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Abstract: The mechanochemical synthesis of drug–drug solid forms containing metformin hydrochlo-
ride (MET·HCl) and thiazide diuretics hydrochlorothiazide (HTZ) or chlorothiazide (CTZ) is reported.
Characterization of these new systems indicates formation of binary eutectic conglomerates, i.e.,
drug–drug eutectic solids (DDESs). Further analysis by construction of binary diagrams (DSC
screening) exhibited the characteristic V-shaped form indicating formation of DDESs in both cases.
These new DDESs were further characterized by different techniques, including thermal analysis
(DSC), solid state NMR spectroscopy (SSNMR), powder X-ray diffraction (PXRD) and scanning
electron microscopy–energy dispersive X-ray spectroscopy analysis (SEM–EDS). In addition, intrinsic
dissolution rate experiments and solubility assays were performed. In the case of MET·HCl-HTZ
(χMET·HCl = 0.66), we observed a slight enhancement in the dissolution properties compared with
pure HTZ (1.21-fold). The same analysis for the solid forms of MET·HCl-CTZ (χMET·HCl = 0.33 and
0.5) showed an enhancement in the dissolved amount of CTZ accompanied by a slight improvement
in solubility. From these dissolution profiles and saturation solubility studies and by comparing the
thermodynamic parameters (∆Hfus and ∆Sfus) of the pure drugs with these new solid forms, it can be
observed that there was a limited modification in these properties, not modifying the free energy of
the solution (∆G) and thus not allowing an improvement in the dissolution and solubility properties
of these solid forms.

Keywords: drug–drug eutectic solid forms; mechanochemical reactions; intrinsic dissolution experi-
ments

1. Introduction

Pharmaceutical cocrystals are multicomponent crystalline entities composed of an ac-
tive pharmaceutical ingredient (API) and a coformer in a defined stoichiometric ratio [1–3].
The API/coformer are held together by non-covalent interactions such as hydrogen bonds,
π–π interactions and van der Waals forces. The benefits encountered in the preparation
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of pharmaceutical cocrystals have gained a lot of interest in the last years, due to the fact
that the presence of the coformer in the crystal lattice of the API modifies its original
physicochemical and biological properties without covalent modification [4]. Among the
physicochemical modifications that can be altered are intrinsic solubility, thermal stability,
dissolution rate and bioavailability [4,5].

Replacement of the coformer by another API yields the formation of drug–drug
cocrystals (DDCs) [6,7], species that have emerged as an important branch in combination
therapy [3,7–18]. In principle, DDCs may provide important pharmacological and clinical
advantages because the therapeutic effect of two drugs can be synergistically ligated in the
same solid phase [3]. The formation of DDCs depends largely on the molecular recognition
between the components [19–22]. Thus, the establishment of heterosynthons (adhesive
interactions) in the formation of DDCs is fundamental in the self-assembly process [21],
irrespective of whether the APIs are isomorphous (size/shape similarity) [20,23]. How-
ever, sometimes when APIs have no complementarity in the functional groups and the
formation of homosynthons (cohesive interactions) prevails (lack of intermolecular recog-
nition), drug–drug solid solutions, drug–drug eutectic solids (DDESs) or simply a physical
mixture (PM) can be obtained [19]. DDESs can be defined as a conglomerate of APIs that
have a lower melting point compared with their parent drugs (components are immis-
cible in the solid state) and there is no evidence of intermolecular recognition between
the constituents [24–29]. Generally, APIs in DDESs are non-isomorphous (size/shape
mismatch), contrary to drug–drug solid solutions where the components have size/shape
complementarity [23,24,30,31]. Besides, in drug–drug solid solutions the number of ob-
served solid-state phases is only one, since is a continuous single-solid phase, different to
DDESs where the components have an heterogeneous separation [32]. On the other hand,
when drug–drug solid systems exhibit amorphous arrangements and weak molecular
recognition between the constituents, they are denominated coamorphous [23,24,32–36].
Coamorphous systems are an amorphous continuous single solid phase, generally showing
enhanced dissolution properties (spring-parachute effect) compared with their crystalline
or amorphous pure APIs forms [37].

The benefits found in the preparation of DDCs [6,7], DDESs [28] or coamorphous
substances [37,38] for the treatment of complex diseases have gained relevance in recent
years. Due to the complexity of type 2 diabetes (T2D), administration of a single drug
(monotherapy) for the management of the glycemic control seems to be inadequate since
other complications can appear [39].

Thus, when monotherapy is no longer efficient for T2D, the simultaneous utilization
of two or more drugs depending on the clinical profile of the patient seems to be a more
appropriate approach [40,41]. Metformin hydrochloride (MET·HCl) is considered by
far as the first-line drug of choice due to several benefits for the treatment of T2D, i.e.,
low cost and the fact that it is the only antidiabetic drug that has conclusively shown
prevention in cardiovascular diseases and has provided beneficial effects on dyslipidemia
and hypofibrinolysis [42]. On the other hand, thiazide drugs are referred as the diuretics of
choice for the treatment of hypertension [43,44]. Despite the wide utilization of thiazide
diuretics on the treatment of hypertension, their use has been related with the increase in
the risk of new-onset diabetes [45].

Within the family of thiazide diuretics, chlorothiazide (CTZ) is a poor water-soluble
drug (0.2 and 0.4 g/L at pH 4 and 7), exhibiting a plasma half-life of 45–120 min [46].
Furthermore, hydrochlorothiazide (HTZ) and CTZ belong to class IV according to the
Biopharmaceutical Classification System (BSC), exhibiting limited oral absorption [47–50].
Hence, diverse alkaline-salts of the type NaCTZ or KCTZ [51,52] and different cocrystals
of HTZ [47–49,53–55] and CTZ [56] aiming to modify the limited aqueous solubility of
CTZ or HTZ have been prepared. For instance, the preparation of a DDES containing
HTZ-atelonol (0.3:0.7~1 mol:2.5 mol) has been reported [24]. For this system, using intrinsic
dissolution rate (IDR) experiments, it was found that the % release of HTZ in DDES
HTZ-atelonol (0.3:0.7) compared with pure HTZ has a 10-fold improvement. Analogously,
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the formation of the coamorphous systems glicazide-HTZ and glicazide-CTZ have been
reported, seeking to improve the dissolution properties of the thiazide drugs [57], however,
with no noticeable difference between the dissolution rates of amorphous/crystalline HTZ
and the release rate of HTZ from the coamorphous glicazide-HTZ [57]. However, similar
IDR experiments showed that the coamorphous form HTZ-atelonol (0.5:0.5~1:1) has a Kint
12.5-fold more than HTZ crystalline and 2.2-fold better than the PM HTZ-atelonol [58].

Taking this into account, we are interested in the preparation of drug–drug solid forms
containing MET·HCl (classified as class III, exhibiting high solubility in water but low
permeability to cell membranes) [59], in the presence of the thiazide diuretics HTZ or CTZ
(Scheme 1), in order to tackle the poor solubility and limited dissolution properties of
both drugs, and because many T2D patients medicated with antidiabetic drugs frequently
present hypertensive complications. Thus, this paper reports the ball-milling synthesis,
using neat grinding (NG) [60–64] or liquid-assisted grinding (LAG) [60–64] (varying the
polarity of the solvent), and characterization [57], as well as IDR experiments to determine
any modification in the dissolution properties of these solid forms compared with the pure
APIs. At first, we thought we had prepared DDCs, however during characterization we
discovered the formation of DDESs.
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2. Materials and Methods
2.1. Materials

All the pharmaceutical reagents were purchased from Tokyo Chemical Industry
AmericaTM (Portland, OR, USA) or Toronto Research ChemicalsTM (North York, ON,
Canada) and were used as received. The solvents were purchased from TecsiquimTM

(Toluca, México) and were used as received.

2.2. Methods
2.2.1. NG or LAG Solvent-Screening (Stoichiometry Ratio 1:1)

NG or LAG solvent-screening for the preparation of the solid forms was performed
using a Planetary Micro Mill PulverisetteTM 7 Fritsch (Idar-Oberstein, Germany) device.
MET·HCl (150.0 mg, 0.905 mmol) was ball-milled with HTZ (269.64 mg, 0.905 mmol) or
CTZ (267.80 mg, 0.905 mmol) in a 1:1 stoichiometric ratio. For every LAG experiment
100 µL of solvent were added. The solvents used were, hexane, acetone, acetonitrile, and
water. Stainless steel bowls of 20 mL containing 10 stainless steel balls (10 mm diameter)
were used. The NG or LAG were carried out at 600 rpm for 30 min. The physical mixtures
(PM) were prepared by mechanical shaking MET·HCl (150.0 mg, 0.905 mmol) with HTZ
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(269.64 mg, 0.905 mmol) or CTZ (267.80 mg, 0.905 mmol) in a 1:1 stoichiometric ratio
for 5 min using a Vortex Genie 2 Scientific IndustriesTM (Bohemia, NY, USA) (velocity of
shaking 5).

2.2.2. Thermal Analysis

A simultaneous thermal analyzer Netzsch STA 449 F3 Jupiter was used. The samples
were placed (2–4 mg) in sealed non-hermetic aluminum pans and scanned at a heating rate
of 10 ◦C/min from 30–400 ◦C under a dry nitrogen atmosphere.

2.2.3. Eutectic Binary Mixture Screening by DSC Data

The determination of the eutectic points was made by means of construction of binary
phase and Tammann diagrams [31,65]. Different DSC scans for the diverse stoichiomet-
ric compositions were prepared (1:1, 1:2, 1:3, 1:4, 1:5, 2:1, 3:1, 4:1, 5:1) to determine the
eutectic points in the solid forms MET·HCl-CTZ or MET·HCl-HTZ. The different stoi-
chiometric samples were prepared by LAG (100 µL acetonitrile) using a Planetary Micro
Mill PulverisetteTM 7 Fritsch at 600 rpm for 2 h. The DSC determinations proceeded at a
heating rate of 10 ◦C/min using the thermal analyzer Netzsch STA 449 F3 Jupiter. Binary
phase diagrams were constructed by plotting the melting temperatures from the different
compositions (Supplementary Tables S3 and S4, SM†), considering the first endothermic
event as the solidus point (Tonset), and the second endothermic event as the liquidus (Tonset)
in function of the mole fraction of MET·HCl. Tammann diagrams were constructed by
plotting ∆Hfusion from the different stoichiometric ratios as a function of the mole fraction
of MET·HCl. Some samples were occasionally analyzed at a heating rate of 2 or 5 ◦C/min
to improve the viewing accuracy on some thermal events.

2.2.4. PXRD and Rietveld Refinements

PXRD experiments were carried out in a Bruker D8 Advance diffractometer with
Bragg-Bretano geometry, Cu Kα radiation (1.54060 Å) and Linxeye detector. Each sample
was measured by a continuous scan between 5–60◦ in 2θ, with step time 151.19◦/min and
step size of 0.0198◦. The Rietveld refinements were carried out using the program Fullprof
suite to calculate the final crystal lattices of the different outcomes [66]. Deposited CIFs in
the CSD [67] were used as reference for the calculation of the Rietveld refinements of the
different outcomes. For MET·HCl we used refcode JAMRIY01 corresponding to the poly-
morph A (Supplementary Figure S1, SM†) [68]. For CTZ we used refcode QQQAUG04 [69]
and for HTZ refcode HCSBTZ [70]. In addition, PXRD and Rietveld refinements were
carried out to the different eutectic binary mixtures MET·HCl-CTZ or MET·HCl-HTZ at
diverse stoichiometric compositions (1:1, 1:2, 1:3, 1:4, 1:5, 2:1, 3:1, 4:1 5:1).

2.2.5. Nuclear Magnetic Resonance

Solid-state NMR (SSNMR) spectra were recorded in a Bruker Avance II 300 spec-
trometer (Billerica, MA, USA, operating at: 1H 300 MHz, 13C 75 MHz and 15N 30 MHz).
SSNMR measurements were carried out on a 4 mm rotor double resonance CP-MAS probe
at 5–6 kHz spinning rate with a cross-polarization contact time of 2 ms and delay of 5 s.
In addition, HMBC and HSQC experiments were carried out in a Bruker Avance III 500
(operating at: 1H 500 MHz, 13C 125 MHz and 15N 50 MHz). Solution NMR measurements
were carried out on a 4 mm broadband probe with two channels; the heteronuclear chan-
nel can be tuned 31P (202 MHz) until 107Ag (27 MHz), with Z-axis gradients. CTZ and
HTZ were dissolved in d6-DMSO for the HMBC and HSQC experiments (Supplementary
Figures S2–S4, SM†). The atom assignation number of the native APIs is based on Scheme 2.
For the HMBC and HSQC 15N experiments we used NH3(l) δ = 0 ppm as internal reference
and glycine (δ = 38 ppm) as secondary standard. The chemical shifts assignment in the
15N-SSNMR experiments presented in Table 1 was made by analogy to the assignments
in solution obtained from HMBC and HSQC experiments (Supplementary Figures S2–S4,
SM†). In addition, the chemical shifts for the nuclei 1H, 13C and 15N [71,72] in d6-DMSO
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and D2O for MET·HCl have been previously reported [73]. In the 15N-SSNMR spectra for
MET·HCl we noted the presence of 4 signals as well as the reported NMR solution [72].
The δ 13C CP-MAS assignation of CTZ [74–76] and HTZ [76–78] was on the basis of the
reported data.
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Table 1. 13C and 15N-SSNMR chemical shifts (δ) of pure components and the solid forms of MET·HCl-CTZ 1:1 and
MET·HCl-HTZ 1:1.

Pure APIs or
New Product
Solid Forms

Atom
Numbering

13C

δ (ppm)
13C-SSNMR c

∆δ (ppm)
13C-SSNMR

Atom
Numbering

15N

δ (ppm)
15N-SSNMR a,b,c

∆δ (ppm)
15N-SSNMR

MET·HCl
C1
C2
C3

37.94 and 40.01
160.29
157.02

-
-
-

N1
N2
N3
N4
N5

101.92
88.80

153.92
91.88
91.88

-
-
-
-

CTZ

C4
C5
C6
C7
C8
C9
C10

150.02
N.D.

119.30
137.78
128.95
129.75
N.D.

-
-
-
-
-
-
-

N6
N7
N8

(226.95) N.D.
(133.67) 134.95

(92.87) N.D.

-
-
-

HTZ

C11
C12
C13
C14
C15
C16
C17

56.33
146.76
116.59
123.82
139.71
125.49
118.98

-
-
-
-
-
-
-

N9
N10
N11

(91.67) N.D.
(80.81) 84.08
(93.69) N.D.

-
-
-

MET·HCl-CTZ
1:1

C1′

C2′

C3′

C4′

C5′

C6′

C7′

C8′

C9′

C10′

38.00 and 40.06
160.41
157.05
150.15
N.D.

119.42
137.63
129.42
N.D.
N.D.

0.06 and 0.05
0.12
0.03
0.13

-
0.12
−0.15
0.47

-
-

N1′

N2′

N3′

N4′

N5′

N6′

N7′

N8′

101.91
88.90

153.80
91.66
91.66

227.28
134.79
98.93

−0.01
0.1
−0.12
−0.22
−0.22

-
−0.16

-
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Table 1. Cont.

Pure APIs or
New Product
Solid Forms

Atom
Numbering

13C

δ (ppm)
13C-SSNMR c

∆δ (ppm)
13C-SSNMR

Atom
Numbering

15N

δ (ppm)
15N-SSNMR a,b,c

∆δ (ppm)
15N-SSNMR

MET·HCl-
HTZ
1:1

C1”
C2”
C3”
C11′

C12′

C13′

C14′

C15′

C16′

C17′

37.95 and 40.01
160.28
156.98
56.16

146.78
116.65
123.96
140.03
125.52
118.89

0.01 and 0.0
−0.01
−0.04
−0.17
0.02
0.06
0.14
0.32
0.03
−0.09

N1′

N2′

N3′

N4′

N5′

N9′

N10′

N11′

101.78
88.79

153.94
92.00
92.00
95.27
83.92
97.00

−0.14
−0.01
0.02
0.12
0.12

-
−0.16

-

a In parenthesis are the δ established by HSQC and HMBC experiments in DMSO-d6. b On 15N-SSNMR only the chemical shift of N7 (CTZ)
and N10 (HTZ) can be established. c N.D. (δ not determined) due to low-resolution of the 13C and 15N-SSNMR spectra.

2.2.6. Scanning Electron Microscopy Studies (SEM)-Energy-Dispersive X-ray
Spectroscopy (EDS)

A JEOL (Tokyo, Japan) scanning electron microscope (SEM) model JSM-6510LV was
employed to examine the morphology of the solid forms (MET·HCl-CTZ 1:1 (χMET·HCl = 0.5)
and MET·HCl-HTZ 1:1 (χMET·HCl = 0.5), Supplementary Figures S9 and S10, SM†) using
the secondary electron detector. Element mapping was acquired with an energy dispersive
spectrometer (EDS) QUANTAX 200 from Bruker (Supplementary Figures S11 and S12,
SM†). The specimens’ preparation was performed as follow: the dried samples were fixed
on carbon tape over an Al-stub and finally coated with thin layer of gold using a Denton
IV sputtering chamber.

2.2.7. Intrinsic Dissolution Studies

We determined the IDR constants under physiological conditions. The experiments
were performed using tablets, prepared with a hydraulic press at a total force of
180–200 kg/cm2. The dissolution rates were determined with a Wood’s apparatus ac-
cording to the USP XLI. Dissolution profiles were made in 0.1 N HCl for each batch.
Experiments were carried out in triplicate at 37 ◦C under constant stirring (50 rpm) in
a constant volume of 900 mL. For CTZ and the different MET·HCl-CTZ compositions,
IDR determinations were made using a HPLC Agilent 1100 with an automatic injector
(DE116471) under the following chromatographic conditions: mobile phase of H3PO4
0.025 M and acetonitrile (80:20) with a flow of 1 mL/min and using a Zorbax SB-C18
column with dimensions of 4.6 mm × 150 mm with particle size of 5 µm at a wavelength
of 272 nm. For HTZ and the different MET·HCl-HTZ compositions, IDR determinations
were performed using a UV-VIS spectrophotometer (Thermospectronic Helios Gamma
(Waltham, MA, USA)) at the wavelength of 272 nm.

2.2.8. Saturation Solubility Experiments

An excess amount of powder (eutectics or pure drug) was weighed (approximately
33.3 mg) and dissolved in a vial with a fixed volume of water (1 mL 0.1 N HCl). The
vial was magnetically stirred for 72 h at 37 ◦C. After the equilibrium time, an aliquot was
passed through a 0.45 µm filter and properly diluted and quantified through HPLC (Agilent
1260 infinity II) using a calibration curve. The experiments were made in triplicate.

3. Results
3.1. NG and LAG Solvent-Screening
3.1.1. Powder X-ray Diffraction (PXRD)

The preparation of the solid forms was performed by ball-milling of MET·HCl with
CTZ or HTZ (1:1) using neat grinding (NG) or liquid assisted grinding (LAG) [60–64]. In
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LAG, a solvent-screening, varying their polarity, was carried out using different solvents,
such as hexane, acetone, acetonitrile and water, in order to explore their effect in the
formation of new solid phases [79]. Then, all the products were analyzed by PXRD.

Analysis by PXRD (Figures 1 and 2) of the attained solid forms of MET·HCl-CTZ 1:1
or MET·HCl-HTZ 1:1 exhibited most of the characteristic unaltered peaks of the parent
APIs, suggesting the solids forms obtained were not cocrystals, and thus, Rietveld analysis
was performed to determine whether new solid phases were produced [66,80].
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Based on the Rietveld refinements (Supplementary Tables S1 and S2, SM†) for MET·HCl-
CTZ 1:1, two crystalline lattices are observed, MET·HCl (average 31.4%, P21/c) and CTZ
(average 68.6%, P1), indicating the coexistence of two solid-phases as a conglomerate
of separated components, both APIs keeping their own lattice, being more like a non-
continuous single-phase than a eutectic solid. According to Cherukuvada and Nangia,
“eutectic solids lack a distinct unique lattice arrangement from the individual components
and retain the cohesive interactions in solid solutions” [19,20]. Similar results were obtained
with the Rietveld analysis for MET·HCl-HTZ 1:1, observing MET·HCl (average 33.2%,
P21/c) and HTZ (average 68.6%, P21), both constituents retaining their own lattice. Hence,
no effect of the polarity of the solvent was found for the LAG solvent-screening in both
solid forms, the quantitative percentage ratios for the lattice structures between the APIs
remaining constant in all cases.
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3.1.2. Thermal Analysis

The products obtained through the LAG solvent-screening were also analyzed by
DSC. PMs were prepared combining MET·HCl with HTZ or CTZ in a 1:1 stoichiometric
ratio, and analyzed by the same technique. Figure 3 shows the DSC scans of the pure
APIs and those of the different outcomes for MET·HCl-CTZ 1:1, where one can easily
observe the appearance of a single endothermic event, showing a considerable reduction
in the Tfus (197.8–203.2 ◦C) compared with the parent APIs. In addition, for the PM the
endothermic event exhibits two overlapped peaks (209.5 and 218.28 ◦C), clearly indicating
that the different products obtained on the LAG solvent-screening are not PMs, since they
only exhibit a single endothermic peak and not separated melting events for the individual
components [30].
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On the other hand, the endothermic events observed in any of the products of
MET·HCl-HTZ 1:1, exhibit a reduction of the Tfus compared with the pure MET·HCl
or HTZ (Figure 4). The PM exhibits a broad peak (196.4 ◦C) with a shoulder (207.92 ◦C),
considerably differing from all other endothermic events from any of the products ob-
tained. Furthermore, as it was for the previous case, no differences were observed for the
LAG-formed PMs.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 21 
 

 

33.2%, P21/c) and HTZ (average 68.6%, P21), both constituents retaining their own lattice. 
Hence, no effect of the polarity of the solvent was found for the LAG solvent-screening in 
both solid forms, the quantitative percentage ratios for the lattice structures between the 
APIs remaining constant in all cases. 

3.1.2. Thermal Analysis 
The products obtained through the LAG solvent-screening were also analyzed by 

DSC. PMs were prepared combining MET·HCl with HTZ or CTZ in a 1:1 stoichiometric 
ratio, and analyzed by the same technique. Figure 3 shows the DSC scans of the pure APIs 
and those of the different outcomes for MET·HCl-CTZ 1:1, where one can easily observe 
the appearance of a single endothermic event, showing a considerable reduction in the 
Tfus (197.8–203.2 °C) compared with the parent APIs. In addition, for the PM the endother-
mic event exhibits two overlapped peaks (209.5 and 218.28 °C), clearly indicating that the 
different products obtained on the LAG solvent-screening are not PMs, since they only 
exhibit a single endothermic peak and not separated melting events for the individual 
components [30]. 

On the other hand, the endothermic events observed in any of the products of 
MET·HCl-HTZ 1:1, exhibit a reduction of the Tfus compared with the pure MET·HCl or 
HTZ (Figure 4). The PM exhibits a broad peak (196.4 °C) with a shoulder (207.92 °C), con-
siderably differing from all other endothermic events from any of the products obtained. 
Furthermore, as it was for the previous case, no differences were observed for the LAG-
formed PMs. 

 
Figure 3. DSC scans of the parent drugs and the different products of LAG MET·HCl-CTZ 1:1. 

 
Figure 4. DSC scans of the parent drugs and the different products of LAG MET·HCl-HTZ 1:1. Figure 4. DSC scans of the parent drugs and the different products of LAG MET·HCl-HTZ 1:1.

3.1.3. SSNMR

So far, we have seen that according to PXRD results, homosynthons predominate over
the heterosynthons. In this regard, Cherukuvada and Nangia explained that “through
different spectroscopical and PXRD analysis, eutectic solid phases and solid solutions
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have close similarity with their pure constituents” [19]. Thus, using 13C or 15N-SSNMR
we can prove whether homosynthons remained intact. Thus, for the solid forms of the
products prepared by LAG with acetonitrile (because the final powders were not thick)
of MET·HCl-CTZ 1:1 or MET·HCl-HTZ 1:1, SSNMR experiments were performed. Atom
numbering for MET·HCl, CTZ and HTZ for 13C and 15N nuclei are shown in Scheme 2.

Through 13C-SSNMR experiments, it can be observed that there are no significant
∆δ of the pure APIs compared with the new solid forms MET·HCl-CTZ 1:1 or MET·HCl-
HTZ 1:1 (Table 1). The minimal ∆δ 13C observed for the MET·HCl-CTZ 1:1, proves that
MET·HCl is not strong enough to replace the homosynthons in CTZ (Figure 5). This is
probably due to the fact that CTZ has stronger intermolecular interactions, reflected in
its high Tfus (364.4 ◦C) compared with MET·HCl (232.9 ◦C) [81]. A similar behavior is
observed for MET·HCl-HTZ 1:1, where no significant ∆δ 13C is observed compared with
the original APIs (Figure 6). Once again, MET·HCl cannot replace the homosynthons in
HTZ. In this regard, Haneef et al. have reported that in the DDES of HTZ:ATL (0.3:0.7) [24],
the robust sulphonamide (-SO2NH2) catemer chain of HTZ cannot be interrupted by the
amide group of ATL. In addition, for MET·HCl-CTZ 1:1 or MET·HCl-HTZ 1:1 apparently
the non-self-complementarity (shape mismatch) of the initial components promotes the
lack of formation of heterosynthons [19,21,82].
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rate at 5 kHz) and MET·HCl (spinning rate at 5 kHz).

The 13C-SSNMR spectra of pure CTZ (Figure 5) exhibit five signals (C4, C6, C7, C8
and C9). However, Latosińska reported the appearance of only four signals due to a poorly
resolved spectra (spun at 8.4 kHz) [76]. As is our case, the CP-MAS 13C spectrum of
MET·HCl-CTZ 1:1 only showed four signals (C4′, C6′, C7′ and C8′), lacking signals for C5′,
C9′ and C10′ which were not observed, probably due to lack of efficient cross polarization
1H-13C.

Regarding the 15N-SSNMR experiments, for the APIs MET·HCl, CTZ or HTZ and the
solid forms of MET·HCl-CTZ 1:1 or MET·HCl-HTZ 1:1 (Figures 7 and 8), no significant ∆δ

were observed (Table 2). This fact indicates that there is no formation of heterosynthons
and homosynthons are preserved intact.
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Table 2. Experimental values of thermodynamic functions: Tfus, ∆Hfus, ∆Sfus and ∆S0
fus.

Pure APIs and
New Solid

Forms

Tfus
(◦C)

Tfus
(K)

∆Hfus
J/g

∆Hfus
KJ/mol

∆Sfus
J/mol·K

Nondimensional
∆S0

fus
(∆Sfus/R)

MET·HCl 232.90 506.05 331.2 54.85 108.40 13.03
CTZ 364.40 637.55 165.4 48.91 76.71 9.22
HTZ 290.00 563.15 118.1 35.16 62.44 7.50

MET·HCl-CTZ
χMET·HCl = 0.5 198.78 471.95 163.3 75.33 159.62 19.19

MET·HCl-HTZ
χMET·HCl = 0.5 170.10 443.25 114.6 53.09 119.79 14.40

MET·HCl-CTZ
χMET·HCl = 0.33 193.25 466.40 55.49 42.01 90.07 10.83

MET·HCl-HTZ
χMET·HCl = 0.33 173.40 446.55 69.03 52.53 117.65 14.15

MET·HCl-CTZ
χMET·HCl = 0.66 196.11 469.25 194.70 122.06 260.13 31.28

MET·HCl-HTZ
χMET·HCl = 0.66 174.50 447.65 141.4 88.93 198.67 23.89

However, in the 15N-SSNMR spectra of MET·HCl-CTZ 1:1 and MET·HCl-HTZ 1:1,
new signals were observed that were not detected in the 15N-SSNMR spectra of the pure
thiazide drugs. This is probably due to low-resolution spectra of the pure CTZ or HTZ
due to their molecular rigidity, resulting in an inefficient cross polarization 1H-15N [81].
However, it may happen that once the solid forms are produced, the molecular rigidity of
the thiazides relaxes, allowing a more efficient cross polarization 1H-15N, thus exhibiting
signals for N6′ and N8′ in CTZ and N9′ and N11′ in HTZ that were unnoticeable before.

4. Discussion
4.1. Characterization of the DDESs

According to the results from DSC, PXRD and SSNMR, MET·HCl-CTZ 1:1 and
MET·HCl-HTZ 1:1 are DDES forms, since the spectroscopic and diffraction data are iden-
tical to those of the original APIs and a considerable reduction of their melting points
is observed [20,30]. In addition, both solid forms cannot be considered cocrystals since
there is no evidence for the formation of heterosynthons [20,28]. Furthermore, Rietveld
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analysis proved the simultaneous residence of two crystalline lattices, thus indicating that
the components are unable to form a continuous single crystalline solid [32]. Furthermore,
exhaustive crystallization attempts by evaporative methods to cocrystallize both solid
forms were unsuccessful, confirming that APIs are immiscible in the solid state. One of
the most recurrent forms to prove the formation of DDESs is based on the construction of
binary phase diagrams by DSC screening [25,30,31,83–85]. These binary phase diagrams
can be produced from DSC scans at different compositions (1:1, 1:2, 1:3, 1:4, 1:5, 2:1, 3:1,
4:1, 5:1) [65], where some thermograms may show the appearance of two endothermic
events. The first endothermic peak is considered as the solidus point (incongruent melting)
and the second endothermic event as the liquidus point [65]. The appearance of these
two endothermic events (solidus and liquidus points) in the DSC scans are attributed to
the excess of one of the original components (non-eutectic phase) [65,83,84]. DSC scans
that show no presence of the apparent liquidus point above the solidus indicate that the
corresponding true eutectic composition was reached, since no evidence of unreacted or
excess of reactants can be adverted. Tammann’s graphs are very helpful to confirm that a
genuine eutectic composition was found in the binary phase diagrams [30,31].

Thus, binary diagrams (Figures 9b and 10b) were constructed, plotting the solidus and
liquidus points (Tonset) against the mole fraction of MET·HCl (χMET·HCl) at all examined
compositions (Supplementary Tables S3 and S4, SM†). Tammann’s triangle diagrams were
plotted using the enthalpy of fusion (∆Hfusion) against the mole fraction of MET·HCl [30,31].
For more clarity, Figure 9a,b and Figure 10a,b can be observed in an enlarged form in the
SM (Supplementary Figures S5 and S6, SM†).
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The depression in the melting point, giving place to the characteristic V-shape in
the binary diagram, indicates that a true eutectic composition has been found [20,64,86].
Conversely, a W-shaped graph suggests the formation of a cocrystal [20,64,86]. W-shaped
graphics exhibit two eutectic points and in the middle of them resides the zone where the
cocrystal exists [20,64,86].

A typical V-shaped graphic for MET·HCl-CTZ (Figure 9b) indicates that at χMET·HCl = 0.5
(molar ratio 1:1), the formation of a true eutectic composition with a Teut = 198.78 ◦C
occurs. Further, the Tammann’s triangle confirmed that at χMET·HCl = 0.5 is a true eutectic
point (∆Hfus = 163.3 J/g, solidus) (Supplementary Table S3, SM†), only exhibiting a single
endotherm. However, for the composition χMET·HCl = 0.66 (molar ratio 2:1), a higher
value (∆Hfus = 194.7 J/g, solidus) was observed, with this composition not a genuine
eutectic point, due to the appearance of a second peak (liquidus) caused by the presence of
unreacted or excess components.

In the case of MET·HCl-HTZ (Figure 10b), the true eutectic point was found at
χMET·HCl = 0.5 (molar ratio 1:1), with Teut = 169.9 ◦C since a single endotherm was ob-
served. Once again, according to Tammann’s triangle the highest value of ∆Hfus (141.4 J/g,
solidus) (Supplementary Table S4, SM†) was for the composition χMET·HCl = 0.66 (molar
ratio 2:1). However, this is an inaccurate determination because both endotherms (solidus
and liquidus) almost form a single peak. Thus, composition χMET·HCl = 0.5 (∆Hfus 122.0 J/g,
solidus) gives place to the true eutectic composition.

In addition, PXRD experiments (Supplementary Figures S7 and S8, SM†) and Rietveld
analysis (Supplementary Tables S5 and S6, SM†) were performed for all the different
compositions examined for both MET·HCl-CTZ or MET·HCl-HTZ. Rietveld analysis for all
different proportions showed the simultaneous presence of two crystalline lattices, proving
that the constituents are physically separated.

Furthermore, both MET·HCl-CTZ and MET·HCl-HTZ at χMET·HCl = 0.5 were ana-
lyzed by scanning electron microscopy energy–dispersive X-ray spectroscopy SEM–EDS
(Supplementary Figures S9 and S10, SM†). It has been reported that detection of light
elements (C, N or O) in pharmaceutical samples can be difficult because they are not very
sensitive to the EDS detector (poorer count statistics and low X-ray yields) [87,88]. For this
reason, the analysis will be based on heavier atoms (Cl and S). The chemical composition
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acquired with EDS spectrometer for MET·HCl-CTZ (χMET·HCl = 0.5) was EDS Cl: 11.49 and
S: 9.00 and calculated Cl: 15.37 and S: 13.90 (Supplementary Figure S9, SM†), whereas for
MET·HCl-HTZ (χMET·HCl = 0.5) it was EDS Cl: 14.49 and S: 14.97 and calculated Cl: 15.37
and S: 13.90 (Supplementary Figure S10, SM†). All values are given in % weight.

Furthermore, the EDS mapping shows the distribution of O and S atoms in the region
of interest for both MET·HCl-CTZ (χMET·HCl = 0.5) and MET·HCl-HTZ (χMET·HCl = 0.5)
(Supplementary Figures S11 and S12, SM†), where it can be observed that in some zones
the presence of O or S atoms is scarce, a fact that can be associated with the presence
of MET·HCl molecules. This irregular distribution of O or S atoms indicates that both
MET·HCl-CTZ (χMET·HCl = 0.5) or MET·HCl-HTZ (χMET·HCl = 0.5) are not a continuous
single crystalline solid and the APIs are physically separated [32]. This physical separation
between the components in both solid forms explain the differences between the calculated
and experimental values observed in the EDS analysis. Since the intensity of the X-ray
signal at any energy level is proportional to the concentration of that element in the path
of the electron beam [88], when such element is reduced in concentration the maximum
intensity and the peak-to-background are reduced [89].

According to the SEM micrographs, the morphology and texture observed in both
solid forms are as solid phases with low crystallinity (Figures S9 and S10, SM†).

4.2. Microstructure Characterization

By itself, binary eutectic solids exhibit a microstructure-level periodicity different
of the original pure crystalline components [90,91]. During the solidification, the effec-
tive entropy of both components changes, and this parameter can be used as an indica-
tor to predict the microstructure adopted (Table 2). Hence, the nondimensional ∆S0

fus,
∆S0

fus =
(

∆Hfus
Tfus

)
/R (R: gas constant) [92,93] observed with the individual components

could provide a panorama of the existing micromolecular array. The values of ∆S0
fus can

allow us to distinguish whether the solidification in the binary mixture is faceted or non-
faceted (regular) [84]. In our case, the ∆S0

fus values observed between MET·HCl and CTZ
and between MET·HCl and HTZ are similar but greater than 2 (i.e., ∆S0

fus > 2 J/mol·K):
MET·HCl (13.03 J/mol·K), CTZ (9.22 J/mol·K) and HTZ (7.50 J/mol·K, reported
9.61 J/mol·K) [94] (Table 2), hence both binary mixtures MET·HCl-CTZ (χMET·HCl = 0.5)
and MET·HCl-HTZ (χMET·HCl = 0.5) solidified in a faceted manner (irregular microstruc-
ture) [84,93].

Furthermore, a comparison of the determined values of ∆Hfus(excess) with the exper-
imental ones can be used to differentiate whether a eutectic mixture or a PM has been
obtained [30]. Thus, the thermodynamic parameters were calculated according to the
following expressions (χcomponent = mole fraction of either component):

∆Hfusion(excess) = ∆Hfusion(eut)experimental − ∆Hfusion(eut)calc (1)

∆Hfusion(calc) = (χMET·HCl ·∆Hfusion(MET·HCl)) + (χ thiazide ·∆Hfusion(thiazide)) (2)

Based on the above, negative ∆Hfusion(excess) values were observed for both solids
MET·HCl-CTZ (χMET·HCl = 0.5) and MET·HCl-HTZ (χMET·HCl = 0.5): −84.90 J/g and
−110.05 J/g, thus indicating that DDESs were formed instead of PMs [30].

4.3. IDR Experiments

Due to the fact that CTZ and HTZ are the limited-water soluble drugs, in this study
we only focused on the Kint values for both thiazides. Thus, IDR experiments were carried
out only for the solid phases MET·HCl-CTZ and MET·HCl-HTZ with compositions of 1:1
(χMET·HCl = 0.5), 1:2 (χMET·HCl = 0.33) and 2:1 (χMET·HCl = 0.66), since these proportions
are closer to the true eutectic points determined. Table 3 shows the Kint values found and
Figure 11 displays the plots of the IDR experiments.
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Table 3. Kint determined for both thiazide drugs and for the compositions MET·HCl-CTZ (χMET·HCl = 0.33, 05 and 0.66)
and MET·HCl-HTZ (χMET·HCl = 0.33, 05 and 0.66) and saturation solubility studies.

Kint
mg/min·cm2

MET·HCl-CTZ
χMET·HCl = 0.5

MET·HCl-HTZ
χMET·HCl = 0.5

MET·HCl-CTZ
χMET·HCl = 0.33

MET·HCl-HTZ
χMET·HCl = 0.33

MET·HCl-CTZ
χMET·HCl = 0.66

MET·HCl-HTZ
χMET·HCl = 0.66

MET·HCl
(1.600 ± 0.01) - - - - - -

CTZ
(0.029 ± 0.0002) 0.048 ± 0.007 - 0.038 ± 0.01 - 0.176 ± 0.062 -

HTZ
(0.076 ± 0.003) - 0.059 ± 0.007 - 0.058 ± 0.01 - 0.092 ± 0.01

Saturation
Solubility
(mg/mL) *

0.040 ± 0.018 0.50 ± 0.024 0.041 ± 0.006 0.49 ± 0.025 0.039 ± 0.006 0.60 ± 0.034

Associated standard deviation value for each Kint. * SS: CTZ (0.027 mg/mL)-HTZ (0.44 mg/mL). Each value has its associated standard
deviation.
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The Kint value determined (0.076 mg/min·cm2) is close to that reported for crys-
talline HTZ (0.098 mg/min·cm2) [58]. In a previous work we reported the Kint value of
MET·HCl [73]. Specifically, the composition of MET·HCl-HTZ χMET·HCl = 0.66 showed an
increase of 1.21-fold compared with pure HTZ, however the compositions χMET·HCl = 0.33
and 0.5 exhibited a decrease in the dissolution rate (0.76- and 0.77-fold). This decrease in
the release behavior of HTZ can be attributed to the great excess of HTZ compared with
MET·HCl, limiting any probable enhancement during dissolution [95]. In addition, the
compositions MET·HCl-CTZ χMET·HCl = 0.33 and 0.5 showed an increase in the amount
of CTZ dissolved (1.31 and 1.65-fold) compared with pure CTZ. However, in the case
of MET·HCl-CTZ χMET·HCl = 0.66, it exhibited an increase of 6.06-fold. This should be
taken with caution, since this Kint value presented a high standard deviation (Table 3).
This is attributed to poor wettability and dispersibility of the solid form, as pronounced
clumping occurred during the dissolution testing, limiting the reproducibility in triplicate
determinations. Furthermore, the aqueous solubility and dissolution profile of a given
compound can be quantitatively related to its Tfus and ∆Hfus [96]. Usually substances with
high values of Tfus and ∆Hfus have strong intermolecular interactions and possess low
solubility [95,97]. Thus, if the formation of a binary eutectic solid leads to a modification
in the thermodynamic functions representing an increase in the entropy of the mixture,
the enthalpy of the mixture is also modified favorably, and the alteration of these factors
may contribute to increase the negative value of the free energy of solution (∆G), overall
improving the solubility of a substance [30]. Globally, the solid forms of MET·HCl-CTZ or
MET·HCl-HTZ with the compositions χMET·HCl = 0.33, 0.5 and 0.66 exhibited a decrease or
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a modest enhancement in the amount dissolved of the thiazide drugs. Considering the ther-
modynamic parameters (Tfus, ∆Hfus and ∆Sfus, Table 2), in all cases there was a decrease in
the Tfus compared with the pure constituents. However, in both these solid forms at compo-
sitions of χMET·HCl = 0.5 and 0.66, an increase in the ∆Sfus (increase in randomization) was
observed, suggesting an enhancement in the amount dissolved of the thiazides. However,
there was also a slight increase in the ∆Hfus compared with the original components, which
affected the ∆G, leading to a limited modification in the amount dissolved, because ∆G
tends to be more positive. In the case of the solid forms with composition χMET·HCl = 0.33,
both parameters remain almost unchanged, reflecting a limited modification in the amount
dissolved: ∆Hfus (limited modification in the intermolecular interactions) and ∆Sfus (poor
dispersibility). On the other hand, in the case of the DDES HTZ:atelonol (0.3:0.7), a 10-fold
improvement of the % release of HTZ (phosphate buffer and pH = 7.4) was observed [24].
Haneef et al. attribute this improvement in dissolution rate to the fact that in the eutectic
phase both components established weak intermolecular interactions. In our case, a similar
analysis of the ∆Hfus values for both solid forms MET·HCl-CTZ and MET·HCl-HTZ led us
to conclude that a limited modification in the intermolecular interactions occurred after the
solidification of the DDESs compared with their parent components.

According to the saturation solubility studies (Table 3), all the combinations for both
solid forms exhibited an increase (the amount of drug dissolved in a saturated solution)
compared with the pure components [98]. In this case, MET·HCl-CTZ χMET·HCl = 0.33,
0.5 and 0.66 improved 1.51-, 1.48- and 1.44-fold respectively, and for MET·HCl-HTZ
χMET·HCl = 0.33, 0.5 and 0.66 increases in the solubility were 1.11-, 1.13- and 1.36-fold,
respectively. Considering again the DDES HTZ:atelonol (0.3:0.7), an improvement in
the solubility of HTZ by 14-fold was reported. The poor modifications in the solubility
observed in the solid forms MET·HCl-CTZ χMET·HCl = 0.33, 0.5 and 0.66 and MET·HCl-HTZ
χMET·HCl = 0.33, 0.5 and 0.66 is attributed to the limited alteration of ∆G in the solution.

5. Conclusions

Thus, this paper describes the mechanochemical preparation of the DDESs MET·HCl-
CTZ and MET·HCl-HTZ by NG or LAG. Analyses by means of binary diagrams (DSC
screening) allowed the determination of the true eutectic points at the composition of
χMET·HCl = 0.5 for both solid forms. In general, it has been reported that DDESs have a
lower melting point than their original components, and that these solid forms have high
free energy, greater molecular mobility and weaker intermolecular interactions [19,91,93,99].
These attributes may represent a substantial improvement in their aqueous solubility and
dissolution properties. However, the solid forms described in this work exhibited a limited
modification in these properties, this being due to the lack of or no significant alteration in
the thermodynamic parameters ∆Hfus and ∆Sfus, compared with the original constituents,
despite the fact that a considerable decrease in Tfus values is observed.

Hence, this study represents a thorough characterization of two DDESs containing
MET·HCl and CTZ or HTZ. This shows that despite an active research history describing
organic solid eutectics [100], when related to pharmaceutical solid eutectics they still remain
partially unexplored since the analytical methods available for full characterization and
understanding of their molecular and structural integrity are almost incipient compared
with cocrystals. Thus, we believe that the lack of proper understanding has hampered the
potential applications of these solid forms [28]. Furthermore, we believe that this study
sheds further light to better comprehend the behavior of these fascinating species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111926/s1, Table S1: Rietveld refinements (by NG or LAG solvent-screening)
for MET·HCl-CTZ 1:1, Table S2: Rietveld refinements (by NG or LAG solvent-screening) for MET·HCl-
HTZ 1:1, Table S3: Thermodynamic parameters for the construction of the of binary phase and
Tammann’s triangle diagram for MET·HCl-CTZ, Table S4: Thermodynamic parameters for the
construction of the binary phase and Tammann’s triangle diagram for MET·HCl-HTZ, Table S5:
Rietveld refinements for the different compositions for the solid form MET·HCl-CTZ, Table S6:

https://www.mdpi.com/article/10.3390/pharmaceutics13111926/s1
https://www.mdpi.com/article/10.3390/pharmaceutics13111926/s1
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Rietveld refinements for the different compositions for the solid form MET·HCl-HTZ, Figure S1:
Rietveld refinement JAMRIY0150 (MET·HCl polymorph A) vs. MET·HCl (in blue) purchased from
Tokyo Chemical Industry™, Figure S2: HSQC 1H-15N CTZ in d6-DMSO, Figure S3: HMBC 1H-
15N CTZ in d6-DMSO, Figure S4: HSQC 1H-15N HTZ in d6-DMSO, Figure S5: Enlarged images of
Figure 9a,b, Figure S6: Enlarged images of Figure 10a,b, Figure S7: PXRD experiments for the different
compositions for the solid form MET·HCl-CTZ, Figure S8: PXRD experiments for the different
compositions for the solid form MET·HCl-HTZ, Figure S9: SEM–EDS elemental composition analysis
for the solid form MET·HCl-CTZ 1:1 (χMET·HCl = 0.5), Figure S10: SEM–EDS elemental composition
analysis for the solid form MET·HCl-HTZ 1:1 (χMET·HCl = 0.5), Figure S11: EDS mapping via SEM
images for MET·HCl-CTZ 1:1 (χMET·HCl = 0.5), Figure S12: EDS mapping via SEM images for
MET·HCl-HTZ 1:1 (χMET·HCl = 0.5).
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