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Fetal monitoring is important to diagnose complications that can occur during pregnancy.

If detected timely, these complications might be resolved before they lead to irreversible

damage. Current fetal monitoring mainly relies on cardiotocography, the simultaneous

registration of fetal heart rate and uterine activity. Unfortunately, the technology to obtain

the cardiotocogram has limitations. In current clinical practice the fetal heart rate is

obtained via either an invasive scalp electrode, that poses risks and can only be applied

during labor and after rupture of the fetal membranes, or via non-invasive Doppler

ultrasound technology that is inaccurate and suffers from loss of signal, in particular

in women with high body mass, during motion, or in preterm pregnancies. In this

study, transabdominal electrophysiological measurements are exploited to provide fetal

heart rate non-invasively and in a more reliable manner than Doppler ultrasound. The

performance of the fetal heart rate detection is determined by comparing the fetal heart

rate to that obtained with an invasive scalp electrode during intrapartum monitoring.

The performance is gauged by comparing it to performances mentioned in literature

on Doppler ultrasound and on two commercially-available devices that are also based

on transabdominal fetal electrocardiography.

Keywords: electrophysiology, cardiotocography, fetal heart rate, fetal electrocardiogram, signal processing,

artificial intelligence

1. INTRODUCTION

One in every five pregnant women experiences complications during her pregnancy (1). Although
most of these complications are relatively harmless, some are more severe and will lead to fetal
morbidity, or even mortality. The most important pregnancy complications, in terms of severity
and occurrence, are premature birth, birth hypoxia, intrauterine growth restriction, and congenital
anomalies. Together, this “big four” of pregnancy complications accounts for the majority of
perinatal morbidities and mortalities (2).

Early detection of these pregnancy complications is of the utmost importance to prevent
irreversible damage, but is unfortunately hampered by limitations of the technology that is used in
daily clinical practice. Essentially, this technology comprises of cardiotocography and ultrasound
imaging. The former constitutes a simultaneous registration of fetal heartrate (FHR) and maternal
uterine activity (UA). It is used to screen for patterns in FHR or heartrate variability that could
reveal a compromised condition, e.g., acidaemia (3). The latter is mostly used to screen for
anomalies such as growth restriction or congenital heart disease (CHD).
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The cardiotocogram (CTG) is obtained in daily practice
by either invasive means, using a fetal scalp electrode (FSE)
and intrauterine pressure catheter (IUPC), or non-invasive
means, using a Doppler ultrasound probe and an external
tocodynamometer. The invasive methods suffer from the
limitations that they can only be used during labor after rupture
of the fetal membranes and impose risks to mother and child
(4). In some countries, these invasive methods are therefore no
longer used. The non-invasive methods can be used throughout
pregnancy, but are known to be unreliable (5, 6).

The Doppler ultrasound employed in cardiotocography
consists of a rather narrow beam of ultrasound that insonifies
a small volume in the maternal abdomen (7). If the fetal heart
is within this volume, the signal to noise ratio of the reflected
ultrasound beam is typically good enough to extract a reliable
FHR. However, movement of mother or fetus, or high body
mass of mother causes poor insonification of the fetal heart, with
corresponding poor reliability of the derived FHR (8, 9). Also in
preterm fetuses or multiple pregnancies, Doppler ultrasound is
known to perform poorly.

Over the past decades, extensive research has focused on non-
invasive fetal electrophysiological recordings for measurement
of the CTG (10). Other than Doppler ultrasound, these
electrophysiological recordings are hardly affected by movement
and bodymass (11, 12). However, the recordings are corrupted by
many electrical interferences, of which the maternal heart is the
dominant source. Many studies have been published on methods
to remove this interference, i.e., the maternal electrocardiogram
(ECG), and virtually all with good performance (13–18). Yet, in
many practical situations, removal of the maternal ECG alone
is not enough to enable reliable measurement of the FHR (18,
19). For example, during labor the maternal abdominal muscles
cause interferences that exceed the fetal electrical cardiac activity
(i.e., fetal ECG) in terms of amplitude and that overlap in the
frequency domain.

Perhaps due to these practical limitations, to date, only a
few solutions exist that constitute an electrophysiology-based
device for CTG acquisition and that are ready for use in clinical
practice. A few examples of such solutions include the GE Novii
(GE, USA, formerly the Monica Healthcare Novii), the Philips
Avalon Beltless (Philips, the Netherlands), and the Nemo Fetal
Monitoring System (NemoHealthcare, the Netherlands, of which

FIGURE 1 | Schematic illustration of the data acquisition and signal processing steps that are used to obtain FHR.

one of the authors is co-founder). The use of these solutions in
clinical practice is still fairly limited, mainly due to the relatively
poor performance during second stage of labor (6, 12).

This paper proposes a practical solution to solve the
problems that limit the application of non-invasive fetal
electrocardiography-based cardiotocography, especially during
second stage of labor. The focus of the paper lies on the
acquisition of FHR; for assessing the maternal uterine activity,
the reader is referred to literature such as (20–22). The
performance of the method is assessed by comparing the FHR
to that determined with a simultaneously applied FSE during
intrapartum monitoring.

This paper is organized as follows: In section 2, the
methodology for acquiring electrophysiological data and the
signal processing toward cardiotocography are discussed and
details are provided on the datasets used in this paper. In
section 3, results of the signal processing methods are illustrated
and in section 4 the results are discussed.

2. MATERIALS AND METHODS

The various methodological steps that are needed for acquiring
electrophysiological data and signal processing toward FHR are
schematically depicted in Figure 1. These steps will be discussed
in more detail in the subsections below. Because some of these
steps have been described in detail in other publications, we will
discuss the methodology in terms of a “cookbook recipe” and
will focus our description on the steps that have not yet been
published in detail, i.e., the FHR detection step with artificial
intelligence (AI) extension.

2.1. Data
The study protocol for the data used in this study was approved
by the institutional review board of the Máxima Medical Center
in December 2017 (NL63732.015.17). Women in established
labor, carrying a healthy singleton fetus in cephalic presentation
and with a gestational age between 36 and 42 weeks were eligible
to participate. After written informed consents, participants
received an adhesive electrode patch (Nemo Healthcare BV, the
Netherlands) that comprises four unipolar electrodes, a ground
electrode, and a common reference. Data were recorded locally
on the patch and digitized at 500 Hz sample rate with a resolution
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of 22 nV. Subsequently, data was transmitted wirelessly to a data
processing device to yield instantaneous output of FHR, maternal
heart rate, andUA. In parallel, digitized signals were stored on the
data acquisition system to enable offline processing. All results in
this paper are obtained via offline processing of stored data to
allow for quantitative evaluation. To facilitate such evaluation,
for all patients, a simultaneous FHR recording using a FSE was
performed. The FHR of the scalp electrode was determined by a
Philips Avalon FM30 cardiotocograph (Philips, the Netherlands)
at sampling period of 4 Hz. The output of the cardiotocograph
was stored digitally as well.

In total, 136 recordings were performed with an average
duration of 185 ± 135 min, with the shortest recording 17 min
and the longest 600 min. The evaluation of the presented method
was only performed on 26 of these 136 recordings. The other
110 measurements were used to develop the methods presented
in this study. More details on this splitting of the dataset are
provided in section 2.2.3.2. Details on the age and body-mass-
index of themother are provided inTable 1; other relevant details
such as fetal gender, weight, and presentation were unfortunately
not registered.

2.2. Signal Processing
2.2.1. Preprocessing
The recorded signals were preprocessed to suppress interferences
from e.g., abdominal muscles, baseline wander, and mains
powerline. This preprocessing consists of the application of zero-
phase delay highpass and lowpass filters, with cutoff frequencies
of 1 and 70 Hz, respectively.

For the mains powerline, depending on geographical location
(e.g., 50 Hz for Europe, 60 Hz for USA), a Kalman smoother
was used to effectively suppress the powerline interference,
while avoiding so-called ringing that characterizes conventional
(in)finite impulse response filters (23). Details of the applied
Kalman smoother are provided in (23).

2.2.2. Maternal ECG Suppression
After preprocessing, the dominant interference in the
electrophysiological abdominal recordings is the maternal
ECG. As mentioned in section 1, many studies have been
published on methods for suppressing the maternal ECG. Most
of these methods perform good enough to the point where the

TABLE 1 | Age and body-mass-index (BMI) of the patients included in the study,

subdivided over patients that were used in the training of the proposed methods

and patients that were used in the evaluation of the methods.

n Age (years) BMI (kg ·m−2) p-value

Training 110* 31.2 ± 4.4 28.5 ± 5.0 0.74

Testing 26† 30.9 ± 2.3 28.1 ± 5.5 0.70

The number of patients per group is indicated by n. A unpaired t-test was performed to

determine whether the age and BMI between train and test datasets were significantly

different.

*For two subjects from the train dataset the age was not known, for one subject the BMI

was not known.
†For one subject from the test dataset the BMI was not known.

(possible) residuals of maternal ECG are no longer the dominant
interference and where the methods do not cause any significant
degradation to the quality of the remaining fetal ECG.

In this work, we use a template-based maternal ECG
suppression method. First maternal QRS complexes are detected
using a low-complexity R-peak detection method, presented
in (24). Then the recorded signals are segmented, based on
the detected maternal R-peaks, to yield one maternal ECG
complex per segment. Each ECG complex is then further
segmented to yield individual ECG waves. For each wave, a
template is generated from the linear prediction of corresponding
waves from preceding ECG complexes. The wave templates are
subsequently combined to yield a template ECG. This method
is discussed in detail in (15). Because the FHR is typically not
correlated to the maternal heart rate, fetal ECG complexes occur
in random places in the maternal ECG segments. In the linear
prediction step, these fetal ECG complexes are therefore strongly
attenuated in the template.

As a final step in the maternal ECG suppression, the templates
per ECG complex are concatenated to produce an estimate of
the maternal ECG signal which is then subtracted from the
recorded signal, ideally preserving the fetal ECG. This procedure
is illustrated in Figure 2.

2.2.3. Fetal Heart Rate Detection
Despite the accurate maternal ECG suppression that can be
achieved, often the fetal ECG is still obscured by other
interferences that remain after maternal ECG cancelation. In
such cases, reliable detection of the FHR is still challenging. In
Figure 3 and example of a low-quality fetal ECG signal is shown.

2.2.3.1. Hierarchical Probabilistic Framework for R-peak

Detection
In (19), we have introduced a model-based approach for
detecting the fetal R-peaks. This approach leverages models on
the fetal QRS waveform, on the heartrate, and on the noise
dynamics to yield a robust fetal R-peak detection, even in case of
low-quality signals. In this work, we extend our previous method
with AI to further improve its robustness.

The method by Warmerdam et al. is based on the following
state-space equation:

µk+1 = µk + Ewk
Eθk+1 + vk+1 (1)

Eyk+1 = G
(

Et,µk+1, Ezk+1
)

+ Eξk+1. (2)

In Equation (1), µk+1 is the location of the (k + 1)th fetal R-
peak, Ewk are previously detected interbeat (i.e., RR) intervals,
Eθk+1 are the coefficients from an autoregressive (AR) model, and
vk+1 is a term that accounts for heartrate variability. Essentially,
the location of the next fetal R-peak is estimated to be the
location of the previous R-peak, plus the expected RR-interval,
plus a random term. This random term vk+1 is sampled from a
zero-mean normal distribution.

In Equation (2), Eyk+1 is the (k + 1)th segment of the recorded
signal y, G(·) is a function that describes the linear combination
of three Gaussian functions:
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FIGURE 2 | Illustration of maternal ECG estimation. In the (top) panel, one of the recorded signals after preprocessing is shown. The (middle) panel shows the

estimate of the maternal ECG signal, and the (bottom) panel shows the signal that results after subtracting the maternal ECG estimate. Here, the fetal QRS

complexes are clearly visible.

G(t,µk, Ez) =

(

a1 + a2 (t − µk)+ a3

(

1−
(t − µk)

2

b2

))

e
−

(t−µk)
2

2b2 ,

(3)
Ezk+1 = [a1, a2, a3, b] are the parameters (i.e., amplitudes Ea and
variance b) for these Gaussian functions, and Eξk+1 represents
measurement noise.

Using Bayes’ rule, themaximum a posteriori estimate µ̂k+1 can
be obtained as:

µ̂k+1 = argmax
µ











−

(

µk+1 − µ̂k + ŵT
k+1
Eθk+1

)2

ŴHR

−

(

Eyk+1 − Êyk+1

)T
ŴQRS−1

(

Eyk+1 − Êyk+1

)











. (4)

Here, ŴHR and ŴQRS are estimates of the heart rate variability

and measurement noise, respectively, and Êyk+1 is the estimate
of the recorded signal (cf. Equation 2). The first term on the
righthandside is in following paragraphs referred to as the prior
model and the second term the likelihood model. All model
parameters are updated using (extended) Kalman filters. For
exact details on this method, the reader is referred to (19).

2.2.3.2. Artificial Intelligence Extension
Although the method by Warmerdam et al. was designed and
shown to be robust against low-quality signals, situations occur
where its performance rapidly decreases. This happens for
instance when noise or interferences cause erroneous updates
of the model parameters. At that point, a vicious circle will
cause the next R-peak detection to go wrong, which in turn
further diverges the model parameters, and so on. Therefore, in
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FIGURE 3 | Example of relatively low quality fetal ECG signals after maternal ECG suppression. The two panels show the signals from two different electrodes at the

same moment. The dashed vertical lines indicate the locations at which the fetal heart rate detection method did detect fetal R-peaks.

this paper we propose an AI-based extension of the method to
prevent such scenarios.

In this AI-based extension the RR-intervals are estimated
using an AI model that is described in (25). Although this model
at first seems to outperform other methods, its main limitation
is that it can provide FHR outputs that look physiologically
plausible but are in fact incorrect (25). Yet, in this work we use
the RR-intervals detected by the AI model to validate the RR-
interval estimate by the ARmodel: ŵT

k+1
Eθk+1. As described above,

heartrate variability is modeled in the state-space representation
as random values vk+1 sampled from a zero-mean normal
distribution. Assuming that this distribution has variance 6k+1,
in case of poor agreement between the AR and AI model, this
variance is increased as:

6k+1 ← 6k+1 +

∣

∣

∣
ŵT
k+1
Eθk+1 − RRAIk+1

∣

∣

∣
, (5)

where RRAI is the RR-interval determined by the AI model. In
case the two models are not in agreement, the variance of the
prior model in Equation (4) is increased to the degree where this
distribution can become virtually flat and no prior knowledge on
the location of the new fetal R-peak is assumed. New fetal R-peak
detections will therefore only be based on the agreement between

the expected shape Êyk+1 of the fetal R-peak and the recorded
signal Eyk+1.

To prevent erroneous updates of the model parameters, when
the difference between the RR-intervals detected by the presented
method and the AI model exceeds 0.05 s, the model parameters
are not updated. Likewise, no FHR output is shown to the
clinician to prevent showing unreliable FHR information.

To train the AI model, 110 of the 136 recordings that had
simultaneous FHR recording with the presented method as
well as with FSE were randomly selected. The remaining 26
recordings were used as holdout set to evaluate the performance.
A validation of only 26 recordings is relatively small, albeit that
these 26 recordings together comprise of 84.2 h of multi-channel
abdominal fetal electrophysiological recordings. With common
use of such AI, a significant risk of overfitting to the training data
might occur. In the method proposed here, this risk is largely
mitigated by using the RR-intervals that are determined by the
AI to increase the variance 6k+1. In case the RR-intervals would
be overfitted, this variance would increase and the fetal R-peak
will be based more on the likelihood model of Equation (4). Yet,
to provide insights in the potential overfitting of the AI to the
training data, in the section 3 we will provide results from the
validation data as well as from the training data.

2.2.3.3. Postprocessing of Fetal Heart Rates
The FHR can be calculated from the detected fetal R-peak
positions, yielding a FHR on a beat-to-beat basis. However, to

Frontiers in Pediatrics | www.frontiersin.org 5 December 2020 | Volume 8 | Article 599049

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Vullings and van Laar Non-invasive Fetal Monitoring

facilitate the communication with central monitoring systems
(CMS) and ease the comparison to other methods for which
the FHR has been acquired via CMS, this beat-to-beat FHR was
resampled to 4 Hz using linear interpolation. Prior to resampling,
outliers, which were defined as FHR values that differ more than
20 % from the previous FHR values (26), were omitted and
replaced by zeros.

2.3. Methodology for Evaluation
For evaluation of the presented method, the performance of
FHR detection can be assessed by comparing the FHR to that
of the FSE. Moreover, the performance of our method can
be gauged by comparing it to that of other methods reported
in literature. However, the various models in our method are
initialized such that they work optimally when always the
same electrode positions are chosen. This is also illustrated
in Figure 1, where it is shown that a single electrode patch
is used to guarantee consistent placement of the electrodes.
Because of this limitation, we cannot apply our method to public
datasets such as the Physionet Non-invasive Fetal ECG Database,
as in this dataset “electrode positioning was varied in order
to improve SNR” (27). Yet, we can compare our method to
results from (6) and (12) where similar devices are tested on
similar datasets. Both devices from these studies (i.e., Monica
Healthcare AN24 and Nemo Fetal Monitoring System) use
transabdominal electrodes to record a multi-channel fetal ECG
and use proprietary signal processing methods to extract the
FHR from these recordings. In fact, with respect to the study of
Lempersz et al., our work presents an extension of the algorithms
and datasets presented in that paper. With respect to the study
of Cohen et al., it should be noted that the comparison on FHR
detection performance is only indirect because different datasets
are used.

As evaluation metrics, we opt to express the performance in
FHR estimation in terms of success rate, reliability, and accuracy.
Here, success rate is defined as the percentage of time the method
can provide a FHR estimation (6, 12). Reliability is expressed in
terms of positive percent agreement (PPA) which is defined as the
percentage of FHR values provided by the method that are within
a 10% margin from a valid simultaneous FHR from the FSE (6).
For accuracy we use bootstrapping of the absolute differences
between the FHR from our method and that of the FSE. This
metric is different from the definitions by Cohen et al. and by
Lempersz et al., which are also different from each other. The
reason for choosing a different way of calculating the accuracy
is described below.

In Cohen et al., the accuracy is determined by the root-
mean-squared error of the difference between the FHR from
two devices vs. the expected difference that is determined by
regression in the Bland-Altman plot. In case of a bias between
the two FHR measurements, the regression in the Bland-Altman
plot will correct for this, yielding a very small metric, even when
the FHR determined from the non-invasivemeasurements differs
significantly from the FHR from the FSE. In their paper, Cohen
et al. did present the slope and y-intercept of the regression plots,
making it possible to appropriately appreciate their findings, but
in this work we prefer to show the accuracy as a metric that can

be interpreted independent from other metrics such as the slope
of the regression.

In Lempersz et al. the accuracy is determined based on
bootstrapping over differences between the FHR from the non-
invasive measurements and that of the FSE. If the FHR from the
non-invasive measurements would be inaccurate, but without a
significant bias, again the metric would be very small. By using
the absolute difference instead of the signed differences, this issue
is resolved.

Next to mean and standard deviations of the success rate,
reliability, and accuracy, we also provide 95% confidence intervals
(CI) and for the accuracy limits of agreements. For accuracy,
all analyses are done using bootstrapping (28). Each bootstrap
sample was generated by drawing a random pair of non-invasive
FHR and FSE FHR for each woman included in the analysis.
For the bootstrap sample, mean absolute difference and standard
deviation of absolute differences were determined. This process
was repeated 10,000 times to yield a large distribution for the
mean absolute difference. The average accuracy and 95% CI
were determined by taking the mean of the distribution and
the 2.5 and 97.5% centile of the distribution, respectively. From
the 10,000 bootstrap samples, also the mean standard deviation
was determined, which was subsequently used to calculate
limits of agreement as mean accuracy ± 2 × mean standard
deviation (12).

3. RESULTS

In Figures 4, 5, two examples of FHR tracings that were obtained

with the presented method are shown relative to the FHR that

was simultaneously obtained with a FSE. These two examples are
from different patients and show FHR during the first and second
stage of labor, respectively.

It can be seen in both these Figures that the resemblance
between FHR patterns obtained with the presented method is
high compared to the FHR patterns obtained with FSE. When
looking in more detail, in Figure 5 it can be seen that the
FHR deceleration at 67.5 min is slightly underestimated by the
presented method. While the FSE reveals a drop in FHR to 65
beats-per-minute (bpm), the presented methods shows a drop to
75 bpm. Despite this difference, the depicted FHR patterns can be
considered to be clinically equivalent.

In Tables 2–4, the results of the quantitative comparisons
between the developed method and the reference methods are
provided. In Table 2, the overall results are provided, while in
Tables 3, 4 the results are divided in first and second stage of
labor, respectively.

Asmentioned before, the tables do not only provide the results
of the presentedmethod on the validation set but also on the train
set, to enable the assessment of potential overfitting of the AI
to the train set. When comparing the results for the train and
validation set, it can be argued that these are comparable and
hence the risk that the results are indeed overfitted is small. In
fact, the performance on the validation set might be even slightly
better than that on the train set.
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4. DISCUSSION

In this paper a new modular methodology for non-invasive
electrophysiology for FHR acquisition was described. The
method consists of various modules that have been individually

developed and published, but with the ultimate goal of reliable
FHR monitoring in mind. In the current paper, the mutual
dependencies of the modules are described and an improved
module for FHR detection was described that, based on the
results, makes a relatively large difference in performance.

FIGURE 4 | FHR tracing during first stage of labor. In the (top) panel, the FHR from FSE is depicted. In the (bottom) panel, the FHR determined from the non-invasive

fetal ECG (FHRNI) with the proposed methods (corresponding to “This work” in Tables 2–4) is shown.

FIGURE 5 | FHR tracing during second stage of labor. In the (top) panel, the FHR from FSE is depicted. In the (bottom) panel, the FHR determined from the

non-invasive fetal ECG (FHRNI) with the proposed methods (corresponding to “This work” in Tables 2–4) is shown.
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For the comparison between the presented method and other
non-invasive FHR methods, the discussion below focuses on the
results that are presented in the column “This work (validation)”
in Tables 2–4. In this comparison, the presented method shows

TABLE 2 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Overall

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate

(%)

99.9 ± 0.2 99.6 ± 3.4 89.5 ± 10.8 83.4 ± 20.1 82.5 ± 21.1

CI (%) 99.9–100.0 99.5–99.6 87.9–91.1 78.8–87.9 77.8–87.3

Reliability (%) 95.7 ± 4.3 95.7 ± 6.2 86.8* ± 16.3 81.7 ± 20.5 73.0 ± 24.6

CI (%) 95.3–96.0 95.6–95.8 84.2–89.5* 77.1–86.4 67.4–78.5

Accuracy

(bpm)

3.2 ± 1.4 3.0 ± 0.6 −1.5** ± 4.2 5.3 ± 2.4 10.9 ± 5.8

CI (bpm) 3.1–3.3 2.9–3.0 −3.4–0.5 4.7–5.8 9.6–12.2

LoA (bpm) −9.2–15.5 −9.1–15.0 −29.2–26.3 Not provided Not provided

The results are aggregated over all patients and entire recordings. Confidence intervals for

success rate and reliability are truncated at 100.0% and confidence intervals for accuracy

are truncated at 0.0 (except for NI-fECG due to the different accuracy metric used). *In the

paper by (12) on NI-fECG a margin of 10 bpm difference with FHR from FSE was used,

instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences. CI, 95% confidence interval; LoA, limits of agreement.

TABLE 3 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Stage 1

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate 99.9 ± 0.2 99.5 ± 3.7 91.3 ± 9.9 86.4 ± 21.1 82.6 ± 24.4

CI 99.5–100.0 92.1–100.0 89.8–92.8 81.6–91.2 77.0–88.2

Reliability 96.0 ± 3.4 95.7 ± 6.4 88.4* ± 14.6 84.9 ± 21.5 74.7 ± 28.2

CI 88.8–100.0 83.0–100.0 86.0–90.8* 80.0–89.8 68.2–81.2

Accuracy

(bpm)

3.0 ± 1.8 2.9 ± 0.6 −1.4** ± 3.7 4.5 ± 2.4 7.9 ± 4.2

CI (bpm) 0.0–6.8 1.7–4.0 −3.2–0.4 3.9–5.0 7.4–10.0

LoA (bpm) −8.3–14.3 −8.5–14.3 −27.2–24.4 −8.7–8.4 −28.4–22.7

The results are aggregated over all patients and for first stage of labor of the recordings.

Confidence intervals for success rate and reliability are truncated at 100.0% and

confidence intervals for accuracy are truncated at 0.0 (except for NI-fECG due to the

different accuracy metric used). *In the paper by (12) on NI-fECG a margin of 10 bpm

difference with FHR from FSE was used, instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences. CI, 95% confidence interval; LoA, limits of agreement.

overall, and during the first stage of labor, significantly higher
success rate and reliability, with an accuracy that is comparable
to other electrophysiology-based methods and that is better than
that of Doppler ultrasound. It should be noted here that the
quantitative measure for accuracy is chosen according to the
literature (6, 12) and defined such that the lower the value, the
better the accuracy.

During the second stage of labor, success rate is significantly
higher, reliability is more than 10% higher than that of Monica
AN24, but the accuracy is only slightly better than that of Monica
AN24 and of the previous version of the Nemo Healthcare
product (i.e., NI-fECG in Tables 2–4). The main reason for this
relatively smaller yield in accuracy is that the presented method
has a success rate of close to 100%. During strong contractions
with active pushing of the mother, the signal quality of the
electrophysiological data is reduced significantly and the chance
of providing inaccurate results is therefore higher. Moreover,
during these episodes the FHR typically decelerates to <100
bpm. As can be seen in Figure 5, the proposed method also
shows these decelerations but they are typically slightly less
pronounced, yielding the same clinical picture, but at the same
time producing difference between FHRs that are in the range of
10–15 bpm. In comparison, the Monica AN24 and the previous
version of the Nemo Healthcare monitor show lower success
rates which in practice means that during these decelerations,
when the signal quality is lower, they do not show FHR, ensuring
that inaccurate FHR during these episodes does not lead to
erroneous interpretation but also that these inaccurate FHRs do
not accumulate in a even further reduced accuracy.

TABLE 4 | Performance of various methods for FHR detection, as compared to

the FHR from FSE as ground truth.

Stage 2

Metric This work This work NI-fECG Monica AN24 Ultrasound

(validation) (train)

Success rate 99.9 ± 0.1 99.8 ± 0.2 63.3 ± 21.7 75.2 ± 19.2 77.8 ± 21.1

CI 99.5–100.0 99.4–100.0 58.7–67.8 69.4–81.1 71.4–84.1

Reliability 85.9 ± 8.6 81.5 ± 11.4 68.5* ± 24.5 71.9 ± 20.4 61.7 ± 24.8

CI 58.5–100.0 58.1–100.0 62.9–74.1* 65.7–78.1 54.2–69.2

Accuracy

(bpm)

6.6 ± 6.3 9.4 ± 2.7 −1.7** ± 8.2 7.9 ± 4.2 16.1 ± 7.6

CI (bpm) 0.0–26.6 4.0–14.9 −5.4–2.0 6.6–9.2 13.8–18.5

LoA (bpm) −11.4–24.6 −19.1–37.9 −42.4–39.0 −12.3–12.4 −40.9–34.0

The results are aggregated over all patients and second stage of labor of the recordings.

Confidence intervals for success rate and reliability are truncated at 100.0% and

confidence intervals for accuracy are truncated at 0.0 (except for NI-fECG due to the

different accuracy metric used).

*In the paper by (12) on NI-fECG a margin of 10 bpm difference with FHR from FSE was

used, instead of a margin of 10%, to assess reliability.

**In the paper by (12) on NI-fECG the accuracy is determined as the average of the signed

differences between the FHR from NI-fECG and the FHR from FSE instead of absolute

differences.

CI, 95% confidence interval; LoA, limits of agreement.
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4.1. Limitations
This study has four main limitations. First, in this study we
have followed a common approach in evaluating the performance
of AI methods by using a holdout dataset for validation. This
holdout set can demonstrate the generalizability of the trained AI.
In this study, however, the size of the validation set is relatively
small. To still provide some insights in the potential of the
proposedmethod on a larger dataset, we have included the results
on the training data in Tables 2–4. While these results might be
overestimating the performance of the proposed method due to
overfitting, it should be noted here that the chance of overfitting
is small. Not only are the results of the validation set similar to
those of the training set, but also are the results of the AI not
used directly to determine the FHR. More specifically, the results
of the AI are used in the prior model of the hierarchical R-peak
detection method and additional models—that e.g., consider the
morphology of the signal at the expected position of the R-
peak—are employed that likely prevent the detection of overfitted
FHR values.

A second limitation of the study is that the comparison to
other methods is indirect. The various methods have each been
evaluated on their own data sets, with different numbers of
patients, different patient characteristics, and different lengths of
recordings. Therefore, no quantitative comparison can be made
and no strong conclusions can be drawn about the performances
of all methods. Yet, in our opinion the number of recordings in
each study and the difference in performances is large enough to
argue that the presented method outperforms the other methods
in FHR detection during all stages of labor.

A third limitation is that the presented method, but also all
reference methods, provide a FHR at 4 Hz sampling intervals.
Fetal electrophysiological recordings potentially enable the study
of beat-to-beat variability in the FHR which has been reported
to yield better performance in detecting fetuses in distress when
using linear features of fetal heart variability (3, 29). On the
other hand, data resampled to 4 Hz has been reported to
yield similar effects on features that reveal physiological changes
during progression of labor and even better performance on
detecting fetuses in distress when using entropy features of heart
rate variability (29). Moreover, the communication protocols
for most central monitoring systems require FHR values to be
communicated at fixed frequency of 4 Hz. Because of the absence
of a clearly best method to communicate FHR values (i.e., on
a beat-to-beat basis or at a fixed frequency) and to adhere to
the existing communication protocols and bring the methods
presented in this paper already one step closer to implementation
in clinical practice, we have chosen to equidistantly resample our
data to 4 Hz.

The fourth limitation of the study is that all data processing
presented in this study was done offline, on a desktop computer.
While the non-AI parts of the method can be processed online
(i.e., processing e.g., 1 s of data takes <1 s) on a normal desktop
computer, the AI extension takes on average 2 s to process 1 s of
data on a GPU (Titan V, NVIDIA, USA), when implemented in
Tensorflow-Keras. Related to this limitation, unlike the reference
methods shown in Tables 2–4, the presented method is not yet
implemented in a medical device. Efforts to achieve this are
currently ongoing.

4.2. Future Potential
Other than the implementation of the presented methods in
a clinical device for reliable and unobtrusive FHR monitoring,
the presented methods might have further potential to support
obstetrical healthcare. Because the transabdominal recordings
can, with relatively small additional effort, also provide the
fetal ECG (30), further analysis of the ECG morphology, such
as ST analysis might be possible. For ST analysis, accurate
normalization of the fetal orientation would be crucial however.
Fetuses in cephalic, transverse, or breech position would give
different ECG morphology. We have shown in a previous study
(31) that a different fetal orientation, or a different orientation of
the electrical heart axis with respect to the abdominal electrodes,
affects the degree of ST elevation and as such might affect ST
alarms triggered on an obstetrical ward. Normalization for the
fetal orientation would be possible by using ultrasound imaging
(30) or different (i.e., relative) ST alarm mechanisms (32).

5. CONCLUSIONS

In this paper, a new method for FHR detection from non-
invasive, transabdominal electrophysiological measurements
was presented. The method is able to determine a reliable FHR
in >95% of time during labor, making it substantially more
reliable and accurate than Doppler ultrasound—the current
clinical standard for non-invasive cardiotocography. During
second stage of labor, the performance of the method decreases,
but with a reliability higher than 80% it still outperforms
Doppler ultrasound and other reference methods by a
significant amount.
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