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A B S T R A C T   

The development of an innovative drug is complex and time-consuming, and the drug target identification is one 
of the critical steps in drug discovery process. Effective and accurate identification of drug targets can accelerate 
the drug development process. According to previous research, evolutionary and genetic information of genes 
has been found to facilitate the identification of approved drug targets. In addition, allosteric proteins have great 
potential as targets due to their structural diversity. However, this information that could facilitate target 
identification has not been collated in existing drug target databases. Here, we construct a comprehensive drug 
target database named Genetic and Evolutionary features of drug Targets database (GETdb, http://zhanglab.hza 
u.edu.cn/GETdb/page/index.jsp). This database not only integrates and standardizes data from dozens of 
commonly used drug and target databases, but also innovatively includes the genetic and evolutionary infor-
mation of targets. Moreover, this database features an effective allosteric protein prediction model. GETdb 
contains approximately 4000 targets and over 29,000 drugs, and is a user-friendly database for searching, 
browsing and downloading data to facilitate the development of novel targets.   

1. Introduction 

Drug discovery is a time-consuming, expensive and risky process [1]. 
According to an analysis of innovative drugs approved by the US Food 
and Drug Administration (FDA) from 2010 to 2020, the typical clinical 
development time for innovative drugs is 9.1 years [2]. The average cost 
of developing a new drug has been the subject of debate, with recent 
estimates ranging from $314 million to $2.8 billion [3]. Although sub-
stantial investment and time are devoted to the discovery of new drugs, 
clinical trials have a success rate of a mere 13% and a relatively elevated 
rate of drug attrition. [4]. The appropriate selection of a target is an 
effective way to reduce the risk and cost of clinical development of drugs 
[5]. The discovery of novel drug targets is one of the main focuses of 
biomedical research in the pharmaceutical industry and academia, 
providing the basis for the development of new drugs [6]. The number of 
marketed drugs for different targets (i.e. target’s druggability) is 
non-uniformly distributed [7]. In 2015, it was observed that privileged 
target families, comprising 44% of the FDA-approved distinct human 

protein efficacy targets (667 in total), accounted for 70% of the thera-
peutic effects attributed to small molecule drugs [8]. This highlights the 
potential for identifying high potency targets that could lead to the 
discovery of multiple new drugs. Traditionally, the identification and 
validation of drug targets have been performed via three experimental 
techniques: nucleic acid microarrays, protein microarrays, and 
high-throughput Nuclear Magnetic Resonance (NMR)-based screening 
for drug-target interactions. However, these experimental approaches 
for drug target identification are characterized with both significantly 
high cost and time investments [9]. Thus, it is imperative to utilize target 
identification methodologies that are more accurate and efficient, due to 
their more reliable and effective support for drug development and 
individualized therapy [10]. 

Genetics is a method to explore the association between genotype 
and phenotype, which can help researchers identify the causative genes 
for diseases [11]. Causative genes underlying genetic disorders are 
frequently preferred targets for drug discovery and development, given 
their pivotal role in disease initiation and progression [12]. For example, 

* Corresponding author. 
E-mail address: quanyuan@mail.hzau.edu.cn (Y. Quan).   

1 These authors contributed equally to this work 

Contents lists available at ScienceDirect 

Computational and Structural Biotechnology Journal 

journal homepage: www.elsevier.com/locate/csbj 

https://doi.org/10.1016/j.csbj.2024.04.006 
Received 7 November 2023; Received in revised form 25 March 2024; Accepted 1 April 2024   

http://zhanglab.hzau.edu.cn/GETdb/page/index.jsp
http://zhanglab.hzau.edu.cn/GETdb/page/index.jsp
mailto:quanyuan@mail.hzau.edu.cn
www.sciencedirect.com/science/journal/20010370
https://www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2024.04.006
https://doi.org/10.1016/j.csbj.2024.04.006
https://doi.org/10.1016/j.csbj.2024.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2024.04.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational and Structural Biotechnology Journal 23 (2024) 1429–1438

1430

in various cancers, mutations are observed in isocitrate dehydrogenase 
(IDH), an important enzyme involved in cellular metabolism. These 
mutations lead to the excessive production of 2-hydroxyglutarate, an 
oncogenic metabolite. Consequently, targeting IDH mutations has 
become an important strategy in tumor therapy [13]. Nuclear factor 
(erythroid-derived 2) 2 (NRF2) upregulation can counteract the increase 
of hemodynamic stress and protect the cardiovascular system, making it 
a potential target for cardiovascular disease treatment [14,15]. Super-
oxide dismutase 1 (SOD1) is an enzyme that removes harmful free 
radicals inside cells, however, SOD1 mutations cause amyotrophic 
lateral sclerosis (ALS), a neurodegenerative disease, therefore, SOD1 is 
regarded as a potential target for ALS treatment [16]. It has been re-
ported that drug targets with human genetic support have twice the 
likelihood of being approved than those without support [17]. Among 
the 50 drug targets approved by FDA in 2021, two-thirds have human 
genetic evidence [18]. Based on genetic information, determining the 
function or role of gene products in normal physiology and pathogenic 
processes can help select appropriate and effective targets [19]. 

In addition to genetic information, our previous research has 
revealed that successful targets tend to share some similar evolutionary 
features, and evolutionary information can help identify drug targets 
with the greatest potential for therapeutic development [20]. According 
to a relatively consistent gene age data provided by Liebeskind et al. 
[21], genes can be categorized into eight evolutionary stages, which are 
the common ancestor of Cellular organisms, the common ancestor of 
Eukaryotes and Archaea (Euk_Archaea), Horizontal gene transfer from 
Bacteria (Euk + Bac), Eukaryota, Opisthokonta, Eumetazoa, Vertebrata 
and Mammals. By the year 2012, a noteworthy discovery was made 
regarding the identification of 498 successful targets. It was found that 
these targets significantly enriched in the common ancestor of cellular 
life and Euk + Bac [20], indicating that targets from these evolutionary 
stages are more likely to be successful compared to those from other 
stages. Enrichment of 581 cancer driver genes using consensus gene age 
data revealed significant enrichment of genes from eukaryotic, opis-
thokonta and eumetazoa [22]. Our previous study also analyzed the 
evolutionary origins of 36 human antiviral targets. Statistical results of 
the evolutionary information showed that the 36 targets were mainly 
distributed in eumetazoa (p = 4.00 × 10− 2, hypergeometric test), and 21 
of them were cellular membrane receptors significantly enriched in the 
eumetazoa (p = 3.40 × 10− 4, hypergeometric test) [23]. DAZ interacting 
zinc finger protein 3 (DZIP3) 1st exon DNA methylation predicted the 
onset of early stage (AUC = 0.83, OR = 8.82) and all pathological 
Tumor-Node-Metastasis (pTNM) stages of colorectal cancer (AUC =
0.78, OR = 5.70), whereas DZIP3 originates from the eumetazoa [24]. 
Genes from the eukaryotic were the most up-regulated in tumor samples 
[25], and enrichment of prognostic genes for three cancers, ovarian, 
breast and lung adenocarcinomas, found that they were all enriched in 
the eukaryota [26]. During whole-genome duplication (WGD) events, 
genes that undergo replication are commonly referred to as Ohnologs. 
Ohnologs have been proven to possess dosage sensitivity [27], making 
them a significant source of candidate drug targets [28]. Notably, our 
previous research findings have consistently indicated that Ohnologs 
exhibit a higher enrichment of successful drug targets compared to 
non-Ohnologs (p < 1.51 × 10− 40, chi-square test) [20], suggesting that 
information on whether a gene is an Ohnolog can facilitate the drug 
target identification. 

Allosteric proteins serve as a significant source of drug targets [29]. 
Allosteric proteins refer to proteins that can undergo conformational 
changes after binding to small molecule ligands [30]. They regulate 
various physiological activities of the body through the allosteric effect, 
which is a common phenomenon [31]. Orthosteric regulators reduce the 
possibility of substrate and enzyme reaction by competing with the 
substrate binding site, and this mechanism of action is prone to toxic 
side effects caused by homologous protein reactions [32]. Since the 
allosteric site and the orthosteric site do not overlap, allosteric regula-
tors have higher selectivity and lower toxicity [33]. Allosteric proteins 

provide a promising, novel opportunity for the development of inno-
vative therapeutics [34]. In this regard, we developed knowledge graph 
(KG)-based prediction models for allosteric proteins and integrated the 
results into GETdb. Unlike traditional networks that only display a single 
relationship type, KGs can integrate diverse heterogeneous information, 
including multiple entities and their complex relationships, and provide 
unstructured semantic relationships between entities, providing a richer 
way of expressing information for target research [35,36]. 

Most of the currently available drug target databases have recorded 
basic biomedical information of protein targets (the three-dimensional 
structure, function and interactions with small molecule ligands and 
so on), such as DrugBank (https://go.drugbank.com/), Therapeutic 
Targets Database (TTD) (https://db.idrblab.net/ttd/), DGIdb (https://d 
gidb.org/), and the UniProt (https://www.uniprot.org/). However, the 
evolutionary and genetic information of these targets is not adequately 
collated and documented in these databases. This situation may result in 
some important evolutionary and genetic information being overlooked, 
thus affecting our overall understanding and application of these targets, 
which to some extent hinders the development of novel drugs. The 
features and functions of allosteric proteins are important for the 
development of novel drugs. In this study, we construct a comprehensive 
drug target database called Genetic and Evolutionary features of drug 
Targets database (GETdb, http://zhanglab.hzau.edu.cn/GETdb/page/ 
index.jsp). This database not only integrates and standardizes data 
from dozens of commonly used drug and target databases, but also 
innovatively includes the genetic and evolutionary information of tar-
gets. Moreover, it features an effective allosteric protein prediction 
model. GETdb contains approximately 4000 targets and over 29,000 
drugs, and is a user-friendly database for searching, browsing and 
downloading data to facilitate the development of novel targets (Fig. 1). 

2. Materials and methods 

2.1. Collection and processing of drug target information 

We collected information on drugs and targets from three databases: 
DrugBank, TTD, and DGIdb. Initially, we obtained the latest versions of 
drug target information by downloading relevant files from these da-
tabases. The XML files of DrugBank were parsed using the Python Ele-
mentTree module to extract pertinent details, such as human-related 
drug names, drug types, drug groups, target actions, target names (gene 
names), and other relevant attributes. Basic drug target information was 
also extracted from the remaining two databases. 

We merged the information from DrugBank and TTD based on drug- 
target pairs. The PyMeSHSim software package [37], an integrated Py-
thon toolkit for biomedical naming entity identification and standardi-
zation, was utilized in this study. It exhibits a semantic similarity 
ranging from 0.89 to 0.99 when compared to manually identified web 
terms. In this study, PyMeSHSim was utilized to extract the unique 
identifier (ID) terms of Medical Subject Headings (MeSH) from the drug 
description text present in both the TTD and DrugBank databases. 
Subsequently, drug indications from these databases were merged based 
on their respective MeSH IDs. Finally, the medical subject terms asso-
ciated with these MeSH IDs were employed to facilitate accurate subject 
identification and description. Additionally, we integrated this merged 
dataset with DGIdb using drug-gene pairs as the matching criterion, 
considering the lack of target names in DGIdb. To provide transparency, 
we added a new column labeled "source" to the merged dataset, indi-
cating the data source of drug-target (gene) pairs. 

2.2. Collection and processing of genetic features for drug targets 

The Disease Gene Network (DisGeNET, https://www.disgenet.org/) 
integrates gene-disease association information from multiple databases 
and a large number of literature sources. We obtained the SQLite data-
base encompassing comprehensive information and extracted the gene- 
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disease association data from the database. DisGeNET has developed a 
gene-disease relationship scoring model, with scores ranging from 0 to 
1, where higher scores indicate higher confidence in the gene-disease 
associations. The mentioned information was additionally incorpo-
rated into our study. Rare disease drug development has always been a 
challenging field [38]. To better support the discovery and development 
of drugs for rare diseases, we utilized the Orphanet database (https:// 
www.orpha.net/consor/cgi-bin/index.php) to collect information on 
the relationships between rare diseases and genes. Orphanet is a Euro-
pean collaborative network dedicated to improving the diagnosis, pre-
vention, and treatment of rare diseases and contains information on over 
6000 rare diseases worldwide. 

The disease descriptions from diverse data sources were standard-
ized utilizing the Unified Medical Language System (UMLS) to ensure 
consistency in disease names and to mitigate potential confusion arising 
from synonyms, abbreviations, and other variations [39]. The stan-
dardization process was performed using PyMeSHSim. Subsequently, 
the two gene-disease datasets were merged based on the CUI identifier (a 
unique concept identifier in the UMLS) and gene names, with an addi-
tional column labeled as "source" appended to indicate the respective 
data sources. 

2.3. Collection of evolutionary features for drug targets 

Information on the stage of origin of the target, the age of the target, 
Ohnologs, orthologs, paralogs, and phenotypic similarity of orthologous 
genes between humans and mice were collected as evolutionary features 
of drug targets. Liebeskind et al. have inferred the age of genes based on 
13 popular homology inference algorithms [21] and classified human 
genes into eight major categories. This information on the stage of origin 
was added to our database to further understand the function and dis-
ease relevance of genes. The age of a gene is strongly correlated with its 
function and also with human disease [40,41], and to gain a clearer 
understanding of the evolutionary features of drug targets, we down-
loaded age information of human protein-coding genes from GenOrigin 

(http://genorigin.chenzxlab.cn/#/). Duplicate Ohnologs generated 
during WGD events have been shown to be metrologically sensitive and 
a potential source of drug candidates [27], and the information was 
therefore incorporated into our database construction. In addition, 
Orthologs are formed by species evolution and paralogs are often 
functionally similar. We collected information on paralogous genes and 
orthologous genes across multiple species including Alpaca (Vicugna 
pacos), Chimpanzee (Pan troglodytes), Dog (Canis lupus familiaris), 
Guinea Pig (Cavia porcellus), Macaque (Macaca), Mouse (Mus musculus), 
Pig (Sus scrofa), Rat (Rattus norvegicus), and Rabbit (Oryctolagus cuni-
culus) from Ensembl 108 (https://www.ensembl.org/index.html? 
redirect=no). Although the sequences of orthologous genes are highly 
conserved, functional divergence between orthologous gene products 
frequently occurs during evolution [42]. Doyeon Ha et al. conducted 
evolutionary rewiring of regulatory networks and identified 642 
high-phenotype-similarity genes and 642 low-phenotype-similarity 
genes based on phenotype similarity (PS) scores [43]. These genes 
were used to explain the phenotypic differences between orthologous 
genes in humans and mice. The data have been integrated into our 
database for target discovery purposes. 

2.4. Collection of basic biological features for drug targets 

It has been shown that genes with tissue specificity are twice as likely 
to be targets as common genes [44], which would facilitate the dis-
covery of new therapeutic targets, and in this study, we utilized the 
tissue-specific gene data derived from 96 distinct human tissues as 
delineated by Lüleci and Yılmaz using the extended tau score method-
ology [45]. To gather essential biological features of drug targets, we 
collected information from UniProt database (accessed September 
2022), including Gene Ontology (GO) annotations, single nucleotide 
polymorphism (SNP) data, motif information, subcellular localization 
details, as well as Protein Data Bank (PDB) and Pfam entry identifiers. 
The GO information provided insights into the functional annotations of 
the target proteins, categorizing them into molecular function, 

Fig. 1. Flow chart of GETdb. This study constructs a comprehensive drug target database called Genetic and Evolutionary features of drug Targets database (GETdb, 
http://zhanglab.hzau.edu.cn/GETdb/page/index.jsp). This database not only integrates and standardizes data from dozens of commonly used drug and target da-
tabases, but also innovatively includes the genetic and evolutionary information of targets. Moreover, it features an effective allosteric protein prediction model. 
GETdb contains approximately 4000 targets and over 29,000 drugs, and is a user-friendly database for searching, browsing and downloading data to facilitate the 
development of novel targets. 

Q. Zhang et al.                                                                                                                                                                                                                                  

https://www.orpha.net/consor/cgi-bin/index.php
https://www.orpha.net/consor/cgi-bin/index.php
http://genorigin.chenzxlab.cn/#/
https://www.ensembl.org/index.html?redirect=no
https://www.ensembl.org/index.html?redirect=no
http://zhanglab.hzau.edu.cn/GETdb/page/index.jsp


Computational and Structural Biotechnology Journal 23 (2024) 1429–1438

1432

biological process, and cellular component. SNP data allowed us to 
analyze the impact of genetic variations on protein function and 
phenotype. Motif information aided in identifying specific sequence 
patterns associated with functional regions. Subcellular localization 
details shed light on the intracellular distribution of the target proteins. 
Furthermore, the inclusion of PDB and Pfam entry identifiers facilitated 
direct access to corresponding three-dimensional protein structures and 
conserved domains. These comprehensive datasets were integrated into 
our study. The AlloSteric Database (ASD 2023) (http://mdl.shsmu.edu. 
cn/ASD/) serves as a repository for a substantial collection of experi-
mentally validated or reported allosteric proteins. Within our GETdb, we 
have incorporated information on 1052 allosteric proteins associated 
with humans, sourced from the ASD 2023. 

2.5. Construction of allosteric protein prediction model 

KGs have emerged as a powerful tool for integrating heterogeneous 
data sources such as chemical, genomic, and biomedical data, to facili-
tate drug discovery and development [46]. The Drug Repositioning 
Knowledge Graph (DRKG) is a widely utilized knowledge graph that 
aggregates diverse data sources related to drugs and biomedicine, 
providing researchers with a rich information resource. In this graph, 
nodes may include entities such as drugs, diseases, genes, and edges 
reflect the complex interactions between these entities, such as potential 
therapeutic effects of drugs on diseases or associations between drugs 
and genes. In our study, DRKG serves as the Primary Knowledge Graph 
(Primary KG) [47]. To construct an Evolutionary-enhanced Knowledge 
Graph (Evolutionary-enhanced KG), Ohnologs and evolutionary stage 
information were incorporated into the primary KG. In the processing of 
both the Primary KG and the Evolutionary-enhanced KG, we employed 
the DGL-KE framework to train the embeddings on our research team’s 
Linux server, equipped with multiple Intel E5–2697V4 CPUs, each 
featuring 18 cores, 36 threads, and 45 MB of cache space. The TransE_l2 
algorithm was utilized to transform all entities and relationships within 
the KGs into a 400-dimensional vector. 

There exists a profound correlation between the structure of proteins 
and their functions, thus, accurately identifying the structural charac-
teristics of proteins is of paramount importance for a deeper under-
standing of their functionalities. In this study, we have employed 
Convolutional Neural Networks (CNN), a deep learning technique, for 
the effective extraction of feature information from allosteric proteins. 
Specifically, protein sequence data was initially sourced from the Uni-
Prot database. These sequences underwent a series of preprocessing 
steps to ensure data consistency and processability. This included the 
normalization of sequence lengths, as well as the implementation of one- 
hot encoding techniques, transforming each amino acid residue into a 
20-dimensional vector. In these vectors, only one of the 20 elements is 
set to 1, with the rest being 0, thereby ensuring the uniqueness of each 
amino acid [48]. The CNN blocks consisting of three stacked 1D-CNNs in 
the HyperAttentionDTI model were utilized to extract the protein 
sequence features [49]. Convolutional kernels of different scales (32, 64, 
and 96) were utilized to capture the relationships between sequence 
segments of different lengths, and the max pooling was done to extract 
the most important features of each channel and reduce the dimen-
sionality of the output vector. Finally, a feature matrix is obtained in 
which each protein is represented by a 160-dimensional vector. 

In this study, we utilized data on 837 human-related allosteric pro-
teins collected from the ASD 2019. These data revealed that 821 of these 
proteins were present in our KGs. Consequently, we selected these 821 
proteins as positive samples for machine learning training. To create a 
balanced training dataset, an equal number of non-allosteric proteins 
were randomly selected from the protein entities in the KG to serve as 
negative samples. This approach led to the formation of a training 
dataset comprising 1642 samples, split evenly between 821 positive and 
821 negative samples. We extracted protein entity features from both 
primary and evolutionary-enhanced KGs, and combined them with the 

sequence features of the proteins. Each protein was then represented as a 
560-dimensional feature vector for the training dataset. Four different 
machine learning methods, Support Vector Machines (SVM), Random 
Forests (RF), Logistic Regression (LR), and K-Nearest Neighbors (KNN) 
algorithms, were employed to construct models for predicting allosteric 
proteins. These models were trained using protein feature vectors as 
input. Two types of KGs were used: the Primary KG and the 
Evolutionary-enhanced KG, leading to the creation of two models named 
the "Primary Model" and the "Evolutionary-Enhanced Model". To opti-
mize the practical utility of the models and ensure the stability of the 
results, we employed a 3-fold cross-validation approach to train the 
classifiers, repeating the experiment 200 times. The performance of the 
classifiers was evaluated by calculating the area under the Receiver 
Operating Characteristic (ROC) curve (AUC), which generally reflects 
the overall efficacy of the model. Accuracy, error rate, recall rate, and 
ROC values were used as criteria to evaluate the different models. The 
optimal model was then employed to generate predictions for all pro-
teins in KG, and these predictions, including the output decision values 
and variability status, were recorded in GETdb. 

2.6. Implementation 

GETdb is a database application based on the JavaWeb framework, 
designed to provide an online platform for convenient and efficient 
querying and analysis of drug target data. The application uses MySQL 
8.0 as the database version, which contains a variety of approved and 
potential targets, and provides functions of query and browsing. The 
front-end of GETdb uses a bootstrap framework for page rendering to 
facilitate user interaction and usage. GETdb runs on a tomcat server, 
which is written in Java and is stable and scalable. The GETdb website 
runs on the Linux-based Apache Web server 7.0.108 (http://www.apa 
che.org) and is developed using MySQL 8.0.29 (http://www.mysql. 
com), providing a convenient online data platform for researchers. We 
have posted the database source code on GitHub at https://github.com/ 
Seay-7/GETdb/releases/tag/GETdbVersion1.0. 

3. Results 

3.1. Content statistics of the database 

GETdb contains information on 4337 targets interacting with 29,116 
drugs from DrugBank, TTD and DGIdb. There are 2927 approved drugs 
and 513 successful targets (Table 1). In collecting genetic features of 
targets, we standardized the disease names according to UMLS IDs and 
integrated two datasets from Orphanet and DisGeNET. 30,447 UMLS IDs 
were normalized by PyMeSHSim to 8100 disease names, significantly 
reducing the complexity of the dataset. We conducted an enrichment 
analysis on 513 successful targets within GETdb and found a significant 
enrichment of successful targets in four evolutionary stages (Cellular 
organisms, Euk+Bac, Eumetazoa, and Vertebrata) based on the hyper-
geometric test (p < 0.05) (Fig. 2). 12,778 pairs of Ohnologs and 
1263,664 pairs of Paralog genes were included as evolutionary features 
in our drug target database. The top three organisms with the highest 
number of homologous genes were Mouse (Mus musculus), Chimpanzee 
(Pan troglodytes), and Rabbit (Oryctolagus cuniculus). Disease genes tend 
to be expressed in the tissues where disease occurs. Upon collecting and 
analyzing gene expression specificity across 96 different tissues, it was 
observed that the testes exhibit the highest number of tissue-specifically 
expressed genes, with a total of 1319. However, the liver stands out as 
the tissue with the highest number of successfully targeted genes, with 
40 of its tissue-specifically expressed genes identified as successful tar-
gets. GETdb contains 1052 allosteric proteins supported by literature 
and patent evidence from ASD 2023. In addition, we have added 3D 
structural information to 7710 proteins in the GETdb database, 
including detailed data on resolution and 3D structure determination 
methods, a total of 133,158 data entries. 
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3.2. Web interface 

GETdb offers users eight distinct functional modules, encompassing 
the Home, Genetic Features, Evolutionary Features, Allosteric Protein, 
Drug, Browse, Help, and Download. The home page module serves as the 
central page of the system, aiming to provide users with a brief intro-
duction to the development background and significant significance of 
GETdb. At the top of the home page, users can gain insights into the 
advantages of the GETdb database. The middle section of the home page 
vividly presents the primary components of the database through five 
graphical representations, showcasing key data on evolutionary features 
of drug targets, genetic features, and allosteric protein prediction 
models. At the bottom of the page, GETdb provides users with statistical 
information, including the scale and content of the database, along with 
a concise description of the various operations and data queries avail-
able to users within GETdb. 

The genetic features module offers two search boxes, allowing users 
to access relevant genetic feature information by utilizing the "Search by 
Gene Name" box. This information includes the disease names associated 
with the gene, the unique identifiers "CUI" of the diseases within the 
UMLS system, as well as the types or nature of the associations between 
the gene and diseases. Additionally, the module provides a "Search by 
Disease Name" box, enabling users to retrieve gene-related information 
associated with a specific disease. For example, by searching for "Alz-
heimer disease type 1", the user can obtain all the genes associated with 
the disease, such as amyloid beta precursor protein (APP), ETS proto- 
oncogene 2, transcription factor (ETS2) and SOD1, which are ranked 
in ascending order according to their associated scores with the disease 
(Fig. 3a). 

The module of evolutionary features in GETdb includes three drop-
down search boxes. The "Search by Gene Name" box allows users to 
input a gene name to determine the evolutionary stage to which the gene 
belongs. For example, a query for evolutionary information for three 
targets associated with Alzheimer disease type 1 (APP, ETS2 and SOD1) 
shows that APP and ETS2 originate from the Eumetazoa and SOD1 from 
the Cellular organisms, both of which are evolutionary stages enriched 
for successful targets, although APP has been identified as a successful 
target and ETS2 as well as SOD1 are currently in clinical trials, but their 
evolutionary stages suggest that these two genes possess great potential 

Table 1 
Data summary of GETdb.  

Data item Number of drug/ 
gene/target 

Data item Number of drug/ 
gene/target 

Drug type Evolutionary features of target 
Ohnologb 12,778 

Biotech 464 Paralog genec 1,263,664 
Small molecule 5496 Ortholog genec 

Clinical phase of drug With alpaca 8388 
With 
chimpanzee 

21,121 

Approved 2942 With dog 16,719 
Clinical trial 23,184 With guinea pig 15,853 
Preclinical 3081 With macaque 19,160 
Discontinued 1045 With mouse 24,854 
Withdrawn 56 With pig 16,883 
Clinical phase of target With rat 13,902 

With rabbit 20,245 
Phenotypic similarity with moused 

Successful 513 High 642 
Clinical trial 891 Low 642 
Preclinical 36 Evolutionary stage of genee 

Discontinued 45 Cellular 
organisms 

853 

Literature- 
reported 

293 Euk Archaea 203 

Patented-recorded 119 Euk+Bac 1475 
Genetic features of targeta Eukaryota 5439 

Eumetazoa 4810 
Mammalia 2216 

Disease- 
associated 
genes 

20,442 Opisthokonta 1066 
Vertebrata 2560  

a derived from DisGeNET database (https://www.disgenet.org/) and Orpha-
net database (https://www.orpha.net/consor/cgi-bin/index.php). 

b derived from the work by Takashi Makino et al.[55] 
c derived from Ensembl database (https://www.ensembl.org/index.html? 

redirect=no). 
d derived from the work by Doyeon Ha et al. [43]. 
e derived from the work by Benjamin J Liebeskind et al. [21] 

Fig. 2. Enrichment pattern of successful targets in GETdb. Results of enrichment analyses of successful targets from 8 different evolutionary stages. A successful 
target means that recorded in Therapeutic Target Database (TTD). Each bar represents the enrichment of successful targets at the corresponding evolutionary stage 
compared to all successful targets. Larger values on the vertical axis indicate higher enrichment of successful targets at this stage. 
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to become successful targets (Fig. 3b). Additionally, users may access 
further information regarding the gene of interest by clicking on the 
UniProt ID, which will provide access to the UniProt database. By 
selecting the "Show More" button, users can explore further detailed 
information about the target gene, leading them to a secondary screen 
with more comprehensive features. In the "Search by Ohnolog" box, 
users can search for Ohnolog genes. If the input gene is an Ohnolog, the 
system returns the duplicate copy that originated from WGD. In case the 
input gene is not an Ohnolog, "NA" is returned. Moreover, in the "Search 
by Ortholog" box, users have the ability to search for homologous genes 
in eight model organisms, namely Alpaca (Vicugna pacos), Chimpanzee 
(Pan troglodytes), Dog (Canis lupus familiaris), Guinea Pig (Cavia porcel-
lus), Macaque (Macaca), Mouse (Mus musculus), Pig (Sus scrofa), Rat 
(Rattus norvegicus), and Rabbit (Oryctolagus cuniculus). 

In the “Allosteric Protein” module, users are able to determine 
whether the corresponding protein is an allosteric protein or not by 
entering a gene name. As an example, the query result of ETS2, a clinical 
trial target of Alzheimer disease type 1, shows that this protein is not 
listed in ASD 2023 and it is predicted to be a non-allosteric protein ac-
cording to the evolutionary-enhanced model, which implies that there is 
a low probability for ETS2 to be an allosteric target (Fig. 3c). In the drug 
search section, users are prompted to enter the name of the drug of in-
terest to obtain comprehensive information about the drug and its cor-
responding targets. The results page not only displays the names and 
types of the drug and targets but also provides additional details, 
including drug status, indications, interaction scores between the drug 
and genes, interaction types, and data sources. To obtain more infor-
mation about a specific target, users can click on the corresponding 
target name. 

On the other hand, the browsing module offers users access to in-
formation based on the initial letters of gene, drug, or disease names, 
with non-alphabetical fields categorized as "Other". It also allows users 

to access all genes specific to a particular evolutionary stage by selecting 
the relevant stage. Once the desired letter abbreviation or evolutionary 
stage is chosen, the results are displayed in a tabular format, enabling 
users to click on any gene, drug, or disease of interest to view more 
detailed information (Fig. 4). Furthermore, the interface provides 
several auxiliary features, including the "TOP" button located at the 
bottom right of the screen, allowing users to easily navigate back to the 
top of the page if the results page is lengthy. The help interface provides 
a comprehensive overview of the database construction process, 
detailed instructions on how to use GETdb, and a brief introduction to 
our team. Lastly, the download module enables users to access options 
for downloading drug target data, gene-disease information, and gene- 
related data. Please note that users are required to accept the relevant 
disclaimer before proceeding with downloads. 

GETdb has completed its internal testing, garnering positive feed-
back from testers including software developers and bioinformatics re-
searchers. They praised its systematic and comprehensive access to 
target information, its quick response times, and its provision of reliable 
support for drug target research. This feedback highlights the database’s 
potential to streamline pharmaceutical research and aid in the efficient 
discovery of drug targets, marking a promising step forward for its 
future development and application. 

3.3. Validation of allosteric protein models 

We utilized support vector machines, random forests, logistic 
regression, and k-nearest neighbor algorithms to construct the primary 
model and evolutionary-enhanced model for predicting allosteric pro-
teins. Following the evaluation of two models, we found that the per-
formance of the evolutionary-enhanced model surpassed that of the 
primary model in terms of accuracy, precision, recall, and AUC 
(Table 2), indicating that the integration of evolutionary and sequence 

Fig. 3. Search interface of GETdb. (a) The "Search by Disease Name" in genetic features module allows the user to retrieve information about the genes associated 
with a disease, which includes all the genes associated with the disease, the disease’s unique identifier "CUI" in the UMLS system, and the types of associations. (b) 
The "Search by Gene Name" in evolutionary features module allows users enter the name of a gene and submit a query. The query results in a comprehensive 
summary of the gene, which contains key details such as gene name, species, UniProt ID, target name, target type and its evolutionary stage. (c) In the “Allosteric 
Protein” module, users can retrieve relevant information about the encoded proteins by entering a gene name. This information includes the protein name, UniProt 
ID, whether it is recorded in the ASD 2023, and the predictions from the allosteric protein modeling model, including the prediction outcome and corresponding 
decision value. 
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information effectively enhances the accuracy and reliability of identi-
fying allosteric proteins. In particular, the AUC of the evolutionary 
enhanced model (0.914) was significantly higher than that of the pri-
mary model (0.588) when using the support vector machine. Therefore, 
the evolutionary-enhanced model constructed using the support vector 
machine was selected as the preferred allosteric protein prediction 
model. To verify the effectiveness of the model, we conducted an anal-
ysis of the mechanism of action for ten potential allosteric proteins, with 
the aim of comparing their three-dimensional structures before and after 
binding to ligands to ascertain the presence of allosteric effects. We 
searched their crystal structures and reviewed the relevant literature 
and eventually found evidence for conformational changes in nine 

proteins (except for G protein beta subunit 3) (Table 3). Overall, our 
model is highly reliable and practical. 

The SVM classifies each entity according to its features and calculates 
a decision value. The decision value’s sign determines whether the 
predicted protein is an allosteric protein or not: a positive value means it 
is an allosteric protein and a negative value means it is not. A higher 
absolute value indicates a higher probability of classification into that 
category. For our model predictions on allosteric proteins, we first 
excluded the confirmed allosteric proteins listed in the ASD 2019. 
Subsequently, we selected the top ten potential allosteric proteins based 
on the highest model scores. Remarkably, four of these proteins served 
as successful drug targets (Table 3). For the remaining six genes, we 

Fig. 4. Browse interface of GETdb. (a) Search by the first letter of the gene and obtain information about it. (b) Search by drug initials for drug-related information. 
(b) Search by disease initials for disease-related information. (d) Search for all genes in the Vertebrata period. 
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assessed their potential as drug targets by comparing the consistency 
between diseases associated with these genes and the therapeutic effects 
of related unapproved drugs. Further investigation was conducted only 
for candidate targets associated with diseases that scored above 0.5 in 
DisGeNET. 

Through data collection and analysis, we have identified the NOS2 as 
a promising drug target. The NOS2, also known as inducible nitric oxide 
synthase (iNOS) or nitric oxide synthase 2 (NOS2), exhibits structural 
components that include an N-terminal oxidase domain and a C-termi-
nal reductase domain, which are interconnected through a binding re-
gion for calmodulin (CaM). The study has provided evidence of dynamic 
conformational changes within NOS2. Notably, the crystal structure 
analysis of the Ca2 + -bound protein complex CaCaM⋅FMN has revealed 
the existence of four distinct conformations, with pronounced disparities 
observed in the CaM binding peptide (Leu515-Ser535 residues) and the 
rotational movement of CaM around Arg536/Glu47 (CaM) pairs. These 
rotations induce significant perturbations in the CaM domain, playing a 
critical role in facilitating efficient electron transfer between different 
redox centers within iNOS [50]. 

The NOS2 gene variants, rs2779248 and rs1137933, have demon-
strated significant associations with type 2 diabetes mellitus (T2DM), 
indicating a potential role in increasing susceptibility to this condition. 
Specifically, the presence of the NOS2 rs2779248 variant allele C and 
genotype TC, as well as the NOS2 rs1137933 variant allele A and 

genotype GA, may contribute to an elevated risk of developing T2DM 
[51]. Furthermore, a query in the DrugBank database revealed pima-
gedine, a drug targeting NOS2, primarily used for the study and treat-
ment of diabetic nephropathy. This finding further validates the 
potential of NOS2 as a therapeutic target for T2DM. Additionally, our 
study identifies NOS2 as an Ohnolog, providing additional support for its 
potential as a target. Moreover, we explored the origin of NOS2 and 
found that it originated in Euk+Bac. This finding aligns with the results 
from the previous successful target enrichment stage, strengthening the 
possibility of NOS2 as a therapeutic target. These findings offer valuable 
clues and guidance for further exploration and development of diabetes 
treatment drugs targeting NOS2. 

3.4. Application of GETdb in drug target identification 

The GETdb is dedicated to providing genetic and evolutionary in-
formation aimed at optimizing the process of drug target identification 
and validation. In order to validate its application, four targets were 
selected for case analysis in this study, which included two targets 
identified as successful along with two targets that failed to achieve the 
expected success (Table 4). These targets were selected on the basis of 
their genetic scores, evolutionary stages and whether they exhibited 
allosteric properties. 

The comparative analysis between Group A and Group B reveals that 
targets with higher genetic scores, such as ABCA1 for Tangier disease, 
demonstrate a higher probability of success. This finding underscores 
the importance of genetic relevance in the target selection process. 
Moreover, the comparison between Group B and Group C indicates that 
targets with allosteric properties (e.g., LDLR) also tend to be successful, 
further highlighting the significance of the target’s allosteric properties 
in its success. 

Further analysis between Group A and Group D indicates that despite 
the genetic association of HRAS with Syndrome, Costello disease, it was 
not considered a successful target because it did not fall within the 
"enriched evolutionary stages of successful targets" identified (Cellular 
organisms, Euk+Bac, Eumetazoa, Vertebrata). This comparison not only 
confirms the role of evolutionary stages in determining the probability 
of target success but also highlights the importance of integrating ge-
netic and evolutionary information in the target selection process. 

Access to GETdb and the utilization of this database by drug devel-
opment researchers could have facilitated the rapid identification of 
these key factors, potentially leading to the adjustment of their target 
selection strategies. This approach could enhance the efficiency of drug 
development and reduce the risk of failure during the development 
process. In summary, GETdb provides strong theoretical support and 
demonstrates its significant added value in the practical drug develop-
ment process through empirical analyses. 

Table 2 
Evaluation results of two allosteric protein prediction models.   

Evaluation 
indicators 

Primary 
modela 

Evolutionary- 
enhanced modelb 

Support Vector 
Machines 

Accuracy  0.5644516  0.8289771 
Precision  0.5623055  0.8293212 
Recall  0.5841126  0.8415918 
AUC  0.5884506  0.9144113 

Random Forest Accuracy  0.6299890  0.8292773 
Precision  0.6340979  0.8229830 
Recall  0.6213205  0.8401114 
AUC  0.6308832  0.8296594 

Logistic Regression Accuracy  0.5453957  0.6775801 
Precision  0.5456479  0.6860938 
Recall  0.5420708  0.6568874 
AUC  0.5491645  0.7132236 

K-Nearest Neighbor 
Classification 

Accuracy  0.5409907  0.7116161 
Precision  0.5574970  0.8619031 
Recall  0.4045184  0.5048360 
AUC  0.5415975  0.7118271  

a Primary model is the allosteric protein prediction model constructed based 
on the original knowledge graph. 

b Evolutionary-enhanced model is the allosteric protein prediction model 
constructed using evolutionary-enhanced knowledge graphs and protein 
sequence features. 

Table 3 
Potential allosteric proteins predicted by evolutionary-enhanced model (Top 
10).  

Gene Name Decision Value Evidence (PMIDa) Successful target 

NOS1  2.304509569  29772550 No 
KNG1  2.096214024  10627460 No 
ANXA1  2.094845521  11178908 Yes 
GNB3  1.942980884  21772288 No 
NOS2  1.904724304  19737939 No 
HTR2A  1.849801463  30723326 Yes 
SRC  1.83821705  9024657 Yes 
PRKAA1  1.837083033  17851531 No 
PTK2B  1.815861602  18031286 No 
SCN5A  1.804870786  22473783 Yes  

a PubMed Unique Identifier (PMID) is the number of literatures in the fields of 
life sciences and medicine included in the PubMed search engine (htt 
ps://pubmed.ncbi.nlm.nih.gov/). 

Table 4 
The comparison of successful and discontinued drug targets based on genetic 
scores, evolutionary stages and allosteric properties.  

Group Successful target Discontinued target 

A B C D 

Target (Gene) ABCA1 LDLR HSPG2 HRAS 
Disease Tangier 

Disease 
Tangier 
Disease 

Tangier 
Disease 

Syndrome, 
Costello 

Genetic Scorea 1 0.01 0.01 1 
Evolutionary 

Stageb 
Euk+Bac Eumetazoa Eumetazoa Eukaryota 

Allosteric 
Proteinc 

yes yes no yes  

a derived from DisGeNET database (https://www.disgenet.org/). 
b derived from the work by Benjamin J Liebeskind et al. [21] 
c predicted by the SVM-trained evolutionary-enhanced model. 
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4. Conclusion and discussion 

The innovative drug development process is a multifaceted and time- 
consuming undertaking, with target discovery representing a critical 
step in the process [1,6], thus rapid and accurate identification of drug 
targets is crucial for expediting drug development. Genetics is crucial in 
understanding the links between genotype and phenotype, which en-
ables researchers to pinpoint key causative genes for various diseases 
[11]. Given the strong correlation between key causative genes and 
disease, a number of studies have demonstrated that these genes 
represent a critical source of modern drug targets. Indeed, genetically 
supported targets are twice as likely to receive approval [17] and the 
proportion of drug mechanisms with direct genetic support increases 
significantly throughout the drug development pipeline [12]. Benefiting 
from the development of evolutionary biomedicine, there is growing 
evidence that the pathogenesis and development of multiple diseases 
(including cancer, neurological diseases, cardiovascular diseases and 
drug resistance) are closely related to the evolutionary history of 
humans [52,53]. Therefore, evolutionary information of genes can also 
help in the identification of drug targets. 

However, genetics and evolution are neglected in the current drug 
target databases, and to fill this gap, we merged information from three 
current highly recognized drug target databases, they are DrugBank, 
TTD, and DGIdb, to obtain more comprehensive drug target informa-
tion. On this basis, we collected gene-disease association information 
from DisGeNET and Orphanet as genetic features. The evolutionary 
stages, Ohnologs, orthologs, and paralogs of the targets, as well as the 
phenotypic similarity information of orthologous genes between 
humans and mice, were collected as evolutionary features. We stan-
dardized and merged these data to construct a large-scale comprehen-
sive drug target database, GETdb, with the aim of providing a 
comprehensive and user-friendly platform to search for target infor-
mation. In addition, allosteric regulators offer several significant ad-
vantages over orthosteric regulators, including higher selectivity, lower 
toxicity, and better inhibition of drug resistance [32,33,54], pointing the 
way to the development of novel drugs. In our study, we created a pri-
mary model and an evolutionary-enhanced model for predicting allo-
steric proteins. The first, we defined two KGs. The DRKG serves as the 
primary KG. By adding gene age and evolutionary stage information to 
DRKG, we created an evolutionary-enhanced KG. The primary model is 
built on the primary KG, and utilizes basic entity relationship features 
from the primary KG and protein sequence features as inputs for the 
machine learning model. In contrast, the evolutionary-enhanced model 
is based on the evolutionary-enhanced KG, and incorporates both the 
evolutionary-enhanced KG’s basic entity relationship features and pro-
tein sequence features. Notably, we explored the use of support vector 
machine, random forest, logistic regression, and k-nearest neighbor al-
gorithms to construct prediction models for allosteric proteins. To assess 
the effectiveness of these methods, we calculated the accuracy, preci-
sion, recall, and AUC of the models as key performance metrics. 
Comparing the models built using the four different machine learning 
methods, we found that the performance of the evolutionary-enhanced 
model consistently outperformed that of the Primary model. So, we 
decided to use this model to predict allosteric proteins, and the pre-
dictions were considered as useful resources to be added to our database. 

To effectively use the information provided by GETdb to select drug 
targets, researchers can adopt a systematic approach that combines 
genetic and evolutionary data. For example, when selecting potential 
drug targets, genetic associations between genes and specific diseases 
need to be considered, with a focus on those genes that are strongly 
associated with disease. Such genes are supported by genetic evidence 
and have a higher likelihood of being successful drug development 
targets [17–19]. Also, the inclusion of evolutionary information can 
significantly improve the ability to identify targets. An assessment of the 
evolutionary stage of genes revealed that genes located at key evolu-
tionary stages (Cellular organisms, Euk+Bac, Eumetazoa, and 

Vertebrata) were more likely to be successful targets, while Ohnologs 
were also more likely to be successful targets than non-Ohnologs [20]. 
This evolutionary-based perspective helps to screen for promising tar-
gets. Understanding gene conservation across species is also critical for 
model organism selection and predicting drug efficacy and safety in 
humans. In addition, our prediction models for allosteric proteins, 
especially the evolutionary-enhanced model, provide a novel pathway 
for the discovery of new targets. By focusing on potential targets that 
play a key role in cellular function, researchers can identify unique 
targets with advantages such as higher specificity and lower drug 
resistance based on this model. Besides, the tissue specificity of the 
target can be used to select targets that act at the right site, thus opti-
mizing efficacy and reducing adverse effects. In summary, by utilizing 
the comprehensive data in GETdb, researchers can simplify the process 
of selecting promising drug targets based on criteria such as genetic 
relatedness, evolutionary conservation and allosteric regulatory poten-
tial. This strategy not only helps to rapidly identify targets, but also 
facilitates the development of more effective and safer drugs. 

To keep its information accurate and useful, we will continue to 
update GETdb. This includes adding newly discovered drug target data 
and removing outdated information, as well as introducing new features 
that are closely related to target information. We expect GETdb to play 
an increasing role in drug target discovery as well as novel drug 
development. 
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