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Abstract: Background and Objective: In the first trimester of pregnancy, fetal growth, and abnormali-
ties can be assessed using the exact middle sagittal plane (MSP) of the fetus. However, the ultrasound
(US) image quality and operator experience affect the accuracy. We present an automatic system
that enables precise fetal MSP detection from three-dimensional (3D) US and provides an evaluation
of its performance using a generative adversarial network (GAN) framework. Method: The neural
network is designed as a filter and generates masks to obtain the MSP, learning the features and MSP
location in 3D space. Using the proposed image analysis system, a seed point was obtained from 218
first-trimester fetal 3D US volumes using deep learning and the MSP was automatically extracted.
Results: The experimental results reveal the feasibility and excellent performance of the proposed
approach between the automatically and manually detected MSPs. There was no significant difference
between the semi-automatic and automatic systems. Further, the inference time in the automatic
system was up to two times faster than the semi-automatic approach. Conclusion: The proposed
system offers precise fetal MSP measurements. Therefore, this automatic fetal MSP detection and
measurement approach is anticipated to be useful clinically. The proposed system can also be applied
to other relevant clinical fields in the future.

Keywords: automatic detection; middle sagittal plane (MSP); generative adversarial network (GAN);
three-dimensional (3D); ultrasound (US)

1. Introduction

Ultrasound (US), as a convenient, powerful, and effective tool, is widely used for
prenatal growth assessment and plays an important role in prenatal diagnosis. With the
rapid development of US technology, the inspection results are becoming more detailed and
clearer. Most major fetal abnormalities can be identified by US before delivery, even in the
first trimester of pregnancy [1]. In addition to structural assessments, certain indicators can
be used to screen for chromosomal abnormalities [2]. Few unexpected findings and some
major structural abnormality with thick nuchal translucency could be identified in first
trimester scans of patients with negative cell-free DNA [3,4]. Furthermore, early scanning
for fetal congenital anomalies is an essential component of modern pregnancy care in the
cell-free DNA era [5]. However, accurate US inspections require highly skilled professionals
with appropriate training, since US image quality may be affected by speckle noise, fuzzy
boundaries, and weak edges. Unsatisfactory results can lead to erroneous conclusions,
medical waste, and unnecessary anxiety. Three-dimensional (3D) US is valuable in prenatal
diagnosis of fetal structures because it provides a multi-planar view [6,7]. Although 3D
US has improved the visibility of the fetal structure, discrimination between normal and
abnormal structures remains difficult and depends on expert judgement. The acquisition
of a true middle sagittal plane (MSP) of the fetus is the fundamental prerequisite for
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reliable measurement and the basis for the nuchal translucency exam that provides a risk
assessment for chromosomal aberrations in the first trimester [8]. The ideal plane is the
main requirement for obtaining effective and repeatable measurements and maintaining
inspection quality [9]. Fetal structural measurements require that an expert obtain a standard
plane, which is time consuming and subjective [10]. Automated systems can increase
efficiency, reliability, and accuracy in clinical medicine applications [11]. Automated systems
are quite popular in the medical field and have been successfully used for many years in
US applications. There are semi-automatic/automatic systems for fetal assessment in US
imaging [12–18]. Considering that more challenging modes and image recognition processes
have been implemented, the use of automation in medical and US applications is logical and
feasible. Therefore, using image analysis technology, we developed an automated system
using deep learning with a generative adversarial network (GAN) for MSP detection.

2. Materials and Methods

This study was approved by the Institutional Review Board of National Cheng Kung
University Hospital (NCKUH, No.: B-ER-102-402 was approved on 6 July 2016). Women
with normal pregnancy at gestational ages of 11–13 weeks were recruited from the antenatal
outpatient department of National Cheng Kung University Hospital. Only women without
maternal diseases known to affect fetal growth, i.e., pre-existing hypertension or diabetes
mellitus, and pregnancies that were not at risk for fetal abnormalities were included in the
study, after the study was approved and informed consent was obtained. The pregnancy
duration was determined from the last reliable menstrual period or, in case of uncertainty,
adjusted by US in the early first trimester of gestation. Women with singleton pregnancies
resulting in the term delivery of an infant without congenital anomalies were recruited.

The whole fetus volumes were acquired using a trans-abdominal 3D transducer with a
frequency range of 4–8 MHz (Voluson 730Expert and E8, GE Healthcare, Kretz Ultrasound,
Zipf, Austria). The acquisition angle, which is 85◦ in most volumes, was set to ensure
the inclusion of the entire gestational sac and fetus. The image volumes were acquired
by the appropriate training of sonographers and adherence to a standard technique in
accordance with the guidelines that were established by The Fetal Medicine Foundation
(FMF). The guidelines of 3D US include the whole fetus (fetal crown-rump length should
be obtained), the fetus is in the neutral position, and the amnion is seen separately from
the nuchal membrane. The proposed framework was developed using Python on an Intel
i7 CPU (3.2 GHz, 6 cores) and training was performed on a single NVIDIA 1080Ti GPU
with the Tensor flow library from scratch. The fetal MSP was detected automatically using
the software and manually by the two obstetrics doctors with 20 years (Pei-Yin Tsai MD.)
and 6 years (Pei-Hsiu Yu MD.) of experience.

The proposed system is a two-stage deep learning method. In the first stage, deep
learning is used to find a seed point for the fetal head. In the second stage, a GAN is utilized
for MSP detection in 3D fetal US images. According to the four anatomical features (nuchal
translucency, nasal tip, nasal bone, and diencephalon) of the standard fetal MSP in a 3D US
image, the objective of MSP detection is to search one plane from a volume that exactly splits
the fetus into right and left halves with crossing of the requiring features. The proposed
method learns not only the specific feature, but also the position information simultaneously.

In the first stage, a deep learning method for finding a seed point of the fetal head is
utilized. In total, four deep learning methods are employed to obtain an exact seed point.
The segmentation network firstly finds the seed point in the sagittal view and then obtains
its location (x, y). After finding (x, y), two object detection networks are used to identify
location z in the axial and coronal views. Then, the first segmentation network is utilized
to refine (x, y). Finally, according to the location y, another segmentation network refines
the location z in the axial view.

In the second stage, a deep learning method involving a GAN, which contains a gen-
erator and discriminator, is used for automatic fetal MSP detection in 3D US images. In the
work of WGAN, Arjovsky et al. [19] rename the discriminator to critic for emphasizing its
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property. In this paper, we also called the discriminator as a critic. The generator input
was a cropped volume and the output was a 3D binary mask, where the input and output
have the same sizes. The MSP position information was embedded in the 3D mask, where
the value was one if the voxel is included in the MSP and zero otherwise. The input of
the critic was a combination of a 3D mask and image data with a combination operation.
The combination operation multiplied the predicted 3D mask and input image element
by element to obtain the intensity plane from the original image. Then, it concatenated
the result of multiplication with the input image. Hence, the output of the combination
operation was two-channel data (Figure 1).
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3. GAN for MSP Detection in 3D Fetal US Images

This section firstly proposes a deep learning method for finding a seed point of the
fetal head. Then, it proposes a GAN for MSP detection in 3D fetal US images. According
to four anatomical features of the standard MSP in a 3D fetal US image, the goal of MSP
detection is to search one plane from a volume that exactly splits the fetus into the right
and left halves with crossing of the requiring features. An instinctive idea is to classify
all possible slices as true or false according to the similarity to the ground truth plane.
However, classifying a large number of planes is very time consuming. Moreover, judging
the comparisons only based on 2D images causes the loss of location information of the
planes with respect to the fetus in 3D space. Therefore, MSP detection was treated as
filtration in this work to overcome the issues. That is, we employed a neural network to
find a seed point of the fetal head and generate a 3D binary mask. The proposed method
learns not only the specific features, but also the position information simultaneously.

3.1. Deep Learning Method for Finding a Seed Point of a Fetal Head

This section proposes a deep learning method for finding a seed point of a fetal head,
in which four deep learning networks are employed to obtain an exact seed point. Two
segmentation networks in the Unet + ASPP [20] architecture (see Figure 2) are utilized for
the sagittal and axial views, and two additional networks are used for object detection
and obtain the seed point from the axial and coronal views. The atrous spatial pyramid
pooling (ASPP) probes an incoming convolutional feature layer with filters at multiple
sampling rates and effective fields-of-views, thus capturing objects as well as image context
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at multiple scales [21]. The two object detection networks are deep learning networks that
are used to modify the predicted seed point. The detection procedure is as follows. Firstly,
the segmentation network finds the seed point in the sagittal view and then obtains its
location (x, y). After finding (x, y), the two object detection networks are employed to find
the location z in the axial and coronal views. Then, the first segmentation network is used
to refine (x, y). Finally, according to the location y, another segmentation network is utilized
to refine the location z in the axial view.
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3.2. Overview of the GAN-Based Fetal MSP Detection Approach

This section proposes a deep learning method for automatic MSP detection in 3D fetal
US images. The proposed method is based on the GAN shown in Figure 3, which contains
a generator and critic.
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Figure 3. Training phase.

The input of the generator is a cropped volume, and its output is a 3D binary mask,
where the input and output have the same size. The MSP position information is embedded
in the 3D mask, where the value is one if the voxel is included in the MSP, zero otherwise.
The input of the critic are data from a combination operation that multiplies the predicted
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3D mask times the input image element by to obtain the intensity plane from the original
image. Then, it concatenates the multiplication results with the input image. Hence, the
output of the combination operation is two-channel data.

In the testing phase, only the generator is used to predict a 3D binary mask. In post-
processing, the 3D binary mask is processed with the original input image and the final 2D
MSP image is obtained (see Figure 4).
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3.3. Network Architecture
3.3.1. Generator

The generator is a symmetric 3D autoencoder, as shown in Figure 5. The encoder is
composed of four convolutional layers. After two fully connected layers with leaky ReLU
layers, the decoder includes four deconvolution layers. A leaky ReLU layer is employed
after every deconvolution layer, except for the last layer, where a sigmoid layer is used
instead.
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3.3.2. Critic

The architecture of the critic is similar to the encoder of the generator and contains
four convolutional layers. Each layer is followed by a leaky ReLU layer except for the last
layer, where a sigmoid layer is utilized. In addition, a max-pooling layer is used in every
layer. The number of output channels is the same as that in the encoder of the generator, as
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shown in Figure 6. It is worth noting that the output of the critic is a latent vector, instead
of a value, representing the distribution of a real or fake mask.
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3.4. Loss

In the original GAN, the loss function is the Jensen–Shannon divergence, which makes
it difficult to achieve convergence in training. To overcome this issue, Wasserstein distance-
based loss function with weight clipping (WGAN) was proposed. In the extended version
of WGAN, namely, WGAN-GP, weight clipping is replaced with a gradient penalty with
respect to the input of the critic. Based on WGAN-GP, the filter weights of two networks
were trained on a pair of loss functions in this work.

Let LG and LC be the loss functions for updating the generator and critic. The loss
function LG has a cross-entropy term Lce, which is not present in the original loss function
of the generator in WGAN-GP. The cross-entropy term can make the prediction and ground
truth as similar as possible. Let y be the ground truth mask, x be the predicted output mask,
and x̂ = αy + (1− α)x be a linear combination of x and y with a random weight α ∈ (0, 1).
Let x′, y′, and x̂′ be the inputs of the critic after the combination of the generator input and
x, y, and x̂, respectively. Hence, the two loss functions LG and LC are

LG = −(1− w)
(
E
[
C
(
x′
)])

+ wLce (1)

LC = E
[
C
(
x′
)]
− E

[
C
(
y′
)]

+ λE
[(
‖∇x̂′C

(
x̂′
)
‖2 − 1

)2
]

(2)

where Lce = E [−ylog (x)−(1−y) log (1−x)], C is the critic, E is the expectation, λ is a
weight for the gradient penalty, and w is a weight controlling the tradeoff between the
cross-entropy loss and adversarial loss. The objective is to find a generator and critic that
minimize LG and LC, respectively.

3.5. Post-Processing

Finally, the 2D MSP images are obtained by post-processing. The post-processing
inputs are the 3D mask and original input image. Let M be a transformation that represents
the correlation of each pixel between I and E. The illustration is shown in Figure 7. The
transformation M is decomposed into two terms as M = TR, where R is a rotation matrix
and T is a translation matrix. With R and T, the final 2D MSP images can be obtained.
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I is the initial sagittal plane. Each pixel (p, q) of I, i.e., a voxel (p, q, 0) in the 3D image space, is
transformed to (i, j, k) on E through M whose intensity value is mapped onto the corresponding
coordinate (p, q) of E.

4. Experiments

All of the experimental images were manually labeled by experts through the follow-
ing steps. The center of the fetal head close to a dark region called the diencephalon was
firstly determined and named as the seed point. As shown in Figure 8, the seed point
became the origin, and a sagittal plane through the seed point was rotated by θaxi about the
x-axis based on the anatomical features on axial planes. Afterward, the plane was rotated
by θcor about the y-axis, corresponding to the coronal view. The rotated plane was the MSP
of the fetus and was regarded as the ground truth.

Diagnostics 2021, 11, x 7 of 15 
 

 

3.5. Post-Processing 
Finally, the 2D MSP images are obtained by post-processing. The post-processing 

inputs are the 3D mask and original input image. Let M be a transformation that repre-
sents the correlation of each pixel between I and E. The illustration is shown in Figure 7. 
The transformation  is decomposed into two terms as M = TR, where R is a rotation 
matrix and T is a translation matrix. With R and T, the final 2D MSP images can be ob-
tained. 

 
Figure 7. Illustration of the transformation between two planes where M is a transformation and I 
is the initial sagittal plane. Each pixel (p, q) of I, i.e., a voxel (p, q, 0) in the 3D image space, is trans-
formed to (i, j, k) on E through M whose intensity value is mapped onto the corresponding coor-
dinate (p, q) of E. 

4. Experiments 
All of the experimental images were manually labeled by experts through the fol-

lowing steps. The center of the fetal head close to a dark region called the diencephalon 
was firstly determined and named as the seed point. As shown in Figure 8, the seed point 
became the origin, and a sagittal plane through the seed point was rotated by θaxi about 
the x-axis based on the anatomical features on axial planes. Afterward, the plane was 
rotated by θcor about the y-axis, corresponding to the coronal view. The rotated plane was 
the MSP of the fetus and was regarded as the ground truth. 

 
Figure 8. Illustration of labelling. 

We collected 394 cases of volume data and constructed a database of 3D fetal US 
images. It is worth mentioning that an improper fetus pose may cause the position of the 

Figure 8. Illustration of labelling.

We collected 394 cases of volume data and constructed a database of 3D fetal US
images. It is worth mentioning that an improper fetus pose may cause the position of the
nuchal translucency to be incorrect, leading to the identification of a defective MSP that is
unsuitable for assessing the growth parameter of the nuchal translucency thickness. We
utilized oblique angles θaxi and θcor of ±30◦ as a baseline to determine whether to keep
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the image. After deleting the cases with poor image quality, tight fetal attachment to the
endometrium, and incomplete fetal development, 218 cases of volume data remained for
the experiments.

Since the heads of fetuses from two volume data have opposite directions (left and
right sides), an alignment step was applied by horizontally flipping the volumes with
heads on the right side to the left side. To standardize the dimensions of the training and
testing data before feeding them into the model, cubes around the heads of the fetuses were
cropped out, which are the most important regions in MSP determination. According to
the given seed points coordinates (x, y, z), the cubes were extracted in the range of (x ± 40,
y ± 40, z ± 40), resulting in dimensions of 80 × 80 × 80.

For seed point detection, the Adam optimizer was utilized to update the segmentation
networks, with a training batch size of 10. The loss function for the segmentation networks
was binary cross-entropy. The object detection networks were trained using SGD with
5 × 10−4 weight decay and 0.9 momentum, with a training batch size of five. The loss
functions for the object detection networks were the cross-entropy and Huber loss. For the
proposed GAN, the Adam optimizer was utilized to update the generator and critic, where
the batch size was 8, learning rate was 0.0001, β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8.
Following [19], λ was set to 10. We assigned the weight w as 0.8. The number of total
trainable parameters was 4,059,513. The critic and generator were optimized alternately.
The proposed framework was developed in Python on an Intel i7 CPU (3.2 GHz, 6 cores)
and trained on a single NVIDIA 1080Ti GPU with Tensorflow library from scratch.

We collected 394 cases of volume data and constructed a database of 3D fetal US
images. After deleting the cases with poor image quality, tight fetal attachment to the
endometrium, and incomplete fetal development, 218 cases of volume data remained for
the experiments. Five-fold cross validation was performed on these 218 cases of volume
data, and 80% of the data (174 cases) were randomly selected for training and the remaining
20% (28 cases) were used for testing. In the testing phase, only the generator was used to
predict a 3D binary mask. In post-processing, the 3D binary mask was processed with the
original input image and the final MSP image was obtained.

In total, four metrics were used to evaluate the performance of the proposed network.
Given two planes, the manually extracted result E1: a1x + b1y + c1z + d1 = 0 and the
predicted result E2: a2x + b2y + c2z + d2 = 0, the first metric is the included angle θ between
(a1, b1, c1, d1) and (a2, b2, c2, d2) (Figure 9a), given by Equation (1):

θ = arccos
(

(a1, b1, c1, d1)·(a2, b2, c2, d2)

‖(a1, b1, c1, d1)‖‖(a2, b2, c2, d2)‖

)
. (3)

The second metric is the Euclidean distance d between (a1, b1, c1, d1) and (a2, b2, c2, d2),
given by Equation (2):

d =

√
(a1 − a2)

2 + (b1 − b2)
2 + (c1 − c2)

2 + (d1 − d2)
2 (4)

If the two planes coincide with each other, the included angle and Euclidean distance
are zero, that is to say, the smaller θ and d, the better the plane prediction.

For visual comparison, the differences in the yaw and roll angles between the automat-
ically detected and manually extracted MSP were calculated (Figure 9b). The yaw angle θy
and roll angle θr are respectively defined as

θy = arctan
b
a

(5)

θr = arctan
−c√

a2 + b2
, (6)

where the equation of the plane is ax + by + cz + d = 0.
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The study was designed with the objective of estimating the variance in automatic
and semi-automatic detection. In MSP detection, the mean and variance can be calculated.
The mean, standard deviation (SD), and 95% confidence interval of the difference between
the automatic and semi-automatic detection results were obtained. Moreover, the asso-
ciation between automatic and semi-automatic detection was assessed by performing a
paired sample t-test, wherein p < 0.05 was considered statistically significant. We compared
the four metrics in five-fold validation by analysis of variance. The statistical analysis was
conducted using the Statistical Package for the Social Sciences (SPSS 17.0 for Windows,
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SPSS Inc., Chicago, IL, USA). Bland–Altman plots were used to assess the bias of the
automatic and semi-automatic detection methods.

5. Results

The semi-automatic system involved manual determination of the seed points followed
by utilizing the GAN-based method to obtain the fetal MSP. The results of the automatic
method were obtained by employing the full deep learning method (Figure 10). The execution
time of the semi-automatic system was 5 s, while the inference time of the automatic system
was about 2.4 s, i.e., up to two times faster than the semi-automatic approach.
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The automatic and semi-automatic MSP detection results obtained using the proposed
system was compared with the results of manual selection by an expert. The four metrics
exhibited no significant differences in five-fold cross-validation. In the automatic system
results, 98.6% (n = 215) had Euclidean distances less than 0.05, and 89.4% (n = 195) of the
cases had included angles smaller than 1.0◦. The automatic system produced an average
included angle of 0.5344◦ and an average Euclidean distance of 0.0094. The average yaw
and roll angles were 0.9253◦ and 0.1044◦, respectively. Most of the cases had small roll
and yaw angles simultaneously, meaning that in these cases, the resulting plane could be
treated as a sagittal plane (Figure 11). The results reveal that the proposed deep learning
method yields conclusions very closed to those obtained by experts.
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Table 1 also shows no significant differences between the automatic and semi-automatic
MSP detection methods. The high correlation coefficients between the automatic/semi-
automatic and manual measurements of the differences in the Euclidean distance, included
angle, yaw angle, and roll angle were noted, confirming that the automatic method achieved
results consistent with those obtained using the semi-automatic method. Thus, the auto-
matic method can achieve measurement results consistent with those of the semi-automatic
method. The differences between the automatic and semi-automatic methods were ex-
amined using Bland–Altman plots (Figure 12), and the results of the proposed automatic
method agreed well with those of the semi-automatic method.

Table 1. Comparison of the automatic/semi-automatic and manual fetal MSP detection methods.

Voxel

95% CI of Difference

Type Mean SD Lower Upper r P

Angle
Semi-automatic 0.4951 0.9278 −0.0833 0.0048 0.9346 0.648

Automatic 0.5344 0.8671
Euc-distance

Semi-automatic 0.0087 0.0166 −0.0015 0.0001 0.9368 0.6588
Automatic 0.0094 0.0154

Yaw
Semi-automatic 0.9057 1.2072 −0.1355 0.0963 0.7394 0.8651

Automatic 0.9253 1.1972
Roll

Semi-automatic 0.1004 0.0829 −0.0123 0.0043 0.7142 0.6156
Automatic 0.1044 0.0817
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6. Discussion

In the first trimester, the MSP has proven to be useful for assessing fetal development
and congenital fetal anomalies [1]. The optimal plane acquired in prenatal US is important for
obtaining valid, precise, and reproducible measurements [8,22]. Expert training is required to
achieve high quality examination. Therefore, learning-based methods, such as convolutional
neural networks, have been utilized in the second trimester of pregnancy [23–25]. In the
present study, we developed an accurate automatic system using deep learning to help re-
solve the problems encountered in conventional manual, two-dimensional (2D) methods [15].
We proposed not only a GAN-based method of fetal MSP detection from 3D US images, but
also a deep learning method to obtain an exact seed point. To the best of our knowledge, the
proposed system using an automatic GAN-based approach for fetal MSP detection is the
first to be introduced.

Although some semi-automatic and automatic systems involving 2D US have been
developed for first trimester fetal evaluation [16,17,22,26], we presented a novel automatic
MSP detection system with excellent accuracy. Our automatic MSP detection system is the
most precise system thus far for fetal MSP evaluation in the first trimester of pregnancy.

The results presented in this report validate the automatic fetal MSP detection ap-
proach using 3D US and provide evidence of its potential clinical applicability. The fetal
structures, such as the nuchal translucency, nose tip, and translucent diencephalon, could
be measured in the proposed system based on the exactly detected MSP. Moreover, the ex-
perimental results obtained using the proposed method and the corresponding evaluations
demonstrate its consistency with manual measurements and potential for routine clinical
usage. We believe that the overall trade-off between time and accuracy is acceptable.

The proposed automatic method of fetal MSP detection from 3D US images based on
a GAN treats MSP detection as a filtration problem, where the neural network is used as a
filter to generate 3D masks that contain the information about the plane position. Moreover,
the proposed deep learning method enables the exact initial seed point to be found, serving
as a reference for the subsequent filtration. By using the transformation of the initial and
estimated planes, the post-processing provides the final MSP. The experimental results of
five-fold cross validation reveal that the proposed system can deal with the MSP detection
problem and achieves good performance.

The advantage of the proposed system is that full deep learning using the GAN can
be performed without any user interaction in a short time. The average time for manual
evaluation depends on the clinical condition of the fetus and the experience of the clinician.
It usually takes a few minutes. The average execution time is 2.4 s per image, while manual
measurement is time consuming due to the aforementioned difficulties of US examination.
The proposed approach is also up to two times faster than the semi-automatic method.

A limitation of the system is that when the fetus moves or has other soft tissues
adhered to it during 3D US acquisition; the image analysis becomes complicated, making
it difficult to retrieve a complete set of measurements. Furthermore, the image retrieved
from smaller fetus could escalate the error of image processing. Moreover, poor US image
quality caused by speckle noise, fuzzy boundaries, and weak edges increases the difficulty
of the deep learning progress.

Establishing the fetal MSP accurately using our automatic system will enable the
difficulties in implementing important markers during the first trimester to be overcome.
We believe that automatic detection of the fetal MSP is clinically useful and that our
proposed system may be usefully applied to other clinical fields in the future.

7. Conclusions

This approach not only preserves the 2D and 3D geometry simultaneously, but also
seeks the answer directly rather than requiring a complicated transformation procedure.
To the best of our knowledge, no automatic GAN-based fetal MSP detection method has
been introduced previously. Moreover, the execution time for one case using the proposed
method is considerably improved compared to those obtained in previous works, increas-
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ing the efficiency and reducing the intra- and inter-observer variability. The automatic
system can successfully detect fetal MSPs in 3D US images, which can reduce the assess-
ment time, increase the accuracy, and enhance professional training. This method could
also solve clinical dilemmas by shortening training time and improving training quality.
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