syndrome (SARS), emerged in Guangdong Province, China in November 2002. This virus, called “severe acute
respiratory syndrome coronavirus (SARS-CoV)” was identified using a combination of established and newer methods. Vero cell
culture and electron microscopy on the culture supernatant identified viruses that resembled coronaviruses. Following viral cell
culture isolation, different groups, respectively, used consensus PCR primers (designed based on an alignment of known corona-
viruses) (Drosten et al., 2003) or degenerate/random primers and DNA microarrays (Wang et al., 2003) which enabled them to
amplify and characterize the SARS-CoV genome using Sanger sequencing.

The identification of SARS-CoV has led to an increased awareness of the possible role of coronaviruses in respiratory infections.
Subsequently the VIDISCA method, described above, was used to identify human coronavirus NL-63 (HCoV-NL-63) from a
7-month-old child with bronchiolitis and conjunctivitis. HCoV-NL-63 was thereafter found to be a common respiratory pathogen
especially in children (Bastien et al., 2005; Ebihara et al., 2005; Kaiser et al., 2005). Thereafter another novel coronavirus, human
coronavirus HKU1 (HCoV-HKU1), was identified from a nasopharyngeal aspirate of a 71-year-old man with pneumonia by using
conserved coronavirus primers and thereafter using a mixture of conserved and degenerate primers to amplify the full genome and
identify the sequence by automated Sanger sequencing (Woo et al., 2005). HCoV-HKU1 was later found in children and found to be
occurring worldwide (Esper et al., 2006; Lau et al., 2006). In 2012, a novel coronavirus was isolated from a 60-year-old male patient
from Saudi Arabia with pneumonia and renal failure. A pan-coronavirus PCR, based on the method used for the discovery of
SARS-CoV (Drosten et al., 2003), was used to amplify the viral nucleic acid, followed by next-generation 454 pyrosequencing to
identify sequences of this novel coronavirus. This virus was named Middle East Respiratory Syndrome Coronavirus (MERS-CoV)
based on the geographical distribution of most cases. Human infections with the virus have a mortality of around 35%. Although
the virus likely originated from bats, dromedary camels were found to be the reservoir host, with zoonotic infection of humans and
household, and healthcare infections being important means of transmission (Killerby et al., 2020).
The identification and monitoring of SARS-CoV-2 and its impact on medical interventions

SARS-CoV-2, the etiology of COVID19, was identified using a combination of consensus PCR and NGS (Zhou et al., 2020) and
separately by cloning and NGS and Oxford Nanopore Sequencing of viral nucleic acid from culture supernatant (Zhu et al., 2020).
Phylogenetic analysis revealed that this virus belongs to the same subgenus of Betacoronavirus as SARS-CoV namely Sarbecovirus
(Lu et al., 2020; Zhou et al., 2020).
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Identification of genetic variants
SARS-CoV-2 NGS and phylogenetic and phylodynamic analysis allowed for the global tracing of SARS-CoV-2 variants and provided
insights into its pandemic dissemination. The presence of multiple lineages at particular locations indicated multiple introductions
(Alm et al., 2020; Candido et al., 2020; Tegally et al., 2021). Moreover, displacement of lineages indicated that particular variants
having the G614 spike protein mutation were likely more infectious than other variants (Korber et al., 2020). Later data from the
United Kingdom showed that a variant, B.1.1.7, with multiple distinguishable mutations had about 70% higher transmissibility
than historic lineages (Kirby, 2021; Tang et al., 2021). Similarly, other new variants emerged: B.1.351 in South Africa (Makoni,
2021), P.1 in Brazil (Candido et al., 2020), and B.1.617 in India (Thiagarajan, 2021), which displaced previous variants. Sequencing
of these variants detected additional spike protein mutations which raised concerns about vaccine escape and which may explain
the circulation of some of these variants in regions that had a high level of population immunity prior to the emergence of these
variants (Sabino et al., 2021). Subsequently several studies showed a lower ability of vaccine- or natural infection-inducted
antibodies to neutralize the B.1.351 and P.1 variants, impacting on the effectiveness of vaccination (Fontanet et al., 2021;
Kupferschmidt, 2021). Genomic surveillance has thus become important to understand the transmission dynamics of emerging
infections and to inform public health interventions such as vaccination rollout. This has already had impact on the selection of
SARS-CoV-2 vaccines that provide better protection against emerging variants. Moreover, vaccine constructs can be adapted to
protect against vaccine escape variants. Whereas vaccines elicit a response to several epitopes and immune escape is most likely to be
partial, antibody-based biologicals may be most susceptible to such escape mutations. These antibodies have been developed for
putative treatment or prevention and act by neutralizing viral infection through binding to the viral receptor-binding domain.
Therefore, any changes that impact the antibody-binding epitopes could be adversely affected by such mutations and may render
these biologicals ineffective against the emerging variants. Nevertheless, a cocktail of different antibodies targeting separate epitopes
may retain effectiveness against emerging variants (Baum et al., 2020).
West Nile virus

West Nile virus, from the genus Flavivirus, Japanese Encephalitis serocomplex, had been detected previously in Africa, Eurasia,
Europe, and Australia, when it first emerged in New York City in 1999. During the New York outbreak, of 59 cases, who were
hospitalized, seven died. West Nile virus is a mosquito-borne virus with birds as the primary hosts (Campbell et al., 2002). Since the
New York outbreak, it spread across most of North America (Beasley et al., 2003; LaDeau et al., 2007). Genetic analysis revealed that
the strain emerging in New York was most closely related to lineage I, previously detected in Israel (Beasley et al., 2003) but it
remains unknown whether it reached the United States via an infected bird or mosquito. Nevertheless the rapid spread of West Nile
virus in the Americas shows the risk posed by international trade or travel to introduce arthropod-borne viruses (also referred to as
arboviruses) into new territories when susceptible vectors are already present in these regions.
Chikungunya

Chikungunya is a mosquito-borne alphavirus which was first isolated from a Tanzanian patient in 1953. It is associated with fever
and arthralgia during the acute presentation and in some individuals arthralgia may persist for months to years. In Africa, the natural
hosts are nonhuman primates, whereas human infections are thought to sustain outbreaks in densely populated Asian settings,
although monkeys have been found to be infected in Malaysia. There are three viral genotypes: West African, East/Central/South
African (ECSA), and Asian (Morrison, 2014). Since 2004 ECSA genotypes increased in geographic range and spread to Indian Ocean
Islands, such that by the end of 2005 there were more than a million suspected cases in this region. Therefore, there was a concern
that the ECSA genotype could spread to other tropical regions such as the Americas. Then in December 2013, the French National
Reference Centre for arboviruses reported that Chikungunya had been detected in the Caribbean Island of Saint Martin. Subse-
quently it spread to many countries in South and Central America with almost half a million cases by July 2014. Surprisingly
molecular epidemiological analysis revealed that the Asian genotype, and not the suspected ECSA genotype, had been responsible
for transmission in the Americas (Leparc-Goffart et al., 2014; Morrison, 2014).
Zika virus

Zika virus, a flavivirus, transmitted by Aedes aegyptimosquitoes was first described in 1947 in Uganda and was associated with mild
human infection in Africa and Asia in the 1960s to 1980s. The first signal of increased global spread was in 2007 when a large
outbreak occurred on the island of Yap followed by outbreaks in French Polynesia in 2013 to 2014. Thereafter Zika virus was
identified in the Americas with a large outbreak occurring in 2015 in northern Brazil (Grubaugh et al., 2018; Kindhauser et al.,
2016). The large outbreaks in the Pacific and Americas provided strong epidemiological evidence, based on geography and timing,
that Zika virus infections are associated with congenital microcephaly when women are infected during the first trimester (Brady
et al., 2019; Vissoci et al., 2018). Further strong support was provided by a prospective case control study, enrolling 91 infant cases
with microcephaly and 173 controls without microcephaly. Zika virus infection is diagnosed by PCR, in the acute phase, or specific
neutralizing antibodies after recovery, as IgM antibodies could be cross reactive to other flaviviruses (Landry and St George, 2017).
Thirty two (35%) of the cases with microcephaly had Zika virus infection, confirmed with RT-PCR or serology, vs none of the
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controls (de Araújo et al., 2018). The rapid spread of Zika virus emphasized the risk of introduction of arthropod borne viruses
(called arboviruses) into new geographic settings where their vectors are present, but where there is a lack of population immunity,
contributing to rapid spread and a high incidence of human infections. Molecular clock analysis, based on the genetic diversity of
the Brazil outbreak, showed that Zika virus had likely been introduced as early as 2013, suggesting that early vector control could
have limited the catastrophic spread (Grubaugh et al., 2018). Monitoring of arboviral infections in humans and insect vectors is
therefore crucial to allow early detection and timely vector control programs.
Ebola and other filovirus re-emergence: Tracing the source

Filoviruses are associated with systemic illness and viral hemorrhagic fever in humans. The first filovirus to be isolated was Marburg
virus in 1967 in laboratory workers who processed blood and tissue samples from African green monkeys (Slenczka and Klenk,
2007). In 1976 two related filoviruses, associated with hemorrhagic fever viruses, were isolated: Ebolavirus (EBOV) in the Congo
(then Zaire) and Sudan virus in South Sudan (then Sudan). Before 2013, outbreaks of filoviruses were localized and limited in size,
with until then, the largest outbreak being in 2000, involving 425 cases with Sudan virus in Gulu, Uganda. However, from 2013 to
2016 an epidemic spanned Guinea, Liberia, and Sierra Leone, with 28,646 EVD cases and 11,323 deaths. The scale of the epidemic
and the duration of sustained human transmission were unprecedented (Spengler et al., 2016). During this outbreak and
subsequent monitoring of regional outbreaks, molecular epidemiology came to its own. By December 2013 only 29 Ebolavirus
and 65 Marburg full length sequences had been published. Thereafter next-generation sequencing allowed the generation of
cumulatively more than 800 complete filovirus genome sequences by 2020 (Di Paola et al., 2020). Molecular epidemiological
data provided valuable information about the transmission dynamics and origin of outbreaks and allowed appropriate targeted
medical interventions. Targeted EBOV sequencing and unbiased metagenomic sequencing helped to identify natural hosts of
viruses from the Ebolavirus and Marburg virus genera. Phylogenetic analysis revealed transmission chains and the presence of
super-spreading events, suggesting that targeting these events could dramatically reduce transmission. The persistence of EBOV in
semen and the almost identical sequences identified in sexual partners helped to establish sexual transmission as a mechanism by
which outbreaks can be reseeded after transmission cycles have apparently been interrupted. Persistence in semen and re-emergence,
fueled by sexual transmission, provide a plausible explanation for the epidemic resurgence that had been observed during these
outbreaks (Crozier, 2016; Di Paola et al., 2020; Thorson et al., 2021).
Tracing HIV: History and future

A syndrome of immune suppression, with an epidemiology suggestive of a transmissible agent, was first described in men who had
sex with men (MSM) from Los Angeles, California and also found in hemophiliacs (Gottlieb et al., 1981, 1983). To distinguish this
from primary immunodeficiency, this was named Acquired Immunodeficiency Syndrome (AIDS) (Gottlieb et al., 1983). Then in
1983, the causative virus, later named HIV-1, was isolated by Barré-Sinoussi et al. (1983). Unlike in the United States and Europe,
spread in Africa was predominantly through heterosexual exposure and mother to child transmission, with a generalized epidemic
and a high incidence, first observed in Central and East Africa (Quinn et al., 1986). Moreover, a serum sample from 1959 from
Kinshasa tested positive, indicating a much earlier presence in Africa than the first diagnosis of AIDS (Nahmias et al., 1986).
However, it was through the use of molecular clocks, calibrated with early blood samples from Central Africa, that it became clear
that HIV likely first crossed the species barrier, and started to spread amongst humans, around the early part of the 20th century. This
timing coincided with large colonial population disruptions, mining and urbanization in the then Belgian Congo (Gryseels et al.,
2020; Worobey et al., 2008). By studying the relatedness of simian immunodeficiency viruses from chimpanzee subspecies,
Pan troglodytes troglodytes, it became apparent that they were the source of this cross-species transmission (Gao et al., 1999). Evidence
of other chimpanzee viruses in hunters from Central Africa further substantiated that the hunting and slaughtering of chimpanzees
could have resulted in a cross-species jump (Calattini et al., 2007).

Whereas HIV-1 caused a global pandemic, the region of high HIV-2 prevalence is restricted to West Africa. Molecular clock
analysis revealed that both epidemic HIV-2 subtypes, A and B, were likely transmitted from sooty mangabeys to humans in the first
half of the 20th century, with exponential epidemic growth that coincided with the Guinea-Bissau independence war from 1963 to
1974 (Lemey et al., 2003).

Apart from the value of molecular epidemiology to study the history of the HIV-1 pandemic, identifying transmission clusters is
an important tool in attempts to end HIV epidemics on country level (Han et al., 2020). Identifying transmission clusters and acting
on these by providing additional support services form part of the United States strategy that aims to end HIV transmission by 2030
(Nichols and Kissler, 2020).
Re-emergent poliovirus

Polioviruses belong to Enterovirus C species and are associated with a risk of paralysis of about 1 in 200 to 1 in 1000. There are three
poliovirus serotypes: 1, 2 and 3. In 1988 the World Health Assembly resolved to eradicate poliomyelitis (Forty-First World Health
Assembly, 1988). Two types of vaccines are used to prevent polio: live oral polio vaccine (OPV) and inactivated polio vaccine (IPV).
Although IPV provides effective individual protection against paralytic polio, administering OPV types 1, 2, and 3 (OPV-1, 2, and 3)
provide better herd immunity and its use has been essential in limiting community spread and hence OPV use is essential for
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poliovirus eradication. However, OPV strains pose a risk of reverting to virulence and could be transmitted onward, classified as
circulating vaccine-derived polio virus (cVDPV), which can be differentiated by sequencing from wild-type poliovirus. Therefore the
end stage of poliovirus eradication relies on the withdrawal of OPV as the source of cVDPV (Yan et al., 2021). In 2015 and 2019,
respectively, wild-type poliovirus 2 and 3 were declared eliminated. Since fewer mutations are required for OPV-2 to revert to
virulence than other types, cVDPV had mostly been due to OPV-2. Therefore, to curb the threat of cVDPV, bivalent OPV (bOPV),
which lacks OPV-2, replaced trivalent OPV (tOPV) in May 2016. This approach was initially successful, as it reduced the source of
cVDPV by the end of 2016. However, from 2017 to 2019, cVDPV started to rebound, as herd immunity toward poliovirus-2
declined. Paradoxically, OPV-2 withdrawal resulted in an increase in cVDPV derived from OPV-2 (cVDPV-2), which had continued
to circulate in insufficiently immune populations. This has resulted in the reintroduction of OPV-2 in regions with cVDPV-2 to mop
up such outbreaks (Alleman et al., 2020; Chard et al., 2020). Subsequently a new OPV-2 vaccine construct that is more genetically
stable and less likely to revert to virulence has been investigated in clinical trials (De Coster et al., 2021). This vaccine may in future
help to prevent cVDPV-2.

It is evident that molecular epidemiological investigations of poliovirus have been and would remain essential in targeting
medical control measures. An effective eradication effort is reliant on the fast and accurate genotyping of poliovirus from patients
and environmental sources and construction of transmission networks by geographical location and time. This is essential in
establishing whether strains identified are wild-type or vaccine-derived and to trace the geographic sources of transmission chains.
In addition, full genome sequencing can provide valuable information about the role of recombination of vaccine polioviruses with
other Enterovirus C genotypes and its role in regaining virulence. Improvements in next-generation sequencing methods are likely
to continue to contribute to the success of eradication efforts in providing critical knowledge about the molecular epidemiology of
polioviruses (Jorgensen et al., 2020).
Tracing the source of food-borne outbreaks

Listeria monocytogenes (L. monocytogenes) is a gram-positive bacterium responsible for listeriosis in humans. It has the ability to
survive in food production plants, when disinfection is insufficient (Gandhi and Chikindas, 2007). Whole genome sequencing of
L. monocytogenes provides a more accurate classification of types than prior methods such as pulse field gel electrophoresis (PFGE).
Moreover phylogenetic analysis could identify outbreak clusters and provide accurate molecular data to trace the source of an
outbreak (Lüth et al., 2018).

Noroviruses are highly infectious, environmentally stable, and antigenically diverse feco-orally transmitted viruses that belong to
the family Caliciviridae and are some of the most important causes of large gastroenteritis outbreaks associated with food vendors,
hospitals, cruise ships, and large events. Molecular epidemiology has been useful in identifying the source and transmission
dynamics of norovirus infections. Moreover monitoring global diversity and identifying conserved antigenic domains and anti-
bodies that are cross-protective, between strains, may be useful for vaccine development efforts (Hasing and Pang, 2021).
Ribosomal RNA and metagenomics

16S rRNA PCR and sequencing have been used for bacterial metagenomics in environmental and biological samples and have
enabled the diagnosis of novel bacteria (Woo et al., 2008), and increased the detection of known bacteria (Cummings et al., 2020),
when not clinically suspected. It may be particularly useful when working with fastidious or slow growing organisms as it could
provide a fast and unbiased diagnosis. This approach has also been used to detect unexpected bacterial species in brain abscesses
(Al Masalma et al., 2009). However, cost and optimal workflow are current constraints. The faster result generation with ONT
third-generation sequencing, compared to other next-generation sequencingmethods, may increase the utility of 16S rRNA PCR and
sequencing, especially if the costs of sequencing can be further reduced and if sequencing accuracy of these novel methods improves
further in the near future (Heikema et al., 2020).

As ticks are important vectors of bacterial and viral disease, metagenomic microbiome analysis of ticks for potential bacterial
pathogens is important in identifying the risks for human infection, even before human outbreaks might occur. PCR amplification
and sequencing of 16s rRNA have been used to identify multiple bacteria belonging to the families Rickettsiaceae, Enterobacteriaceae,
and Pseudomonadaceae (Lambert et al., 2019; Sperling et al., 2017). A similar approach also allows for the metagenomic identifi-
cation of tick-borne bacteria in blood from patients (Kingry et al., 2020; Rodino et al., 2021).

Pan-fungal primers selected in the internal transcribed spacer (ITS) of ribosomal RNA are useful for fungal metagenomics in
environmental and biological materials. Fungal infections of hospitalized patients have often been shown to have an environmen-
tal origin and identifying the source requires ecological sampling. Drug-resistant Candida auris has been associated with serious
blood infections in hospitalized patients (Prestel et al., 2021), but the likely source has not been known. Recently, ITS primers for
fungal metagenomics were used to identify Candida auris in coastal wetlands of the Andaman islands (Arora et al., 2021). It is not yet
known, however, if these wetlands are the main natural reservoir of Candida auris.
Monitoring infectious agents for drug resistance

Next-generation sequencing could be applied to viruses, bacteria, or parasites and be especially useful to detect novel mechanisms of
drug resistance. NGS genome sequencing (WGS) of Plasmodium falciparum was able to identify candidate genes involved in
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artemisinin resistance, which is an essential drug in malaria treatment and prevention (Ariey et al., 2014). Despite some workflow
challenges, NGS is also gaining traction for HIV drug resistance genotyping, as it is more sensitive for low frequency drug resistance
variants (Ji et al., 2020). Although the prevalence of Mycobacterium tuberculosis (MTB) is low, in many industrialized countries, it
is a re-emerging pathogen in impoverished and resource-limited settings and a high incidence has been seen in settings with a high
HIV prevalence. The use of genome capture methods to concentrate MTB from sputum samples, which contain a lot of host DNA,
improves efficiency of WGS of MTB (Brown et al., 2015). Whole genome sequencing of MTB has several important applications: it
can be used to identify drug-resistant lineages (Oppong et al., 2019), understand the molecular epidemiology of MTB to enable
targeted preventions, and investigate the molecular mechanisms of new drugs, which have been recently licensed for MTB treatment
(Iketleng et al., 2018). Considering the multiple drug resistance mechanisms, WGS will likely become increasingly valuable for the
rapid identification of drug resistance against second-line drugs in case of multiple drug-resistant (MDR) and extensively
drug-resistant (XDR) MTB strains and to investigate drug resistance to novel MTB drugs (Faksri et al., 2019). The same principles
apply to investigating phylogenetic relationships of gram-negative and gram-positive bacteria, associated with hospital associated
drug resistant outbreaks, and could help to understand the transmission dynamics for the purpose of targeted interventions that
would limit nosocomial spread of highly resistant bacteria (Gröschel et al., 2020; Mahmoud et al., 2020; Quainoo et al., 2017).
False findings: Associations with chronic fatigue, prostate cancer, and XMRV

The high sensitivity of molecular methods such as PCR that is based on amplification of DNA increases the risk of false findings.
Investigations that aim to discover novel disease associations of infectious agents should ensure that there are appropriate controls
that would detect contamination and that cases and controls are treated the same. A novel agent, Xenotropic MLV-related Virus
(XMRV), was identified in 2006 and was soon associated with chronic fatigue syndrome (CFS) (Lombardi et al., 2009) and prostate
cancer (Schlaberg et al., 2009). However these findings could not be reproduced by others, even when including the same patients;
and there was evidence of contamination with identical MLV sequences (Kearney et al., 2012) likely originating from reagents used
prior to PCR (Erlwein et al., 2011; Kearney et al., 2012). Similarly, contamination of cell cultures used in prostate cancer research
with murine viruses was the likely source of the artefactual association of XMRV with prostate cancer (Das Gupta et al., 2012;
Schlaberg et al., 2014).
Conclusion: Identifying and monitoring emerging infections now and in the future

The development of metagenomics methods that allow for the unbiased discovery of infections in humans, the environment,
zoonotic hosts or vectors, has the potential to revolutionize pathogen discovery. Moreover improvements in sequencing technology
with next-generation sequencing and more recently long-read third generation sequencing have decreased the time from the first
identification to full characterization of genomes of newly discovered infectious agents. This is probably most evident in the rapid
full characterization and international sharing of the full SARS-CoV-2 genome a few weeks after its discovery. Without such speed of
SARS-CoV-2 characterization the fast development of diagnostic tests and the fastest ever development and approval of vaccines,
within a single year, would not have been possible.

It has also became apparent that nonhuman mammal hosts are the source of many emerging infections. Molecular epidemi-
ological studies and molecular clock models have shown that HIV originated from primates and that bats host many viruses of
concern that have either historically crossed the species barrier or which in future could result in pandemic spread. It is therefore
important that the monitoring for pandemic threats involves a One Health Approach, which combines veterinary and human
health and which includes the investigation of arthropod vectors of infectious disease.

Globalization has resulted in a higher level of interconnectedness. Moreover high population density and urbanization have
increased the risk of rapid spread of respiratory pathogens. Therefore, an infection that emerges in one continent can rapidly spread
globally. Nevertheless, it also offers the opportunity for global collaboration in identifying agents of pandemic potential. Such
global collaboration, which involves sharing information and technological developments, would remain essential in the rapid
identification and response to current and future emerging infectious diseases and pandemic threats.
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