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The aim of this study was to investigate the genetic parameters and genetic

architectures of six milk production traits in the Shanghai Holstein population.

The data used to estimate the genetic parameters consisted of 1,968,589 test-

day records for 305,031 primiparous cows. Among the cows with phenotypes,

3,016 cows were genotyped with Illumina Bovine SNP50K BeadChip, GeneSeek

Bovine 50K BeadChip, GeneSeek Bovine LD BeadChip v4, GeneSeek Bovine

150K BeadChip, or low-depth whole-genome sequencing. A genome-wide

association study was performed to identify quantitative trait loci and genes

associated withmilk production traits in the Shanghai Holstein population using

genotypes imputed to whole-genome sequences and both fixed and random

model circulating probability unification and a mixed linear model with rMVP

software. Estimated heritabilities (h2) varied from 0.04 to 0.14 for somatic cell

score (SCS), 0.07 to 0.22 for fat percentage (FP), 0.09 to 0.27 for milk yield (MY),

0.06 to 0.23 for fat yield (FY), 0.09 to 0.26 for protein yield (PY), and 0.07 to

0.35 for protein percentage (PP), respectively. Within lactation, genetic

correlations for SCS, FP, MY, FY, PY, and PP at different stages of lactation

estimated in random regression model were ranged from -0.02 to 0.99, 0.18 to

0.99, 0.04 to 0.99, 0.04 to 0.99, 0.01 to 0.99, and 0.33 to 0.99, respectively. The

genetic correlations were highest between adjacent DIM but decreased as DIM

got further apart. Candidate genes included those related to production traits

(DGAT1, MGST1, PTK2, and SCRIB), disease-related (LY6K, COL22A1, TECPR2,

and PLCB1), heat stress–related (ITGA9, NDST4, TECPR2, and HSF1), and

reproduction-related (7SK and DOCK2) genes. This study has shown that

there are differences in the genetic mechanisms of milk production traits at

different stages of lactation. Therefore, it is necessary to conduct research on

milk production traits at different stages of lactation as different traits. Our
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results can also provide a theoretical basis for subsequent molecular breeding,

especially for the novel genetic loci.
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genome-wide association study, different stages of lactation

Introduction

Chinese Holstein cattle are derived from grading

crossbreeding and selection between the local yellow cattle

and Holstein, a breed that was mostly imported from Canada,

the United States, France, and northern Europe and renamed by

the Chinese Ministry of Agriculture in 1992 (Huang et al., 2010;

Ferreri et al., 2011). Since then, China has continuously imported

live proven cattle, frozen semen, and embryos from most

temperate countries for use in crossbreeding aimed at

improving the productivity of Chinese native cattle by

combining the environmental adaptation features of Chinese

cattle with the high milk yield (MY) potential of foreign cattle

(Ferreri et al., 2011; Zhang and Sun, 2021). Therefore, the genetic

architecture of the Chinese Holstein population is different from

other populations. China occupies a larger area and a larger span

of north–south latitudes. Accordingly, topography, climate, herd

management system, and other environments vary greatly in

different regions, and the different climatic zones have

differential contributions to population genetic characteristics,

with Holstein in different countries or provinces having its own

genetic characteristics (Pérez-Cabal et al., 2012; Liu et al., 2019).

The Shanghai Holstein cattle population is raised under a

subtropical environment and an intensive pasture system that

is maintained below the level of severe thermal stress throughout

the day in the summer season. At the same time, Shanghai is the

main center for providing Holstein semen to various farms

throughout China. Currently, Shanghai Holstein cattle are

susceptible to mastitis. The average number of lactations for

Shanghai Holstein cattle was 2.23, which makes it difficult to

maintain production efficiency and meet the demands of the

dairy industry, and the MY is much less than that in the

United States (Mao, 2015; Liu et al., 2021).

Since 1994, the Dairy Herd Improvement has been carried

out in Shanghai, where millions of test day records are collected

(Sun et al., 2008). Milk production and quality, including MY, fat

yield (FY), fat percentage (FP), protein yield (PY), protein

percentage (PP), and somatic cell score (SCS), are the most

important traits in the dairy industry. There are complex

traits influenced by management practices and environmental

conditions and the physiological stages (e.g., age and stage of

lactation) and genetic merits of the animals. Genetic parameters

such as heritability are the core of breeding work to accelerate

genetic progress and also the most important properties of a

population (Meyer, 1989; Akanno and Ibe, 2005). Evaluating

genetic parameters is the basis for research such as genome-wide

association study (GWAS) and genome-wide selection. However,

the heritability of a phenotype in GWAS is too low, resulting in

the reduced possibility of detecting the actual association

between single nucleotide polymorphisms (SNPs) and traits or

non-detection (Shao et al., 2021). Recently, there has been

considerable interest in using the random regression model

(RRM) to model individual test-day records for the genetic

evaluation of milk traits (Khanzadeh et al., 2013; Silva et al.,

2020; Soumri et al., 2020).

GWAS is an effective method for identifying the genetic

variations involved in complex traits. With the rapid

development of high-throughput sequencing technology, many

researchers have reported that the power of GWAS based on

imputed whole-genome sequencing (WGS) variants on different

traits in livestock, such as cattle (Sanchez et al., 2017), pig (Wu

et al., 2019; Yan et al., 2021), and chicken (Ye et al., 2020), was

improved. Compared to microarray, WGS data cover all SNPs,

including causative mutations. However, sequencing thousands

of individuals of interest is expensive. Imputation from SNP

panels to WGS data is an attractive and less expensive approach

to obtain WGS data. Selection of the imputation reference panel

is very important for genomic prediction with imputed WGS

data. Nowadays, numerous GWASs are conducted on cattle by

using the 1000 Bull Genomes Project to impute WGS data on

genotyped animals (Iheshiulor et al., 2016; Meuwissen et al.,

2021).

Thus far, many researchers have studied the Holstein

population in different countries and provinces, including the

north of China (Ferreri et al., 2011; Jiang et al., 2012; Liu et al.,

2020; Silva et al., 2020). A previous study of the Shanghai

Holstein population used the genotyping by genome reducing

and sequencing (GGRS) of 1,092 cattle and revealed some SNPs

associated with MY, FP, PP, and SCS (Chen Z. et al., 2018), but

the study had a small sample size and only conducted association

analysis of part of milk production traits using GGRS data. The

use of imputed WGS data has been shown that can increase

GWAS power and ability to detect causal mutations of complex

traits. Therefore, the aim of the present study was to estimate the

genetic parameters for milk production and quality traits by

using RRM and find new genetic loci by using imputedWGS and

a much larger population. In this study, we emphasized the

different physiological stages of the mammary gland across the

lactation stage. To the best of our knowledge, this is the first time

that a GWAS for milk production traits was conducted using

imputed WGS data in the south of China, where the Holstein

population is suffering heavy heat stress.
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Material and methods

Data

To evaluate the genetic parameter of milk production traits, we

collected the test-day records from the farms of Shanghai Bright

Dairy and Food Co., Ltd. from primiparous cows born between

1995 and 2020 with the regular and standard performance of DHI.

In total, there are 1,968,589 records for the first lactation of

305,031 cows from 260 farms with the following criteria (Aerts

et al., 2021; Mbuthia et al., 2021): 1) age at first calving between

19 and 37months; 2) test day from 5 to 305DIM, of which only 12%

records out of the range; 3) milk yield of 1.0–65 kg, fat percentage of

0.5–8.5%, protein percentage of 0.5–7.5%, SCC less than 2 million

cells per milliliter (Yang et al., 2013); 4) a minimum of three test-day

records were required for a cow observation to be included in the

analysis (Soumri et al., 2020), of which one was before DIM 45

(Bignardi et al., 2009); 5) the calving date was required to be before

December 2019 so that all cows had the opportunity to finish the

complete first lactation. A summary of data set used in this analysis

is given in Table 1. The somatic cell count (SCC) was log-

transformed in SCS as follows: SCS = log2 (SCC/100) + 3; FY

was calculated as (FP*MY)/100; PY was calculated as (PP*MY)/100.

The distribution of phenotypes is illustrated in Supplementary

Figure S1. DMU Trace program was used for tracing ancestors

and creating the full pedigree of the animals (Madsen, 2012). The

pedigree was built by tracing the ancestors back as far as possible by

using the sire-dam structure. Consequently, the pedigrees included

529,011 animals in total, which was recorded during the

1985–2019 period, including 4,945 sires and 19,867 dams,

respectively. The inbreeding coefficients for the individuals with

test-day records were calculated by going back only three

generations in the pedigree. This data set included

226,602 animals. Estimates of the inbreeding coefficient were

obtained using the R package “nadiv” (Wolak, 2012).

Random regression test-day model

The derivative-free approach to multivariate analysis (DMU)

package was used to estimate breeding values using the random

regression test-day model (RRM) (Jakobsen et al., 2002a;

Schaeffer, 2004). Due to problems with convergence, single

trait RRM was used to estimate the genetic parameters for

different traits. We considered herd-test date, calving

month–age, and calving year–season as fixed effects, and

individual additive genetic effects and permanent environment

effects as random regression effects (Liu et al., 2020). Both

random regressions were modeled using fifth-order Legendre

polynomial. The model equation is as follows:

Yijklmn � HTDi + Agej + CDSDk + ∑5
m�0

almXm(ω)

+ ∑5
m�0

plmXm(ω) + eijklmn

Here,Yijklmn is the test-day records;HTDi is thefixed effect of the

ith herd-test day; Agej is the fixed effect of jth calving month–age;

CDSDk is the fixed effect of the kth calving year–season; alm is

random regression coefficient for additive genetic effects specific to

cow l; plm is random regression coefficient for permanent

environment effects specific to cow l; Xm(ω) is the mth covariate

of Lengendre polynomial; ω is the days of lactation after

standardization; and eijklmn is the random residual effects.

The variance-covariance matrix is as follows:

Var⎡⎢⎢⎢⎢⎢⎣ ap
e

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣G ⊗ A 0 0
0 I ⊗ P 0
0 0 R

⎤⎥⎥⎥⎥⎥⎦

Here, a is additive genetic random regression coefficient

vector; p is permanent environment random regression

coefficient vector; G is the variance–covariance matrix of

additive genetic random regression coefficient; A is the

numerator relationship matrix; P is the variance–covariance

matrix of permanent environment random regression

coefficient; I is the identity matrix; and R is the diagonal

matrix of residual variance (Iσ2e), which hypothesized the

residuals are homogeneous. The homogeneous option

dramatically reduces computing time without sacrifice as there

is a minimal difference between the homogeneous model and the

heterogenous model (López-Romero and Carabaño, 2003; Li

J. et al., 2020).

TABLE 1 Descriptive statistics of milk production and quality traits in Shanghai Holstein population.

Traits No. of
records

No. of
animals

Mean Standard deviation Minimum Maximum CV

Milk yield (MY, kg/d) 1,859,464 240,681 27.80 8.35 0.1 300 0.30

Fat yield (FY, kg/d) 1,855,585 240,678 0.998 0.36 0.01 7.99 0.36

Protein yield (PY, kg/d) 1,843,598 240,680 0.866 0.25 0.003 6.944 0.29

Fat (FP, %) 1842807 240,679 3.64 0.88 0.02 15.90 0.24

Protein (PP, %) 1843717 240,681 3.15 0.38 0.1 15.90 0.12

SCS 1668583 240240 2.84 1.95 0.00 9.00 0.59
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Genotyping, quality control, and
imputation

Data from 3,489 genotyped animals were used in this study.

In addition, 222 bulls from Run 2 of the 1000 Bull Genome

Project were included (Daetwyler et al., 2014). The 3,489 animals

were genotyped using different panels: GGP Bovine 50K chip

(47,843 SNPs, GeneSeek Genomic Profiler, Neogen Corp.,

Lincoln, NE, United States, n = 294), GGP Bovine 150 K chip

(140,668 SNPs, n = 1,744), GGP Bovine LD v4 (30,108 SNPs, n =

145), Illumina Bovine SNP50K v2 (54,609 SNPs, Illumina, San

Diego, CA, United States, n = 1,100) and the extremely low-

coverage whole genome sequencing with coverage at 0.5–1×

(n = 206).

The extremely low-coverage whole genome sequencing used the

Illumina Hiseq4000 platform to sequence the genomic DNA

extracted from cow hair-follicle according to the manufacturer’s

protocol. All of the raw sequence data were filtered using Fastp

v0.20.0 (Chen S. et al., 2018) with default parameters and were then

aligned to the pig genome build UMD3.1 using BWA mem

algorithm implemented in samtools v1.10 (Li and Durbin, 2010).

After removing PCR duplicates by Picard Tools v2.0.1 (http://

broadinstitute.github.io/picard/), local realignment around indels

and base quality scores recalculation were conducted using

GATK v3.6 (McKenna et al., 2010) based on known indels and

SNPs from in dbSNPdatabase build 152. Sequenced individuals (n =

206) were used to carry out SNP calling via both bcftools v1.9 (Li,

2011) (set 1) and GATK UnifiedGenotyper (set 2), simultaneously.

The overlapping SNPs between set 1 and set 2 were further filtered

via GATK VQSR using known variants from the dbSNP database.

Finally, a total of 12,396,463 autosomal SNPs with PASS flag and

minor allele frequency (MAF) larger than 0.05 were retained.

STITCH v1.5.3 (Davies et al., 2016) was used to impute the

missing genotypes of the extremely low-coverage whole genome

sequencing.

For all the genotype data, only the autosomal chromosomes

and SNPs with known positions in the UMD 3.1 bovine assembly

map were considered. Genotype quality control for all the panels

excluded SNPs with a call rate lower than 0.90, SNPs with

deviations from the Hardy–Weinberg equilibrium (p < 10–6)

as calculated by means of the Fisher’s Exact Test, and SNPs with

MAF lower than 0.05. For the quality control of the samples,

animals with a call rate lower than 0.95 were excluded from the

analysis.

The imputation of WGS genotypes from LD and 50K was

performed in two steps. First, the LD and 50K genotypes were

imputed to 150K, respectively. Then, in the second step, all

imputed and real 150K genotypes were imputed to sequence

data using 222 bulls from Run 2 of the 1000 Bull Genome Project

(Daetwyler et al., 2014) and the UMD3.1 reference sequence. All

the abovementioned steps used BEAGLE v4.1 (Browning and

Browning, 2009) software. For the imputed extremely low-

coverage whole genome sequencing, we used BEAGLE v4.1 to

impute to WGS genotypes using 222 bulls as reference sequence

described earlier.

All the genotypes imputed toWGS were merged using “bcftools

merge--force-samples” (v1.3). We used Perl script to match

phenotype samples ID with genotype samples ID to obtain the

genotype file which has phenotype. Finally, genotype data were

filtered by PLINK v1.9 with the parameters “--geno 0.1 --hwe

0.000001 --maf 0.05 --mind 0.05”. Only autosomal SNPs were

considered in this study, and IDswithout phenotypes were excluded.

Principal component analysis

To determine the level of population stratification, we plotted

the population structure by PCA. Principal component analysis

(PCA) was conducted using GCTA v64 (Yang et al., 2011) on

3,016 cows genotyped with 8,686,483 markers covering the whole

genome to study the population structure. The first two

eigenvectors are selected to make a scatter plot, and according

to the results of the scatter plot, it can be known whether the

population is divided into several subgroups.

GWAS analysis

We performed powerful GWAS analyses of six milk

production traits (MY, FP, FY, PP, PY, and SCS) in different

lactation stages (early lactation [TD7], peak lactation [TD35 and

TD50], mid lactation [TD140], and late lactation [TD280]) in the

Shanghai Holstein population using FarmCPU (Fixed and

random model Circuitous Probability Unification) and MLM

(mixed linear model) based on imputed WGS data with the

rMVP software (Yin et al., 2021). FarmCPU method is a multi-

locus linear mixed model which implements marker tests with

associated markers as covariates in a fixed effect model and

optimization on the associated covariate markers in a random

effect model separately (Liu et al., 2016). As is known, population

stratification is an important factor that can cause false positives

in association studies. Therefore, the present study fitted the first

three principal components (PCs) as covariate variables in the

GWAS models to adjust for the population stratification. The

model can be written as follows:

y � Tw + Pq +mkhk + e

Here, y is the vector of EBVs of individual; w is a matrix of fixed

effect for the top three PCs; q is the pseudo quantitative trait

nucleotides (QTNs) effects, which was used as the fixed effects,

initiated as an empty set; T and P are the corresponding design

matrices for w and q, respectively; mk is the genotype of the k
marker; hk is the corresponding ; and e is the vector of residuals
with assuming e ~ N(0, Iσ2e). The random effect model was used

to select the most appropriate pseudo QTNs. The model can be

written as follows:
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y � u + e

Here, y is the vector of EBVs of individual; u is the genetic effect

of the individual, and u ~ N(0, 2Kσ2u), in which K is the kinship

matrix derived from the pseudo QTNs, and σ2u is an unknown

genetic variance; and e is the residual effect vector.

The MLM can be written as follows:

y � Wb + Zc + Sa + e

Here y is the vector of EBVs of individual; c is the vector of the
same fixed effects as in the FarmCPUmodel; b is the vector of the
SNP substitution effects, and a is the vector of random additive

genetic effects with a ~ N(0,Gσ2a), where G is the genomic

relationship matrix, and σ2a is the additive variance. W , Z, and
S are the incidence matrices for b, a, and c, respectively.

As suggested by Ji et al. (2019), we used 5 × 10−8 and 5 × 10−6

as genome-wide and suggestive significance threshold to correct

false positive findings due to multiple testing (Ji et al., 2019).

Enrichment analysis of candidate genes

We extended the positions of significant SNPs 150 Kb upstream

and downstream and then updated to the Ensembl

(UMD3.1 genome version). Identification of the closest genes to

significant SNPs was obtained using Ensembl annotation of the

UMD3.1 genome version. GO enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of the candidate genes were performed using the DAVID

6.8 Functional Annotation Tool (https://david.ncifcrf.gov/). In all

analyses, the p-value < 0.05 was considered significantly different.

Another cost-effective approach to compare, confirm, and

locate the most candidate genes related to important traits was to

align our results with the QTLdb of UMD3.1, which contains

95,332 QTLs/associations. We identified all the QTLs (<1 Mb)

that contained or overlapped with the candidate genes. After

matching, the number and function of variants were identified,

and these variants were used for subsequent analyses.

Results

Phenotypic and estimated genetic
parameters

Supplementary Figure S1 shows that all the phenotypes

follow normal distributions, which can be used for subsequent

genome-wide association analysis. The range of inbreeding

coefficient for 226,602 animals is 0–0.42. The number of

inbred animals is 1,997. Heritabilities for milk yield, fat yield,

protein yield, fat percentage, protein percentage, and SCS

estimated with the random regression model for DIM are

shown in Figure 1. The heritabilities for all phenotypes, except

for PP, were reduced from early lactation, were lowest in the peak

lactation stage, and increased gradually, remaining quite constant

at the mid and late of the lactation stage. Generally, heritabilities

for MY, FY, PY, FP, PP, and SCS ranged from 0.16–0.27,

0.11–0.23, 0.13–0.26, 0.12–0.22, 0.17–0.35, and

0.04–0.14 during the lactation, respectively. As expected,

heritabilities for SCS are the lowest in all phenotypes.

Genetic correlations between test-day MY, test-day FY, test-

day PY, test-day FP, test-day PP, and test-day SCS at different

stages of lactation estimated in RRM are ranged from 0.04 to 0.99,

0.04 to 0.99, 0.01 to 0.99, 0.18 to 0.99, 0.33 to 0.99, and -0.02 to

0.99, respectively (Supplementary Table S1). For the six traits, the

highest genetic correlation estimates were observed between

adjacent test days and the lowest correlations between more

distant test days. The genetic correlations for TD5 and TD7,

TD50 and TD65, TD140 and TD95, TD125, TD155, TD185,

TD215, TD280 and TD245, TD275, TD305 in all traits were

larger than 0.95. For SCS, we obtained negative genetic

correlations between TD5 and TD215 and TD245. In this

study, we emphasized the different physiological stages of the

mammary gland across lactation.

Imputation and quality control

The imputation accuracy was 0.95, which was evaluated by

the internal information score generated by STITCH itself for the

extremely low-coverage whole genome sequencing. The

imputation accuracy for GGP Bovine LD v4 and GGP Bovine

50K imputed to GGP Bovine 150K was 0.98 and 0.99,

respectively. Then the imputation accuracy for imputed GGP

Bovine LD v4 and GGP Bovine 50K toWGS (222 bulls from Run

2 of the 1000 Bull Genome Project as reference panel) was

0.97 and 0.97, respectively. The accuracy for GGP Bovine

150K to WGS was 0.97. All the genotypes imputed to WGS

were merged, and the final genotype data file contained

19,105,311 SNPs. After the filtration, 8,686,483 loci and

3,016 individuals were retained to be used in the GWAS.

Figure 2 displayed the distribution of SNPs across all autosomes.

Population stratification assessment

The PCA revealed that the Shanghai Holstein population are

subdivided into five differentiated groups by the first two

principal components, which explained 17.25 and 10.96% of

the genetic variability in the analysis, respectively, and about

28.21% of the variation is explained by the first three PCs

together (Figure 3).
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GWAS results

Due to the highest genetic correlation estimates being

observed between adjacent test days, we only displayed the

Manhattan plot of TD7 for all six traits (Figure 4). The

Manhattan plot of TD35, TD50, TD140, and TD280 for all

six traits are shown in Supplementary Figures S3–S6. The QQ

plots are shown in Supplementary Figure S7. The lambda values

ranged from 0.921 to 1.042, indicating lower stratification. TD7,

TD35, TD50, TD140, and TD280 represented different

physiological stages of the mammary gland across lactation

(TD7 represented the early, TD50 represented the peak, and

TD140 and TD280 represented mid and late lactation,

respectively).

FIGURE 1
Heritabilities for milk yield, fat yield, protein yield, fat percentage, protein percentage, and SCS estimated with the random regression model
for DIM.

FIGURE 2
Distribution of SNPs in genome.
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We used p-value < 5 × 10−8 as the threshold, a total of 984,

1,150, 1,291, 1,229, 1,018, and 1,477 significant SNPs detected

by FarmCPU for all DIM of MY, FP, FY, PP, PY, and SCS,

respectively. 279, 429, 36, 175, 85, and 42 SNPs were identified

as significant by MLM for all DIM of MY, FP, FY, PP, PY, and

SCS, respectively (Supplementary Table S2 and S3). There are

44, 30, 20, 16, 26, and 41 significant SNPs are both detected by

FarmCPU and MLM for all DIM of MY, FP, FY, PP, PY, and

SCS, respectively (Supplementary Table S4). We combined the

significant SNPs identified by FarmCPU and MLM. Finally,

we obtained a total of 1,241, 1,568, 1,316, 1,399, 1,087, and

1,503 significant SNPs (Supplementary Table S5). These

findings are consistent with the results of genetic

correlation, a large number of the same SNPs were found

in mid and late lactation, while the SNPs found in early and

peak lactation were mostly specific. The genes that were

located within 150 Kb near the significant SNPs were

identified as potential candidate genes for the traits

investigated. The number of candidate genes identified is

listed in Table 2.

We paid more attention to the candidate genes which

contained or were near to the most significant SNPs

associated with different milk production in five lactation

stages (TD7, TD35, TD50, TD140, and TD280). For MY, the

candidate genes contained the most significant SNPs for TD7,

TD35, TD50, TD140, and TD280 were GRM4, VEPH1, SCRIB,

PLBD1, and LAMA3, respectively. For FP, the candidate genes

contained the most significant SNPs for TD7, TD35, TD50,

TD140, and TD280 were ATP2B2, NRP1, BOP1, DGAT1, and

DGAT1, respectively. The most significant SNP associated with

FP at early lactation was BTA22:55263235 (p-value = 2.37E-18).

The most significant SNPs for FP at mid and late lactation both

were BTA14:1801116 (for TD140: p-value = 6.96E-56; for

TD280:p-value = 7.47E-59). For FY, the candidate genes

contained the most significant SNPs for TD7, TD35, TD50,

TD140, and TD280 were DSP, MAML3, PRKG1, WDR34, and

SLC1A3, respectively. For PP, the candidate genes contained the

most significant SNPs for TD7, TD35, TD50, TD140, and

TD280 were DCLK2, AHCTF1, OCLN, MROH1, and HSF1,

respectively. The most significant SNP associated with PP at

late lactation was BTA14:1807140 (p-value = 1.26E-17). For PY,

the candidate genes contained the most significant SNPs for TD7,

TD35, TD50, TD140, and TD280 were CTNND2, CSMD3,

WWOX, ARHGAP10, and LMAN2L, respectively. For SCS, the

candidate genes contained the most significant SNPs for TD7,

TD35, TD50, TD140, and TD280 were NFKBIE, ABCF1,

MYZAP, TTLL7, and DNAH9, respectively.

We further identified the genes which were candidate genes

for more than two lactation stages or traits. For MY, there were

18 candidate genes for at least two lactation stages, including

NDST4, ICAM2, KCNMA1, LRP5, KALRN, IQCA1, MANBA,

SCRIB, COL22A1, MORN1, APBA2, ZMYND8, WWOX, BFAR,

CECR2, GALNT16, SPOP, and CPEB3. For FP, a total of

20 candidate genes for at least two lactation stages contained

significant SNPs, including DGAT1, ADAMTS3, ZKSCAN7,

CTNNA3, CDH23, ELM O 1, SLC15A5, ESR1, NRP1, BOP1,

RPH3A, ATRNL1, FAM21A, MGST1, USH2A, WDR87, SYNRG,

RANBP17, ANKRD55, and PRIM2. For FY, 11 genes associated

with at least two lactation stages. For PP, 18 genes involved in at

least two lactation stages, including ZMYND8, AHCTF1, TSHR,

RALYL, RYR2, ORC2, MAP1S, MT O 1, NRP1, TECPR2, LRP5,

NADSYN1, SMC5, KCNQ5,MAP2K6, OCLN, PBX1, and PRKG1.

For PY, 15 candidate genes involved in at least two lactation

stages, including WWOX, TMEM132C, NDST4, GUCY1A2,

FIGURE 3
Population structure from the principal component analysis. Population structure is shown as a plot of the first two principal components (PCs).
PCA was conducted with the 8,686,483 loci for 3,016 cows.
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CTNND2, MANBA, MCC, KCNIP1, ITGA2, CTNNA3, SCRIB,

CCDC33, MACROD2, PITPNB, and FDXR. For SCS,

27 candidate genes involved in at least two lactation stages,

including PCDH15, ELM O 1, LDB2, SH3GL2, COL22A1,

NUDCD1, HMCN1, CCDC63, GALNS, ADTRP, C1QTNF7,

LPAR1, MYZAP, PLCB1, SLC38A9, LANCL2, SLC35F3,

DKK2, KCNIP4, TRIM11, RERG, ACOXL, DDX54, DNAH9,

ERICH1, MTA1, and B3GALNT2.

FIGURE 4
Significance [−log10(Pvalues)] of the association of WGS based on analyses using FarmCPU (left) and MLM (right) with the TD7 of six traits, MY,
FP, FY, PP, PY, and SCS (top to down) across 29 autosomes. The grey solid line indicates the Bonferroni multiple test threshold at p = 5 × 10−8.
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Functional annotation of candidate genes

The p-value adjusted using the Bonferroni approach

(p-value < 0.05) was considered to be the threshold value for

significantly enriched GO terms and pathways. As shown in

Table 2, the number of GO terms and KEGG pathways were

significantly enriched for six milk production traits across

lactation in Shanghai Holstein. In the current study, gene set

enrichment analyses revealed that several terms, such as response

to external stimulus (GO:0048870), detection of stimulus (GO:

0051606), negative regulation of response to stimulus (GO:

0048585), and development process were found for almost all

traits in almost all lactation stages (Supplementary Table

S6–S11). It is interesting that feeding behavior (GO:0007631)

was identified for milk yield. For FP, the GO term analysis

identified the immune effector process (GO:0002252) and

immune response (GO:0003823) in peak lactation. In

addition, sexual reproduction (GO:0019953) and reproductive

process (GO:0022414) were identified in mid lactation

(Supplementary Table S6). For MY, the GO terms were most

involved in the biological process and cellular component, such

as intracellular (GO:0005622), regulation of signaling (GO:

0023051), and plasma membrane part (GO:0044459)

(Supplementary Table S8). For PP, several GO terms related

to the development and growth process were identified several in

peak and late lactation. 2 GO terms related to reproduction were

identified in late lactation (Supplementary Table S9). For SCS,

response to chemical (GO:0042221) was identified in peak and

mid lactation. In late lactation, the GO terms were related to

growth (Supplementary Table S11). The pathways significantly

enriched are listed in Supplementary Table S12–S17, of which

several pathways were implicated in signal transduction,

TABLE 2 Summary statistics for GO and KEGG associated with milk production in Shanghai Holstein population.

Traits DIM No. Genes No. GO No. KEGG

Milk yield (MY, kg/d) D7 296 7 0

D35 339 7 3

D50 278 11 1

D140 245 5 1

D280 179 4 0

Fat yield (FY, kg/d) D7 232 9 19

D35 268 8 1

D50 281 17 7

D140 336 7 3

D280 157 11 2

Protein yield (PY, kg/d) D7 438 6 5

D35 266 5 7

D50 280 5 5

D140 173 3 2

D280 122 6 5

Fat (FP, %) D7 450 15 16

D35 263 18 8

D50 290 7 2

D140 308 13 1

D280 311 3 0

Protein (PP, %) D7 268 11 11

D35 208 17 2

D50 303 10 2

D140 268 11 17

D280 325 30 5

SCS D7 559 7 6

D35 389 5 11

D50 373 13 4

D140 180 15 1

D280 283 3 5
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including the MAPK signaling pathway (bta04010),

Rap1 signaling pathway (bta04015), Ras signaling pathway

(bta04014), chemokine signaling pathway (bta04062), Jak-

STAT signaling pathway (bta04630), oxytocin signaling

pathway (bta04921), and sphingolipid signaling pathway

(bta04071); one pathway, olfactory transduction (bta04740),

was identified in PP in early lactation and SCS in peak and

mid lactation and MY in mid lactation. One pathway was

associated with PY, namely, inflammatory mediator regulation

of TRP channels (bta04750).

The number and function of variants identified using QTL

annotation are listed in Table 3. The significant SNPs associated

with MY in late lactation and PP in mid and late lactation were

mainly overlapped with milk-related and production-related

QTL regions. The SNPs were identified variants and were

used for subsequent analyses.

Discussion

In this research, we estimated various genetic parameters in a

large population of Shanghai Holstein that had been regularly

measured for six major dairy traits throughout lactation since

1995. This estimation was performed by using a random

regression model for the first time in Shanghai. Currently,

there are many studies for different Holstein populations

(Buaban et al., 2021; Salimiyekta et al., 2021; Fathoni et al.,

2022; Sungkhapreecha et al., 2022). We found that the genetic

correlation between different test days for milk production was

less than one, implying that the different test days had a different

additive genetic variance. Oliveira H. et al. (2019) demonstrated

that distinct genomic regions affect milk production traits across

test days in a whole lactation (Oliveira H. R. et al., 2019).

Compared with the genetic correlation estimated in this study,

TABLE 3 Number of significant SNPs for QTL annotation with different DIM of milk production.

Traits DIM Exterior Health Milk Production Reproduction

Milk yield (MY, kg/d) D7 23 25 54 60 38

D35 27 16 60 71 43

D50 28 28 61 71 28

D140 49 54 122 116 80

D280 166 172 298 244 178

Fat yield (FY, kg/d) D7 24 18 57 76 39

D35 26 28 61 75 37

D50 34 23 66 69 48

D140 18 32 60 63 40

D280 17 12 34 43 28

Protein yield (PY, kg/d) D7 38 41 86 91 57

D35 15 23 66 57 37

D50 22 21 54 59 33

D140 19 19 35 41 20

D280 11 9 23 26 19

Fat (FP, %) D7 30 45 80 88 46

D35 217 238 385 327 231

D50 256 351 534 505 275

D140 261 401 590 591 293

D280 265 435 649 664 297

Protein (PP, %) D7 23 23 70 65 38

D35 19 13 38 40 26

D50 17 24 53 53 36

D140 147 171 316 252 177

D280 151 173 333 274 184

SCS D7 59 31 115 137 82

D35 32 42 87 94 58

D50 35 27 85 73 51

D140 24 18 57 50 33

D280 13 17 39 46 26
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the genetic correlations between TD5 and TD7, TD95 to TD185,

and TD245 to TD305 were all extremely high. This means that

genetic improvement of one test day of milk production traits

could result in a correlated response in the correlated traits.

Although there have been many GWAS analyses of milk

production traits, elucidating the molecular mechanisms of

these traits in other populations can provide new insights into

understanding the genetic basis of these traits in dairy cows. Our

study subdivided milk production traits during lactation and,

more precisely, found significant SNPs that affected different

test days.

Currently, there are many studies on the submodels in the

random regression test day model. The results of these studies

showed that the lactation curves of milk production traits

obtained by different researchers were also quite different (El

Faro et al., 2008; Zhou and Zhang, 2021; Paiva et al., 2022). Since

1994, with the application of Legendre polynomials in the

random regression test day model, research on its order has

continued. Li J. et al. (2020) found that for local Chinese Holstein

populations, models with third-, fourth-, and fifth-order of

Legendre polynomials (LP) led to similar estimates of genetic

parameters and predictive ability. Models with higher order

obtained lower Akaike information criterion (AIC) and

Bayesian information criterion (BIC) values, which was in line

with previous studies (Pereira et al., 2013). This means models

with LP5 fit data best regardless of complexity. Costa et al. (2008)

used fifth-order Legendre polynomial to fit two random effects.

Also, RRM based on Legendre polynomials is sensitive to too few

records per cow, especially for estimating extreme values of the

lactation curve. At the same time, to avoid non-convergence in

the RRM due to too few records per cow, we eliminated

individuals with fewer than three records when filtering the data.

In our study, except for FP, other traits showed that

heritability reached its maximum in early lactation. The

heritability of MY varied from 0.16 to 0.27, with the lowest

value in peak lactation. In general, the trend for MY heritabilities

was like the trend found by Kheirabadi (2019) and Jamrozik and

Schaeffer (2012). Kheirabadi (2019) reported that the

heritabilities of MY increased with stage of lactation from

0.05 to 0.09 for DIM 5 to 0.24 to 0.25 for DIM 305 for the

Iran Holstein population. Jamrozik and Schaeffer (2012)

reported that the heritabilities expressed daily were relatively

uniform across DIM, except for DIM ranging from 5 to 25.

Several studies have reported that the heritabilities of MY in early

and late lactation were larger than the value in peak lactation,

which is consistent with our results. SCS can reflect the health of

the mammary glands, but the low heritability of SCS is an

important factor limiting mastitis-resistant breeding. In our

research, the heritabilities for DIM ranged from 0.04 (TD51)

to 0.14 (TD5). Jamrozik and Schaeffer (2012) found that SCS

reached a maximum value in the early lactation, then gradually

decreased, and reached a minimum at the peak lactation, then

increased steadily and slowly across the lactation. Zakizadeh and

Jafari (2014) reported that the heritabilities varied from 0.04 (in

early lactation) to 0.136 (in late lactation) for SCS.

We analyzed the genetic correlation between different test

days and found that it was highest (close to 1) on adjacent test

days but gradually decreased with increasing DIM intervals,

which was consistent with previous studies. Jakobsen et al.

(2002a) found a genetic correlation between different test days

greater than 0.4 (Jakobsen et al., 2002b). Elahi Torshizi et al.

(2016) reported that the genetic correlation between different test

days varied from 0.47 to 0.98 (Elahi Torshizi, 2016). There was a

significant negative genetic correlation between milk production

traits in early and late lactation. These negative genetic

correlations may be due to difficulties in modeling milk

production traits in early lactation when cows are

experiencing postpartum stress and lack of energy. Soumri

et al. (2020) found the genetic correlation for SCS between

test days from -0.11 to 0.99 by using fifth-order Legendre

polynomial to fit random effects, which is like the findings in

our research (-0.02 to 0.99 across the whole lactation for SCS)

(Soumri et al., 2020). The genetic correlation for different DIM is

not 1, which means that the additive genetic variance in different

DIM is different, which also means that the RRM is used to

analyze longitudinal data (e.g., milk production traits). Also, the

extremely high genetic correlation between TD95 to TD185 and

TD245 to TD305 can explain why the measurement and

recording of milk production traits during some test days can

be simplified without compromising the reliability of parameter

estimates using the RRM.

SNP chips are customized chips based on existing SNP

information, and new SNP cannot be found. The coverage of

genotyping-by-sequencing accounts for only about 5% of the

whole genome and many SNPs are missed. WGS can find SNPs

on a genome-wide scale without causing the omission of SNPs

(Ye et al., 2018). Compared with SNP chips and GBS, GWAS

based on WGS has significant advantages, including that WGS is

based on the entire genome to scan and detect SNPs, and the

mapping is more accurate (Wu et al., 2019). Therefore, the use of

WGS data is expected to improve the detection of QTL, such as

the GWAS by using 234 bulls’ WGS data in the 1000 Bull

Genomes Project (Daetwyler et al., 2014). Although the cost

of WGS has decreased, sequencing a large number of individuals

for WGS data is still exorbitant. With the development of

genotype imputation software, a low-cost method to increase

the number of animals with WGS data has been proposed by

imputing the lower-density microarray data to the WGS level.

Recently, GWAS using imputed WGS data has been widely used

in different livestock, such as pigs (Li X. et al., 2020), chickens (Ni

et al., 2017; Visscher et al., 2017), cattle (Van Binsbergen et al.,

2015; Zhang et al., 2016), and horses (Asadollahpour Nanaei

et al., 2020). Especially for cattle, many studies have detected

significant important candidate genes by using imputed WGS

data in GWAS (Chen N. et al., 2018). In our research, we imputed

low- and medium-density SNP chips and GGRS by using a high-
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coverage WGS-based imputation reference panel (222 bulls from

Run 2 of the 1000 Bull Genome project) to WGS data, which is

consistent with imputation strategies used in other studies. It has

been shown that the use of imputed WGS data in cattle is

effective in detecting significant SNPs peaks that were not

previously found when using high-density SNP chips in

GWAS (Yoshida and Yáñez, 2022). Simultaneously, some

authors detected significant SNPs in almost all autosomes by

using the imputed WGS data to conduct GWAS on milk

production traits, which is in line with our results. In this

study, these SNPs identified on different DIM partially

overlapped (Sanchez et al., 2017). At the same time, we used a

very strict significance threshold (Bonferroni correction treats all

variants as independent) that may reduce detection power but

minimizes the risk of false positive QTLs.

The genes found in at least two lactation stages or traits and

contained or near the most significant SNPs associated with milk

production traits were the most important candidate genes in our

study. For all six traits studied, there are many common

candidate genes detected in TD35 and TD50, such as seven

genes among 20 candidate genes for FP, which may be due to the

relatively close lactation interval of TD35 and TD50, and the high

genetic correlation (greater than 0.9); thus, the mechanisms

affecting the traits are similar. NDST4 is associated with milk

fever in the U.S. Holstein cattle (Cavani et al., 2022). In a previous

study of milk production traits in Canadian Holstein at different

lactation stages, SCRIB on BTA14 was a candidate gene for MY

and was associated with TD95 to TD215 of PY (Oliveira et al.,

2018). Jiang et al. (2010) found that COL22A1 was an important

candidate gene for MY, FP, and PY by conducting GWAS in

Chinese Holstein cattle (Jiang et al., 2010). DGAT1 was detected

in the mid and late lactation of FP, which mainly had positive

effects on FY and negative effects on MY and PY. Studies have

reported thatMGST1 and SLC15A5 are associated with FY (Jiang

et al., 2019). ADAMTS3 was detected in early, mid, and late

lactation, and ADAMTS3 has been reported to be associated with

MY and PY. It is worth noting that ADAMTS3 is also

significantly associated with the longevity of cows (Mészáros

et al., 2014). TECPR2 is related to the heat resistance traits of

Chinese cattle, and SNPs located in the gene can be used as

molecular markers for Chinese cattle breeding (Ma et al., 2021).

Also, TECPR2 was found to be a candidate gene for SCS in Thai

Holstein cattle (Buaban et al., 2022). PRKG1 plays a key role in

lipolysis and is an important candidate gene for fatty acids in

milk (Shi et al., 2019, 1). Meanwhile, PRKG1 was associated with

tick resistance in cattle. Our study further supports the

importance of this gene in disease resistance traits (Alshawi

et al., 2019). TMEM132C, CTNND2, and PCDH15 have been

found to be associated with milk production traits (Yodklaew

et al., 2017, 2017; Gan et al., 2020). HMCN1 is known to be

associated with age-related macular degeneration, and

polymorphisms within the HMCN1 gene are associated with

diabetes in humans (Fisher et al., 2007). This reflects a consistent

increase in SCS with age and the progression of lactation, which

is consistent with the findings of this study. DKK2 is involved in

adipocyte lipogenesis, which may play a role in fat secretion in

milk (Li et al., 2010). ACOXL is associated with lipid metabolism

and glucose pathways (Klein et al., 2020). PLCB1 plays multiple

biological roles in human diseases, such as inflammation, cell

proliferation, and schizophrenia. DNAH9 affects milk’s volatile

fatty acid content (Nakamura et al., 2018). B3GALNT2was found

in a GWAS study of milk production traits in Danish Jersey and

Holstein cattle by Poulsen et al. (Buitenhuis et al., 2014). A

previous study showed that ATP2B2 is associated with milk

production traits and mastitis (Ogorevc et al., 2009), and the

most significant SNP (BTA22:55263235, p-value = 2.37E-18) in

the GWAS of TD7 FP is located in the intronic region ofATP2B2.

PLBD1 is an important candidate gene for fatty acid composition

in milk (Atashi et al., 2020). The most significant SNP for PP of

TD280 was BTA14:1807140 with a p-value = 1.26E-17, which

was located on HSF1, and HSF1 plays a crucial role in heat stress

response. A previous study found an SNP in the 3′-UTR
(g.4693G>T) of HSF1 that was related to thermo tolerance in

Chinese Holstein cattle through association analysis (Li et al.,

2011). NFKBIEmay control the response to several bacterial and

viral pathogens and vaccine responses (Lundbo et al., 2016).

Only a few studies have focused on time-dependent genetic

associations in livestock to date, but the investigation of the

association at certain lactation stages seems to be a promising

approach to detect loci associated with milk production

(Strucken et al., 2012). Thus, we analyzed how the genetic

influence of genomic regions changes during the most critical

stages of lactation in our study. We found that the genetic

influence on milk production traits varies throughout

lactation, which is crucial to enable more efficient genetic

selection for these traits and for better management practices,

especially for farms or breeders to select high-yielding or milk

long-lasting dairy cows. Milk production is related to the stage of

lactation, including early lactation, peak lactation, mid lactation,

and late lactation. Early lactation is known to be a critical period,

especially in high-yielding dairy cows (Deng et al., 2019).

Selecting for maximum milk production during lactation early

in lactation would improve persistency by lowering the rate of

decrease after peak yield (Ferris et al., 1985). Peakmilk yield plays

a decisive role during the whole lactation period. Zhang et al.

(2019) reported that for every 1 kg increase in peak milk

production, the yield per primiparous cow increases by about

400 kg. The effect of heat stress on milk yield has been shown to

be highest in mid or late lactation. Different genes may be

involved in handling different disturbances, explaining the

genetic difference among the milk production traits in

different lactation stages (Poppe et al., 2021). Candidate genes

were only detected at the beginning of lactation showed that the

impact on milk production traits must be diminishing in late

lactation and suggested that these genes are associated with

lactogenesis at the onset of lactation. Candidate genes were
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detected for all stages of lactation, which could therefore play a

role in the immune response of the mammary gland and prevents

inflammation during lactation (Strucken et al., 2012). We can use

a genomic selection model that combines with markers

(significantly associated with different stages of lactation) fit as

fixed effects selected from the results of a GWAS (Yin et al.,

2020). For example, MROH1, an important candidate gene for

milk protein composition, is located in a 1.85–2.11 Mb region on

BTA14 that has been shown to be associated with 305-days and

peak milk production in cows. In addition, the model for

selecting is also important. RRM is a feasible alternative to

yield more accurate selection and culling decisions. RRM

provides information about the temporal variation of

biological processes underlying the studied traits to exploit for

management and breeding purposes (Oliveira H. et al., 2019).

Conclusion

In our study, an RRM with fifth-order of Legendre

polynomials was an appropriate model for genetic evaluation

of six milk production traits in Shanghai Holstein populations.

The main results showed that genetic parameters and breeding

values were successfully estimated. The results of genetic

correlations demonstrated that combining the milk production

traits tested on different lactation into a single trait can lead to

inaccurate estimates of the genetic value of dairy cows. At the

same time, the measurement and recording of milk for some

adjacent lactation periods can be simplified without affecting the

reliability of parameter estimation using RRM. Then, we detected

significant SNPs and candidate genes associated with different

traits in different lactation stages, mainly including milk-related

genes (DGAT1, MGST1, PTK2, SCRIB, PRKG1, CTNND2,

MROH1, ATP2B2, and DNAH9), disease-related genes (LY6K,

COL22A1, TECPR2, KALRN, CYP7B1, HMCN1, and PLCB1),

heat stress–related genes (ITGA9, NDST4, TECPR2, and HSF1),

and reproduction-related genes (7SK and DOCK2). The genes

and QTLs related to heat stress are important to investigate the

mechanism of response to heat stress, such as ITGA9, which can

act as an important gene for heat-resistant breeding of Shanghai

Holstein.
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