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Abstract

Background: The proper assembly of the transcriptional initiation machinery is a key regulatory
step in the execution of the correct program of mRNA synthesis. The use of alternative
transcription start sites (TSSs) provides a mechanism for cell and tissue specific gene regulation.
Our knowledge of transcriptional initiation sequences in the human genome is limited despite the
availability of the complete genome sequence. While genome wide experimental and bioinformatic
approaches are improving our knowledge of TSSs, they lack information concerning genes
expressed in a restricted manner or at very low levels, such as tissue specific genes.

Results: In this study we describe the mapping of TSSs of genes expressed in human retina. Genes
have been selected on the basis of their physiological or developmental role in this tissue. Our
work combines in silico analysis of ESTs and known algorithm predictions together with their
experimental validation via Cap-finder RACE. We report here the TSSs mapping of 54 retina
expressed genes: we retrieved new sequences for 4| genes, some of which contain un-annotated
exons. Results can be grouped into five categories, compared to the RefSeq; (i) TSS located in new
first exons, (i) splicing variation of the second exon, (jii) extension of the annotated first exon, (iv)
shortening of the annotated first exon, (v) confirmation of previously annotated TSS.

Conclusion: In silico and experimental analysis of the transcripts proved to be essential for the
ultimate mapping of TSSs. Our results highlight the necessity of a tissue specific approach to
complete the existing gene annotation. The new TSSs and transcribed sequences are essential for
further exploration of the promoter and other cis-regulatory sequences at the 5'end of genes.

Background

The spatial and temporal regulation of gene transcription
is primarily determined by it's flanking promoter (cis-reg-
ulatory DNA elements) through interaction with trans-act-
ing regulatory proteins (transcription factors) [1,2]. The
start of transcription is accomplished by the formation of
a pre-initiation complex on the DNA, yet our knowledge
of transcriptional initiation sequences in the human

genome is still limited despite the availability of the com-
plete genome sequence [3,4]. Therefore one of the main
remaining challenges is to locate these gene sequences,
defined as the transcription start site (TSS), in order to
explore core promoter and cis-regulatory elements that
direct the start of every transcript. Genomic structure and
full length cDNA sequences aligned on the genome pro-
vide opportunities to locate TSSs. Conventional methods
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for determining exact TSSs, such as 5' RACE or primer
extension are laborious and are not selective for the com-
plete transcript. Consequently, many mRNA sequences
stored in public databases lack information about their
genuine 5' ends, mainly due to the difficulties in obtain-
ing full-length cDNA. Several bioinformatic and experi-
mental approaches have been developed to explore full-
length cDNAs and the human transcriptome [5]. Compu-
tational predictions may represent a powerful tool to
localize first exons and TSSs on an averaged genome-wide
scale [6,7], however they may fail at the level of individual
genes or in genes with complex regulatory patterns (e.g.
multiple or tissue-specific TSS).

Recently a number of experimental approaches to com-
pile TSSs on a genome-wide scale have been established
including the Database of human Transcriptional Start
Sites (DBTSS) [8], whole genome tilling array analysis [9],
and the exploration of mouse and human CAGE tag
libraries [10]. To enable future progress we need to com-
plete and revise these catalogues with an accurate annota-
tion of the 5' and 3'end, and include splice isoforms of the
transcripts. In addition to genome wide approaches, there
is a need for more specific studies, which cover tissue spe-
cific genes, expressed in a restricted manner. Identification
of potential transcription signals that are tissue specific
relies on the correct determination of transcriptional start
sites.

In this work we describe an experimental approach to
identify the TSSs of a selected group of genes, which are
predominantly expressed in retina. We focused our atten-
tion on the human retina, due to its unique and special-
ised function. This complex tissue, composed of multiple,
highly differentiated and specific cell types (e.g. rod and
cone photoreceptors, amacrine cells, Mueller glial cells),
expresses a large number of specific genes. Mutations in
many of these genes result in blinding disorders. The sub-
set of genes expressed in human retina has been partially
elucidated [11,12], with a number of studies defining
genes that are either highly expressed in retina or which
pose a crucial target of transcription factors in this tissue
[13-16]. We selected a pool of retina expressed genes and
employed Cap selective RACE to ensure amplification and
subsequent cloning of genuine TSSs. We describe herein
the results of this analysis, reporting the correct TSSs
within this group of retinal transcripts.

Results

Genes Selection and in silico assembly

76 annotated genes were selected for analysis. The selec-
tion was done based on the following criteria: (i) specific
or high levels of expression in retina, (ii) a role in retina
specific physiological processes or retinal development,
and (iii) involvement in retinal disease. A compilation of

http://www.biomedcentral.com/1471-2164/8/42

all tested genes including gene symbol, definition, chro-
mosomal location and tissue/cell type of expression is
shown in Additional file 1.

¢DNA and transcript sequences available in public data-
bases (RefSeq, NCBI and Ensemble gene predictions cov-
ered by at least one EST, Unigene ESTs database) were
downloaded and new assemblies generated using Seq-
Man.

We found that 5' transcript termini represented in public
datasets can be readily identified by clusters of cDNA ends
in the assemblies. Additionally, the information about
putative TSSs was assessed in The Eukaryotic Promoter
Database [17] and Database of Transcriptional Start Sites
(DBTSS) [8]. These data were compiled to create a prelim-
inary gene model which was used to design primers for
the subsequent Cap-finder RACE experiments.

Experimental examination of TSSs

Cap-finder RACE cDNA fragments were cloned and a var-
iable number of clones were sequenced for each gene,
depending on the number and the sizes of the colony PCR
products detected on the gel. We obtained products for 54
genes out of the 76 genes analysed. A summary of the
results obtained with Cap-finder RACE is shown in Tables
1. Genes for which the promoter and TSS were already
known (RHO and OPN1SW) served as internal positive
controls. For each gene we detected at least one splice var-
iant that agreed with one or more RefSeq annotated
exons.

Our strategy relies on the location of gene specific primers
within internal exons. We obtained those cDNA products
that covered at least one exon-exon junction and thus
ruled out the possibility of amplification of genomic con-
tamination. This strategy has enabled us to identify alter-
natively spliced 5' ends that arise from tissue specific gene
expression and regulation.

Table 1 lists the results of the Cap-finder RACE experi-
ments for 54 retinal expressed genes and the correspond-
ing RefSeq entry (database release 18). These results can
be grouped into five categories with reference to RefSeq;
(i) new TSSs within novel exons (8 genes), (ii) alternative
splice form of the second exon (2 genes: IMPG1, SAG),
(iii) extension of the annotated first exon (27 genes), (iv)
length shortening of the annotated first exon (4 genes),
(v) confirmation of previously annotated TSSs (13 genes).
Table 1 provides the exact nucleotide positions of 5' ter-
mini of the Cap-finder RACE cDNA clones referring to the
UCSC Human Genome Browser (March 2006 assembly).
In defining the interval where TSSs are located we report
the start, and when present, the internal frequent start and
end nucleotide position of each TSS. Sequences from this
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Table I: Results of the RACE experiment to determine the TSS of retina transcripts

Gene Symbol RACE results TSS location Chr. Shape CAGE
Start Int. peak End
Clorf32 Two new first exons Isoforma 165,208,791 1q24.1 SP +
Isoformb 165,269,346 - -
Extension exon 0 of Isoforma 98,329,050 98,329,083 2ql1.2 BR +
180 bp
CNGA3 Isoformb 98,329,288 SP -
Isoform ¢ 98,329,371 SP +
DHRS3 New first exon Isoforma 12,578,722 1p36.1 SP -
Shorter exon | of 508 Isoformb 12,599,903 12,599,935 SP -
bp
ELOVLS New first Exon 53,320,946 6p21.1-pl2.1 - -
KIFC3 Two new first exons Isoforma 56,437,970 16q13-q21 SP -
Isoformb 56,370,953 SP -
RCVI Extension exon | of Isoforma 9,749,613 9,749,402 9,748,934 17p13.1 PB -
203 bp
New first Exon Isoformb 9,745,910 - -
Lack of exon |.exon2 Isoformc 9,745,244 9,745,221 MU -
extended
RDHI2 Two new exons 67,254,268 67,254,276 67,257,284 14q24.1 MU -
Isoformc 19,778,103 9p22-pl3 SP -
SLC24A2 Two new first exons Isoforma 19,778,808 - -
Isoformb 19,778,609 - +
Isoformd 19,776,949 19,777,002 PB
Lack of exon 2 76,839,115 76,839,078 6ql4.2-ql5 SP -
IMPGI Lack of exon |I. 76,808,496 SP -
shortening exon2
Complete in the first 3 76,839,060 - -
Exons
SAG Lack of exon 2 233,998,462 233,998,525 2q37.1 BR -
AIPLI 6l bp 6,279,208 6,279,306 17p13.1 - -
AOC2 10 bp 38,250,126 17q21 SP +
CLULI 31 bp 606,669 606,693 606,698 18p11.32 PB -
CNGB3 43 bp 88,404,286 88,404,354 8q21-q22 - -
EYA3 14 bp 28,287,732 28,287,684 I1p36 BR +
FSCN2 66 bp 77,109,947 77,109,997 17925 - -
GNATI 44 bp 50,204,027 50,204,047 3p2l - -
GRK7 40 bp 142,979,632 142,979,726 3q21-q23 BR -
GUCAIB 19 bp 42,270,691 42,270,689-42,270,672 42,270,649 6p21.1 PB -
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Table I: Results of the RACE experiment to determine the TSS of retina transcripts (Continued)

GUCY2D 30 bp 7,846,687 17p13.1 - -
HPCA 15 bp 33,124,670 33,124,680 2p25.1 MU

IMPDH I 206 bp 127,837,736 7q31.3-q32 SP +
IMPG2 23 bp 102,522,132 102,522,102  3ql2.2-ql23 BR -
LRRC2] Extension exon | of 121 bp 85,991,318 85,991,280 85,991,194 10923 PB -
MPP4 30bp 202,271,692 202,271,616 202,271,601 2q33.2 PB -
OPN4 67 bp 88,404,287 10922 SP -
PDC 17 bp 184,696,879 184,696,869 1925.2 MU -
PDE6H 7 bp 15,017,238 15,017,243 12p13 SP -
PRPF31 117bp 59,310,532 59,310,609 19q13.42 MU -
RdCVF 37 bp 17,432,763 17,432,753-17,432,735 17,432,716 19p13.11 MU -
RDHS5 39 bp 54,400,449 12q13-ql4 SP -
RDH8 63 bp 9,984,862 9,984,925 9,984,991  19pl3.2-p13.3 MU -
RDS 61 bp 42,798,348 42,798,296  6p21.2-pl12.3 BR -
RLBPI 83 bp 87,566,008 87,565888 15926 - -
ROMI 215bp 62,136,883 62,137,111 Iql3 BR -
RPGR 7 bp 38,071,739 38,071,704 Xpll.4 BR -
TULPI 70 bp 35,588,693 35,588,651 6p21.3 PB +
CRB2 52 bp 125,158,322 125,158,324 9q33.2 - -
CRX Shortening exon | of 60 bp 53,016,971 53,017,001 53,017,005 19913.3 SP -
RPI 53 bp 55,691,206 55,691,233 8qll-ql3 BR +
WDRI7 77 bp 177,224,132 177,224,169-177,224,185 177,224,202 4q34 MU
ABCA4 94,359,290 94,359,245 1p22.1-p21 BR -
CI40RF2 103,457,619 14932.33 - +
CiQL2 119,632,934 2ql4.2 - -
CTorf9 25,427,912 7p21-pl5 - -
CHM 85,189,194 85,189,222 Xq21.2 BR +
ELOVL4 80,714,034 6ql4 -
OPNISW Previous 5' end confirmed 128,203,084 7q31.3-q32 SP -
RAX 55,091,570 18q21.32 SP -
RBP3 48,010,989 48,011,000 10ql1.2 - -
RDHI I 67,232,201 67,232,186 14q24.1 SP -
RHO 130,730,174 3q2l SP -
RPLI4 40,473,831 3p22 SP +
RSI 18,600,144 Xp22.2-p22.1 SP -

The Table provides Gene Symbols of the processed genes, RACE results referring to the RefSeq entry (database release 18), nucleotide position of
the TSS (start, internal frequent start and end) referring to the UCSC Human Genome Browser (March 2006 assembly), Chromosomal location
(Chr.), shape of the TSS (Shape) according to the classification of Carninci et al., 2006: single peak [SP], broad [BR], bimodal/multimodal [MU],
broad with dominant peak shape [PB], comparison with Cage TSS database (+ for correspondence, — no correspondence). The genes are listed
according to the type of results that was obtained according to the description in the text: (i) new TSSs within novel exons (8 genes), (i) alternative
splice form of the second exon (2 genes:, (iii) extension of the annotated first exon (27 genes), (iv) length shortening of the annotated first exon (4
genes), (v) confirmation of previously annotated TSSs (13 genes).
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study have been submitted to GenBank under the acces-

sion numbers: DQ067456-DQ067464, DQ426859-
DQ426897, DQY980599-DQ980621.

Retinal expressed genes with new 5' exons

For 8 genes (Clorf32, CNGA3, DHRS3, ELOVL5, KIFC3,
RCV1, RDH12, SLC24A2) we have identified a new exon
composition at the 5' end of the transcript and in some
cases new untranslated 5' exons that locate the TSS several
kilobases upstream or downstream from the annotated
one.

- Clorf32. This transcribed locus in chromosome 1 was
selected for its retinal expression. For this gene, whose
function is still not characterised, we retrieved two new
isoforms lacking the first annotated exon found in RefSeq.
These isoforms contain TSSs in two new exons. One form
displays a new first exon located 3 kb downstream from
the previous TSS. The other form presents a first exon
located 58,4 kb upstream of the former TSS, generating a
new first intron spanning a locus transcribed in the oppo-
site strand, the gene MAEL. (Figure 1A)

- CNGA3 (cyclic nucleotide gated channel alpha 3) codes
for the a-subunits of the cone photoreceptor cGMP-gated
channel, a crucial component of the cone phototransduc-
tion cascade in colour vision. Mutation in this gene causes
achromatopsia. The RACE experiment confirmed the pres-
ence of 4 isoforms, all containing a splicing of untrans-
lated exon 0 localised 23,4 kb upstream of exonl [18]
(Figure 1B).

- RDH12 (Retinol dehydrogenase 12) is an enzyme with
dual-specificity retinol dehydrogenases that metabolise
both all-trans- and cis-retinols, reported to be expressed in
photoreceptors [19]. Mutations within RDH12 cause both
recessive early onset Retinitis pigmentosa and Leber's con-
genital amaurosis [20,21]. In human retinal mRNA we
retrieved two forms of the transcripts containing a new
first exon located upstream of the RefSeq TSS and a differ-
entially spliced second exon. The in silico assembly and
experimental pipeline allowed us report three putative
TSSs for this gene; the first is defined by the RefSeq anno-
tation, the second was deduced from the most upstream
transcript represented by ESTs from pooled colon and the
third is a new TSS displayed by retinal transcripts (Figure
1C).

- DHRS3 (dehydrogenase/reductase, SDR family, member
3) codes for an enzyme catalysing the reduction of all-
trans-retinal to all-trans-retinol in the presence of NADPH
[19,22]. The gene was included in our study for its high
expression in retina. Cap-finder RACE confirmed the pre-
vious first exon and TSS. We also detected an alternative
TSS in a new first exon downstream from the annotated
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one which was predicted with FirstEF [6]. (Additional file
2: Figure 5).

- ELOVLS5 (elongation of long chain fatty acids, including
docosahexanoic acid (DHA), family member 5). This gene
was recently annotated as a retinal expressed gene [23]
and a target of mutation studies in retinitis pigmentosa
[24]. We detected a new form of the transcript with a new
first exon that was not previously annotated or described
for retina. (Additional file 3: Figure 6)

- KIFC3 (Kinesin family member C3) codes for a retina
specific microtubule-associated force-producing protein
that may play a role in intracellular transport [25]. We
have characterised two new isoforms of KIFC3 retinal
transcripts which lack the first 3 exons annotated in Ref-
Seq. Both transcripts include a new first exon that localizes
these new TSSs 44 kb upstream and 27 kb downstream
respectively from the TSS referenced in the RefSeq data-
base. The more upstream start site locates the gene in
proximity to another retina specific gene (CNGB1). (Addi-
tional file 4: Figure 7)

- RCV1 (recoverin) inhibits thodopsin kinase activity in
retinal photoreceptors by reducing the binding of arrestin
to thodopsin. Deregulation of recoverin expression in cer-
tain types of cancer demonstrates a pathological role in
cancer-associated retinopathy [26]. Although a previous
study of the promoter was performed [27], no clear evi-
dence of the TSS have been described. For this gene we
detected three alternative transcripts; the first with the
same 5' end as the previously annotated TSS (first exon
length may vary from 203 bp longer to 444 bp shorter),
the second with a more frequent isoform lacking the first
exon and starting 80 bp upstream from the second exon
of the RefSeq and the third form has a new first exon
located downstream from the annotated one. (Additional
file 5: Figure 8).

- SLC24A2 (solute carrier family 24, sodium/potassium/
calcium exchanger, member 2) codes for a potassium-
dependent sodium-calcium exchanger in cone photo-
receptor [28]. Although variant alleles of the cone
SLC24A2 gene have been identified, none of them are
definitively associated with a specific retinal disease [29].
The new model we present for SLC24A2 predicts three
putative TSSs located in two new additional exons that are
alternatively spliced (Additional file 6: Figure 9).

We also investigated whether the new exons that extend
the 5' end of the transcript may introduce new potentially
protein coding sequences. We didn't observe in any case
an extension of the open reading frame beyond the anno-
tated start codon. However short alternate open reading
frames of at least 40 codons were observed for Clorf32
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Schematic gene structure of 3 analysed genes. Schema of the RefSeq, ESTs, exonic structure of new isoforms identified
with the Cap-finder RACE of human retina mRNA and the genomic structure containing the TSSs indicated by arrows. Red
Arrows indicate new retina TSSs. A) Clorf32. Transcripts in human retina: isoform a contains a new first exon located 2.7 kb
downstream from previous TSS, isoform b presents a first exon 58,5 kb upstream the previous TSS. This second transcript
defines an intron containing another transcribed locus in the opposite strand, the gene MAEL. B) CNGA3: Cap-finder RACE of
human retina mMRNA confirmed the presence of an untranslated exon localised 23,4 kb upstream of exon|. One isoform con-
tains alternatively spliced variant of exon 0 (asterisk). C) RDH[2: the schematic representation of EST from human retina
shows two forms of the transcripts starting in a new retina TSS. These two isoforms contain two alternatively spliced variants

of the second exon (asterisk).
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(nucleotide position 18-290 from the TSS in isoform a,
and position 164-400 in isoform b), CNGA3 (position
166-315), DHRS3 (position 166-315), KIFC3 (position
4-195), and SLC24A2 (position 55-183 isoform a, 44-
289 isoform b). Yet the translated sequences of these short
ORFs do not have homology with any protein in public
databases.

Detection of novel splicing variants and shorter transcripts
Our experimental procedure described alternatively
spliced isoforms for two genes IMPG1, SAG, which lack
exon 2 of the RefSeq. These forms have not been anno-
tated in the RefSeq database. We confirmed these alterna-
tively spliced isoforms by regular RT-PCR (Data not
shown). The second exon of the gene SAG contains the
TSS and the presence of this alternative form, lacking the
regular start site, may play a role in the regulation and fur-
ther processing of the transcript. For 4 genes (CRB2, CRX,
RP1, WDR17), we detected shorter transcripts that lack the
annotated start codon. Since these experiments were done
with the same adapter ligated first-strand cDNA we
assume that these short transcripts are derived from true
alternative TSSs. These transcripts may be preferentially
amplified in the RT-PCR and may be translated from an
internal initiation codon. We report in Table 1 the
detailed results for these genes.

Confirmation of results with primer extension

To provide an experimental validation of our results we
undertook primer extension experiments. We performed
reverse transcription of mRNA with a sequence-specific
FAM-labelled primer for two genes (CNGA3, RDH12).
The length of the FAM-labelled cDNA primer extension
product can be analysed on ABI-DNA Genetic Analyser
using GeneScan software. As a result of the analyses we
detected a fragment of 350 bp for CNGA3 (Fig 2A) and a
fragment of 215 bp for RDH12 (Figure 2B). The size of
these fragments confirms the presence of the transcripts
that we detected with RACE.

Comparison with existing annotations and databases

To assess the quality of current annotations of the 5' end
of genes expressed in human retina, the sequences
obtained by 5' RACE were compared with the correspond-
ing gene annotation/prediction. Overall, RACE experi-
ments detected 15 exons that were neither annotated nor
predicted for retina transcripts; 8 exons did not have any
matching experimental evidence in GenBank, while the
other 7 showed different boundaries or alternative splice
sites. Of these 15 un-annotated exons, 12 are first exons
and can be considered the new first exon for the retinal
transcripts. Of the 54 genes successfully amplified, 41
(76%) delivered 5' RACE sequences different from the
annotation. Results of a parallel project, DBTSS [8], sup-
ported our results concerning 3 of these genes (CNGA3,

http://www.biomedcentral.com/1471-2164/8/42

ELOVL5 and SLC24A2) although the source of mRNA was
not human retina. We extended the annotated first exon
of 27 RefSeq genes by an average of 60 transcribed bases.
We compared our results with genome wide mapping of
TSSs using CAGE tags [10]. We found perfect correspond-
ence for 13 transcript isoforms; for another 6 transcripts
the start site retrieved in the CAGE database is located less
than 400 bp away. For 35 transcript isoforms the TSS is
located in a different position (See Table 1). This discrep-
ancy in the results may be due to the fact that the CAGE
database doesn't include retina amongst the panel of ana-
lysed tissues and therefore lack specific and rare transcript
isoforms present in that tissue.

Shape of TSSs and conservation

After analyzing the distribution of RACE clones we could
define the shape of TSSs according to the classification
previously reported [10]. The different clones were clus-
tered and depending on the start base position of each
clone within a cluster we divided the start sites into four
shapes. In the single dominant peak class (SP) the major-
ity of clones are concentrated to no more than four con-
secutive start positions with a single dominant TSS. The
clusters spanning a broader region are grouped in a gen-
eral broad distribution (BR), a broad distribution with a
dominant peak (PB) and a bi- or multimodal distribution
(MU): 22 genes showed a single dominant peak, 11 a
broad distribution, 8 a bi-multi peak distribution and 6 a
broad distribution with a dominant peak. For some tran-
scripts we could not make a classification because the
number of clones was less than 5. We report the results of
this analysis Table 1 (TSS shape). Figure 3 shows a graph-
ical view of TSSs identified for AOC2, ABCA4, RDH12,
and LRRC21 as an example of the different distributions
observed. The classification of the shape of TSSs defined
by distribution of 5' end RACE clones within a cluster is
useful for the further characterization of expression regu-
lation. The distribution of the clones defines different ele-
ments of the core promoter and gives insights on the start
of transcription. Even if broad promoters are the major
class in mammals [10], 36 of the analysed transcripts
present a dominant peak highlighting the possibility that
those transcripts are tightly regulated.

Although TSSs of orthologous genes do not necessary
reside on equivalent locations because of evolution of
mammalian TSSs [30], we analysed sequence conserva-
tion of the first new exons among a set of mammals
(mouse, dog, cow): the range of conservation varies
between 42 and 89 %. We report the pairwise alignment
percentage of identity in Additional file 7.

Sequences residing upstream and downstream from the
boundaries of new defined exons are regions displaying
high regulatory potential calculated by a computational
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Figure 2

Primer extension results from WERI-RBI retina cell lines mRNA. Primer extension products obtained with the gene
specific primer for CNGA3 (A) and for RDH 2 (B). The blue peaks in each panel correspond to the primer extension product
(FAM-labelled cDNA). The elongation products size 350 bp and 215 bp were respectively expected from the data of RACE
cDNA sequences (Blue arrow). Red peaks are the GeneScanR-500 ROX internal lane standards. In the y-axis is indicated the
intensity of fluorescence, in the x-axis the number of nucleotides.
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Nb of RACE clones

LRRC21

Nucleotide position

Figure 3

TSSs present different shapes. Histograms indicate the number of RACE clones mapping at each nucleotide position.
Examples show the different pattern that we observed during the analysis of the Cap-finder RACE. A) Clones distribution for
AOC2 (single peak class: SP). B) Clones distribution for ABCA4 (broad: BR). C) Clones distribution for RDH /2 (multimodal:
MU). D) Clones distribution for LRRC2 | (broad with dominant peak shape: PB).

algorithm [31] integrated in the UCSC genome browser.
The regulatory potential (RP) scores computed for the 500
bp sequence upstream the TSS shows that in 9 new first
exons out of 11 the RP value exceeds an arbitrary thresh-
old of 0.2 (data not shown). Considering 500 bp down-
stream the splice site of the first exon the RP value is > 0,2
at least for 7 first exons out of 11. This observation con-
firms the importance of the new described exons to locate
new regulatory elements that are important for transcrip-
tion in retina.

A high level conservation was observed for splice donor
sites of the new first exon. 5 genes show an average con-
servation of at least 75% in the region -3/+5 spanning the
splice donor site. For example, we report an inter-species
alignment of the 3' end of exon 0 (CNGA3). The sequence
conservation at the level of the splice donor site highlights

the possibility of a particular role for this splicing (Figure
4).

Discussion

Now that the information pertaining to the genomes of
human and other animals is available, the next challenge
for genetic studies is to map the TSSs and regulatory
sequences of the genes. Here, we carried out a study to
determine the genuine TSSs of a pool of retinal expressed
genes. The results give correct information about the com-
plete 5' end of transcripts and this data will be useful to
locate the respective core and proximal promoter ele-
ments. We chose Cap-finder RACE to map the TSS of reti-
nal expressed genes because this technique is selective for
the complete transcript [8,32]. For 41 out of 54 success-
fully amplified genes, the Cap-finder RACE experiments
detected transcripts which are different from the current
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Figure 4
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Inter-species alignment of exon-intron boundaries of the exon 0 of CNGA3. Conserved nucleotides are labelled
with colours and with the star in the bottom those conserved in all the analysed species (human, mouse, rat, rabbit, dog cow,

elephant and tenrec). Arrow highlights the splice donor site.

gene annotation In most cases the RefSeq was incomplete.
Transcripts were missing part of the first exon or even
complete exons at the 5' end. This experimental determi-
nation of TSSs shows that the current gene annotation was
in most cases obtained from data sources that are not
strictly selective for the complete transcribed form, and
need to be updated. This procedure led us to discover sev-
eral transcript isoforms that were un-annotated and to
locate retina specific TSSs. Proteins encoded by these
genes are essential for retina function and stability. A
mutation in the cis-regulatory elements may influence the
level of transcription and have a strong effect due to sen-
sitivity of photoreceptors for high level transcription of
genes involved in phototransduction. The new described
cis-regulatory regions and untranslated exons are possible
targets for mutation studies in retinal disorders. Therefore
new isoforms give a more complete picture of alternative
start sites use in retina genes. The 5' untranslated region
may contain important transcriptional and post transcrip-
tional regulatory sites [33-35] and therefore only the com-
plete 5' UTR provides the opportunity to study the
potential regulatory role of these non-coding sequences.
New reported TSSs contribute to the identification of reg-
ulatory elements active in tissue specific gene regulation
[36,37]. Moreover, bioinformatics tools that identify
common regulatory elements rely on the correct determi-
nation of TSSs within a particular tissue [38], therefore
these computational approaches will only be effective
after experimental validation of the 5' end of transcripts.

Conclusion

We herein report the TSSs for 54 retina expressed genes.
Our results define new and more precise locations of TSSs
for 76% of the analysed genes; moreover in 15% of the
genes we found new exons in the 5' end of the transcripts.
Thus, this analysis of TSSs in human retina was essential

to define the complex pattern of transcripts present in this
tissue.

Our results highlight the importance of applying a tissue
specific approach with a systematic program of Cap-finder
RACE using the known gene structures as a starting point
and/or gene predictions to complete the existing gene
annotation. The new TSSs and transcribed sequences pro-
vide crucial information for further exploration of the
promoter and other cis-regulatory sequences at the 5'end
of the gene, and in particular for the study those elements
that are functionally active in human retina.

Methods

In silico analysis

We used available public database information (RefSeq,
NCBI and Ensemble predictions covered by at least one
EST, Unigene EST database) to perform in silico assembly
and analysis of 5'transcript termini. The procedure
involves downloading the sequences from public data-
bases, clustering them to obtain a consensus and design-
ing a gene model with the most complete 5' transcript
termini. Sequences were downloaded and assembled
using the SeqMan program (DNAstar). In our analysis we
consider retina ESTs as well as non-retinal ESTs to obtain
the most complete information about the different alter-
native start sites already mapped. Additionally, the infor-
mation about putative TSS was assessed using Promoser
[39], Eukaryotic Promoter Database Current Release 87
[40], and Database of Transcriptional Start Sites DBTSS
[41]. First exon boundaries were determined by aligning
the predicted sequence to the genome using BLAT [42].
The gene model was then deduced considering the cluster-
ing of all the collected sequences giving the priority to the
most accurate database in the 5' termini (EPD and
DBTSS), but considering also gene prediction (GENS-
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CAN, implemented in the UCSC Genome Browser) and
gene annotation that are confirm by at least one EST [43].
To evaluate first exons conservation we used BioEdit pair-
wise and multiple alignments [44]

Primer design

Gene specific reverse primers were selected within exons
other than the first exon to obtain spliced products. Two
primers were chosen for each gene, in order to perform a
nested PCR, which allows to enhance specificity, and to
obtain a sufficient amplification product for rare tran-
scripts. Primers were designed using the Primer3 software
[45], and checked for uniqueness by querying against the
human genome.

RACE protocol

We applied the RNA-ligase-mediated RACE (RLM-RACE)
system from Ambion. RNA sample from adult human ret-
ina was treated with DNAse 1. After DNase treatment and
inactivation, 10 pg of total RNA was dephosphorylated for
60 min at 37°C with 10 U Calf Intestinal Phosphatase to
remove the 5'-phosphate from all RNA species except
those that have a cap structure (present on all Pol II tran-
scripts). RNA was then phenol/chloroform extracted, pre-
cipitated and re-suspended in water. Dephosphorylated
RNA was then digested for 60 min at 37°Cin a 10-uL reac-
tion with 10 U tobacco acid pyrophosphatase. Subse-
quently the RNA was incubated for 60 min at 37°C with
1 U T4 RNA ligase and 0.3 pg of an RNA adapter (5' RACE
Adapter 5'-GCU-GAU-GGC-GAU-GAA-UGA-ACA-CUG-
CGU-UUG-CUG-GCU-UUG-AUG-AAA-3"). After liga-
tion, 180 ng of RNA was incubated for 2 min at 75°C in
the presence of 5 uM random decamers in RT buffer. Sin-
gle-stranded cDNA was generated by the addition of 100
U M-MLV RT and incubation at 42°C for 60 min.

Amplification of 5' RACE ¢cDNA was carried out using
nested gene-specific primers and adapter specific primers
and with 1 pl of the first-strand cDNA reaction. PCR reac-
tions were done in 50 pl volume including 5 pl 10x PCR
Buffer supplied in the RLM kit, 4 ul ANTP Mix 10 mM, 2
pl 5' RACE gene-specific outer primer (10 pM), 2 pl 5'
RACE Outer or Inner Primer (10 pM), and 1 U thermosta-
ble DNA polymerase. Cycling conditions were: 5 min ini-
tial denaturation at 94°C PCR followed by 35 cycles of
95°C for 30 s, 60-55°C (empirically determined) for 30 s
(annealing), 72°C for 30 s (extension) and a final exten-
sion at 72°C for 7 mins. Amplified products were ana-
lysed on a 3% agarose gel and visualised by ethidium
bromide staining.

Cloning and sequencing of RACE products

5' RACE products were cloned into pCR-2.1 vector (Invit-
rogen). 2 uL of PCR reaction were incubated with 0.1 ng
of vector at 16°C over-night. Aliquots of the ligation were

http://www.biomedcentral.com/1471-2164/8/42

used to transform library efficiency chemically competent
E. coli DH5a (Invitrogen). 8 to 48 clones of each transfor-
mation were subjected to colony PCR and the inserts
sequenced with standard M13 forward and reverse prim-
ers applying Big Dye Terminator v3.0 chemistry (Applied
Biosystems). Sequencing products were separated and
analysed on an ABI 3100 DNA sequencer.

Sequence analysis

Gene sequences and cDNA sequences, obtained using the
RACE, were aligned to the human genome using BLAT.
cDNA sequence was considered informative only if the
following criteria were met: (I) the spliced sequence
mapped to the same region of the genome as the gene
sequence; (II) the product could be mapped uniquely to
the genome with >95% identity and (III) presence of the
gene specific primer sequence and the 5' RACE Adapter
primer sequence.

Primer extension

A fluorescein phosphoramidites (FAM)-labelled reverse
primer was added to 10 pg of DNAsel-treated total RNA to
a final concentration of 5 nM. Samples were heated at
70°C for 5 min followed by 20 min incubation at 58°C
and then allowed to cool for 15 min to room temperature.
First strand cDNA synthesis was performed using Avian
Myeloblastoma Virus (AMV) reverse transcriptase and 5x
AMV-RT buffer (Promega) according to the manufac-
turer's instructions in a final volume of 60 ul. The primer
extension reaction was done in two repeated reaction
cycles. After an initial reverse transcription step (60 min at
42°Cin atotal volume of 50 pl), enzyme was replenished
and the samples underwent a second extension reaction
(60 min at 42°C, adjusting the buffer to a total volume of
60 pl). Finally 3 ul of 5 M NaOH was added to each cDNA
sample, the reaction incubated at 37°C for 15 min and
then neutralised with 16 ul of 2 M HEPES free acid. Exten-
sion products were purified using the columns AutoSeq
G-50 (Amersham Pharmacia Biotech). Samples were sep-
arated on 50-cm capillary columns in the POP4 acryl
amide polymer (Applied Biosystems) on an ABI PRISM
3100 Genetic Analyser (Applied-Biosystems) Sequencer
with GENESCAN 500-ROX added as size standard
(Applied-Biosystems). The sequences of the gene specific
reverse primers were: RDHI12 5' tgagcagcagcctgactctgag-
caga gcccaga 3', CNGA3 5'atcttctcggtttgtcacatttage 3', with
5' ends modified with the fluorescent molecule 6-FAM.
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Additional material

Additional File 1

List of genes selected for the study of identification of TSS. We provide
in the list the Gene Symbol, Gene Name, Chromosomal location, Tissue/
cell type of expression, associated disease of the genes selected for our
study. Abbreviation used in the table: RP: retinitis pigmentosa, CRD:
cone-rod dystrophy, FF: fundus flavimaculatus, MD: macula degenera-
tion, RD: retinal dystrophy.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S1.doc]

Additional File 2

Figure 5: Schematic gene structure of DHRS3. Schema of the RefSeq,
ESTs, exonic structure of new isoforms identified with Cap-finder RACE
of human retina mRNA and a schema of the new genomic structure con-
taining new TSSs (indicated by red arrows). The Cap-finder RACE allow
us to confirm the first exon and TSS of this gene. We also show the pres-
ence in retina of an alternative form of transcript containing a first exon
21 kb downstream the annotated TSS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S2.pdf]

Additional File 3

Figure 6: Schematic gene structure of ELOVLS. Schema of the RefSeq,
ESTs, exonic structure of new isoforms identified with Cap-finder RACE
of human retina mRNA and a schema of the new genomic structure con-
taining new TSSs (indicated by red arrows): we show the presence in ret-
ina of an alternative transcript with a first exon downstream from the
annotated one.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-83.pdf]

Additional File 4

Figure 7: Schematic gene structure of KIFC3. Schema of the RefSeq,
ESTs, exonic structure of new isoforms identified with Cap-finder RACE
of human retina mRNA and a schema of the new genomic structure con-
taining the TSSs (indicated by red arrows): figure shows two new isoforms
lacking the 3 first exons annotated in the RefSeq. Both transcripts let us
to define new TSSs located respectively 44 kb upstream and 27 kb down-
stream from the previous TSS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S4.pdf]

Additional File 5

Figure 8: Schematic gene structure of RCV1. Schema of the RefSeq,
ESTs, exonic structure of new isoforms identified with Cap-finder RACE
of human retina mRNA and a schema of the new genomic structure con-
taining new TSSs (indicated by red arrows). The figure shows three iso-
forms that we obtained with RACE experiments: one form extending the
first exon by 203 bp and the other two forms lacking the first annotated
exons of the RefSeq and, respectively, containing one new first exon that
splices with the second annotated one and one starting at the second exon
but extending it by 80 bp. For both transcripts the TSS is downstream from
the annotated one.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S5.pdf]
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Additional File 6

Figure 9: Schematic gene structure of SLC24A2. Schema of the RefSeq,
ESTs, exonic structure of new isoforms identified with Cap-finder RACE
of human retina mRNA and a schema of the new genomic structure con-
taining new TSSs (indicated by red arrows): 4 new cDNAs clones from
human retina identify 4 new TSSs for this gene. The transcripts contain
two additional exons, a and b, that are alternatively spliced.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S6.pdf]

Additional File 7

Sequence conservation of new first exon. Analysis of sequence conserva-
tion of the first new exons of the listed human transcript in comparison
with a set of mammals (mouse, dog, cow). Numbers indicate percentage
of identity.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-42-S7.doc]
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