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Abstract

The recent decline in populations of European salamanders caused by the chytrid fungus

Batrachochytrium salamandrivorans (Bsal) has generated worldwide concern, as it is a

major threat to amphibians. Evaluation of the areas most suitable for the establishment of

Bsal combined with analysis of the distribution of salamander species could be used to gen-

erate and implement biosecurity measures and protect biodiversity at sites with high sala-

mander diversity. In this study, we identified the areas most suitable for the establishment of

Bsal in Mexico. Mexico has the second-highest salamander species diversity in the world;

thus, we identified areas moderately to highly suitable for the establishment of Bsal with

high salamander diversity as potential hotspots for surveillance. Central and Southern

Mexico were identified as high-risk zones, with 13 hotspots where 30% of Mexican salaman-

der species occur, including range-restricted species and endangered species. We propose

that these hotspots should be thoroughly monitored for the presence of Bsal to prevent the

spread of the pathogen if it is introduced to the country.

Introduction

Chytridiomycosis, an emergent disease caused by the fungal pathogen Batrachochytrium den-
drobatidis (Bd), has caused alarming population collapses and extinctions of amphibians

worldwide [1–7]. In many regions throughout the world, Bd infections have transitioned from

epidemic to endemic states after declines occurred, and at present, some amphibian popula-

tions are either stable or recovering after more than a decade since the disease outbreaks

occurred [4, 8, 9]. The recent emergence of a second chytrid fungus, Batrachochytrium sala-
mandrivorans (Bsal), has unleashed great concern among researchers and conservation agen-

cies since this pathogen has already caused die-offs of native salamander species in Europe

[10]. The potential effects of Bsal infections in other regions of the world are still unclear.

However, recent studies in European salamander populations determined that the combina-

tion of Bsal´s transmission strategy, virulence and host population dynamics could have
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catastrophic effects on naïve salamander populations [11, 12], including those species that

were not previously affected by Bd. The urgency of this situation requires estimation of the

potential effect of Bsal if introduced to naïve regions.

The available ecological data can provide some indicators regarding the potential of Bsal to
contribute to the global decline in amphibians. Although Bd affects all groups of amphibians,

experimental studies have documented that Bsal infections are harmful to urodeles even at

very low Bsal zoospore levels [11, 12], whereas anurans can coexist with Bsal infections and act

as reservoirs [12, 13]. Bsal physiological studies have shown that the thermal growth range of

Bsal in the laboratory is between 5˚C and 25˚C, with optimal growth between 10˚C and 15˚C

[10], which is considerably lower than the optimal temperature range of Bd (between 17˚C

and 25˚C) [14]. However, recent surveys in Vietnam and China found Bsal in ponds and

streams with water temperatures between 20˚C and 25˚C [15, 16], suggesting a wide thermal

niche for this pathogen.

Since Bsal is lethal to some urodele species, its spread to naïve regions with high salamander

diversity, such as North America, could cause significant reductions in amphibian diversity

[11, 17, 18]. Thus, areas that are moderately to highly suitable for Bsal with high salamander

diversity could be considered as hotspots in which surveillance strategies should be imple-

mented to prevent potential amphibian declines.

The use of ecological niche modeling (ENM) to infer the suitable distribution of Bsal could

provide an estimate of sites with the potential risk of infection based on bioclimatic variables

and salamander distributions [18–23]. Yap et al. [18] created a species distribution model for

Bsal using the native ranges of the three putative native Bsal host species in Asia (Cynops cya-
nurus, C. pyrrhogaster, and Paramesotriton deloustali) and projected these results to North

America. These analyses identified the southern part of the Appalachian Mountains, the

Pacific Northwest, the Sierra Nevada, and the mid-Atlantic as high-risk zones in the USA and

the Sierra Madre Oriental (SMO) and the Trans-Mexican Volcanic Belt (TVB) as high-risk

zones in Mexico. However, Yap et al. [18] analyzed the native host niche under the assumption

that it is a proxy for the Bsal ecological niche.

Since Bsal has been found in different environmental conditions outside the native host

range of Asia (introduced areas in Europe), we constructed a potential distribution model to

identify areas susceptible to invasion. We modelled Bsal’s niche considering environmental

layers and the occurrences of Bsal in its native and invasive areas to create projections of Bsal
suitability in Mexico. Based on the obtained Bsalmodel and the salamander richness distribu-

tion, we identified major hotspots for salamander decline in the event of Bsal introduction in

Mexico. This information will be relevant to implement conservation strategies in Mexico,

which has the world’s second-highest salamander richness, with 146 described species [24].

Materials and methods

Batrachochytrium salamandrivorans potential distribution model

To assess the potential distribution of Bsal in Mexico, we mapped its climatic niche based on

environmental layers and Bsal occurrences from both Europe and Asia [25] (S1 Fig). Bsal
occurrence records were obtained from Martel et al. [11], Laking et al. [15], Yuan et al. [16],

Spitzen-van der Sluijs et al. [26], and Beukema et al. [27] (S1 Table).

The model was built using the maximum entropy algorithm MaxEnt [23]. This software

estimates the probability of species occurrence by finding the distribution of maximum

entropy, which is subject to constraints defined by the environmental variables being analyzed

[23]. To avoid model overfitting and multicollinearity of predictors [28], we selected the non-

correlated variables chosen by MaxEnt. Briefly, we first ran MaxEnt using all 19 bioclimate
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layers from Wordclim [29] at 30 arcsecond (~1 km) resolution to let the software select the

variables (S2 Table). Then, we calculated pairwise Pearson correlations between the variables

using ENM tools [30], and we selected those with the maximum contribution percent in the

model and with a Pearson’s r< 0.75 (S3 Table): mean diurnal range (Bio2), maximum temper-

ature of warmest month (Bio5), temperature annual range (Bio7), precipitation seasonality

(Bio15), precipitation of warmest quarter (Bio18), and precipitation of coldest quarter (Bio19).

The MaxEnt model was optimized using the ENMeval package [31] implemented in R 3.2.4

[32], which provides an automated method to execute MaxEnt models across a user-specified

range of regularization multiplier (RM) values and feature combinations (FCs). We set the RM

range from 0.5 to 2.5 with increments of 0.5 and three FCs, i.e., linear (L), linear and quadratic

(LQ), and linear, quadratic and product (LQP), resulting in 15 possible combinations of fea-

tures and regularization multipliers. The fine-tuned MaxEnt models were made by seeking the

lowest delta value of Akaike’s information criterion corrected for small samples sizes (AICc)

among candidate models, which reflects both model goodness-of-fit and complexity providing

the most conservative results. In addition, AICc balances predictability against model com-

plexity due to penalties for overparameterization [21, 31]. The models were built based on an

approach proposed by Phillips [33]. Briefly, we modelled Bsal’s niche using the native area

(Asia) to train the model (occurrences and background) and the invasive area (Europe) as test-

ing data. We also used a block method to generate AUC scores [31].

We selected the model with the lowest delta AICc score, which had a parametrization of

regularization multiplier of 2.5 and a LQP feature combination; it exhibited good predictive

power, with high accuracy and an average test AUC value of 0.87 (S4 Table, S2 Fig). This

model was used to project Bsal in Mexico to create the bioclimatic suitability model (logistic

output). Because the logistic output from Maxent ranges from 0 to 1, with 0 indicating unsuit-

able habitat and 1 indicating the highest suitability, we reclassified the predicted values using

0.25 intervals to obtain four suitability classes: no suitability when values were less than 0.25,

low suitability when the occurrence probability ranged between 0.25 and 0.5, moderate suit-

ability when the values ranged between 0.5 and 0.75, and high suitability when the values were

greater than 0.75 [34–36]. In addition, we defined the potential presence and absence areas in

Mexico using the minimum training presence threshold, which correspond to the lowest pre-

dicted presence value of an occurrence record [37].

Salamander distribution and richness areas

We estimated salamander richness in Mexico by overlapping 161 distribution maps [18]. 136

of the distribution maps were obtained from the IUCN Red List [38], and the remaining 25

were expert-based maps (Aquiloeurycea cafetalera, Bolitoglossa chinanteca, B. odonelli, Brady-
triton silus, Chiropterotriton sp. I, Chiropterotriton sp. C, Chiropterotriton sp. E, Chiropterotri-
ton sp. F, Chiropterotriton sp. G, Chiropterotriton sp.H, Chiropterotriton sp. J, Chiropterotriton
sp. K, Chiropterotriton aureus, Chiropterotriton chico, Chiropterotriton cieloensis, Chiropterotri-
ton infernalis, Chiropterotriton miquihuanus, Chiropterotriton nubilus, Isthmura corrugata,

Isthmura sierraoccidentalis, Thorius hankeni, T. longicaudus, T.maxillabrochus, T. pinicola, T.

tlaxiacus). Expert-based maps were obtained based on records from the Global Biodiversity

Information Facility (GBIF, http://www.gbif.org), National Biodiversity Information System

of Mexico (SNIB) and published papers [39–41]. These records were carefully reviewed, and

we added a 1-km buffer radius to each record according the registered plethodontids home

ranges [42]. Moreover, we modified distributions of three species from IUCN (Ambystoma
granulosum, A. rivulare, Chiropterotriton multidentatus) considering the occurrences and last

updates published [43, 44]. We also consulted the International Union for Conservation of
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Nature (IUCN)-The Global Amphibian Assessment (GAA) to obtain the conservation status

for all Mexican salamanders listed in the database. We used ArcGIS 10.2 [45] to produce all

GIS layers and calculate the distribution area. In addition, we used the R statistical software

package to overlap the species distribution and perform the richness map at a resolution of 30

arcseconds (~1 km2). Expert-based maps and modified maps are available at https://github.

com/delibasanta/Mexican-salamanders.git

Geographic overlap

We created a salamander-vulnerability model by calculating the overlap of suitable areas of

Bsal and the salamander-richness distribution. This model retrieved biodiversity hotspots in

which Bsal has suitable bioclimatic conditions (Bsal suitability >0.5) and salamander diversity

is high (more than five salamander species).

Results

Batrachochytrium salamandrivorans has several potential suitable regions

in Mexico

We found that areas from the Sierra Madre Oriental (SMO), Trans-Mexican Volcanic Belt

(TVB), Sierra Madre del Sur (SMS), Mexican Gulf and Yucatan Peninsula were the most suit-

able areas for Bsal (Fig 1, S3 Fig). Of the six environmental variables, temperature annual

range (Bio7), minimum temperature of the coldest month (Bio5) and precipitation seasonality

(Bio15) had the largest contributions to the distribution model for Bsal (S5 Table). These three

factors explained 91.3% of the modeled distribution. The contributions of the other factors,

i.e., mean diurnal range (Bio2), precipitation of the warmest quarter (Bio18), and precipitation

of the coldest quarter (Bio19) were 5.8%, 1.92%, and 0.97%, respectively. These results indicate

that thermal conditions and precipitation seasonality were the most important variables of the

obtained Bsal niche model.

Fig 1. Suitability model for Bsal in Mexico. (A) Continuous model (B) Categorized model.

https://doi.org/10.1371/journal.pone.0211960.g001
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Salamander distribution in Mexico is highly heterogeneous

We obtained distribution maps for 161 salamander species (153 described species and 8 unde-

scribed species, i.e., Chiropterotriton spp.) (S6 Table). These maps were used to generate a sala-

mander richness map (Fig 2). The salamander distribution in the country is heterogeneous,

with most of the species occurring in Central and Southern Mexico (Fig 2).

According to the areas in which salamanders occur, 44% of the salamander species exhibit a

small distribution (<100 km2) and are endemic to Mexico (S6 Table). Moreover, most Mexi-

can salamanders are threatened according the IUCN Red List classification, with 33% of the

species listed as critically endangered, 29% as endangered, 8% as vulnerable, 5% as near threat-

ened, 10% as least concern, 4% as data deficient, and 11% not evaluated (S6 Table).

Species from the family Plethodontidae represented 87.4% of the total number of species in

the country, whereas Ambystomatidae, Salamandridae and Sirenidae represented 10.7%,

0.63% and 1.26%, respectively.

Geographic overlap: High correspondence between Bsal suitability and

salamander richness

We found that 51% of salamander species of Mexico are present in areas that are suitable for

Bsal (S4 Fig, S6 Table). We identified 13 hotspots as those suitable areas categorized as moder-

ate and high suitability for Bsal (Fig 1B) in which five or more salamander species were present

(Fig 3). All hotspots are located in Central and Southern Mexico: eight are located on the

Trans-Mexican Volcanic Belt (TVB), two in Los Tuxtlas Veracruz, one in the Sierra Madre del

Sur (SMS) in Guerrero, one in Northern Oaxaca, and one in SMS in Chiapas (Fig 3). These

hotspots included 47 salamander species across seven genera, including species with a

restricted geographical range (<100 km2) (Fig 4A, S6 and S7 Tables) and endangered species

(Fig 4B, S6 Table).

Discussion

Due to the potential risk of introducing Bsal to native regions through wildlife trade [13, 46],

we used ENM and salamander distribution data to determine the potential areas and species

that are most likely to be at risk of pathogen exposure should an introduction occur in Mexico.

Fig 2. Map of salamander richness distribution in Mexico.

https://doi.org/10.1371/journal.pone.0211960.g002
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Fig 3. Overlap of salamander richness with moderate suitable and high suitable areas for Bsal. (A) Areas with hotspots. Hotspots

identification in: (B) TVB. (C) Los Tuxtlas. (D) SMS in Guerrero. (E) Northern Oaxaca. (F) SMS in Chiapas.

https://doi.org/10.1371/journal.pone.0211960.g003
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Areas with high salamander diversity have climatic conditions that appear to be suitable for

the establishment of Bsal should an introduction occur. Considering the latter, the risk of Bsal
arrival is critically important, and it is essential to monitor these areas where species loss

would be considerable.

Our niche model predictions differ considerably from those obtained by Yap et al. [18], in

which the authors estimated the habitat suitability for invasive Bsal in North America. Using

Maxent and amphibian host occurrence records, Yap et al. [18] predicted areas of Sierra

Madre Occidental (SMOc), Trans-Mexican Volcanic Belt (TVB), Sierra Madre del Sur (SMS),

Baja California and Oaxaca as suitable for Bsal in Mexico. In contrast, our study predicted

some parts of the TVB, SMS, Sierra Madre Oriental (SMO), Northern Oaxaca, Mexican Gulf

and Yucatan Peninsula as suitable areas for Bsal. The discrepancies between Yap et al. [18] and

our study (i.e., Baja California, SMOcc, Mexican Gulf and Yucatan Peninsula) can be

explained by methodological differences in calibration areas and the occurrences used to esti-

mate the potential range of Bsal in North America. Specifically, our study used the native

niche of Bsal rather than the native Asian host distribution used by Yap et al. [18]. We consider

that the use of Bsal ranges instead of Bsal host ranges will lead to more accurate results when

modeling the potential invasive range of the pathogen.

The model obtained in this study predicted that the areas suitable for Bsal are mainly

located in Central and Southern Mexico, including diverse environments such as tropical for-

ests, pine forests and cloud forests. We found a high overlap between salamander richness and

moderately to highly suitable areas for Bsal, which is reflected in the 13 identified hotspots.

These hotspots are located in the most diverse regions with respect to amphibian species

(including salamanders): east of the Trans-Mexican Volcanic Belt, Northern Oaxaca and Sierra

Madre del Sur in Chiapas [47–49]. Thus, the arrival of Bsal in these areas will likely have an

impact on amphibian communities that include non-susceptible species (e.g., anuran species)

that could act as carriers and transmission vectors [13], in addition to highly susceptible species

(e.g., salamander species) [12]. However, Bsal could have different strains with genetic physio-

logical and virulence differences such as the case with Bd [50]. In terms of Bsal, Sabino-Pinto

et al. [51] has already suggested the existence of more than one Bsal strains with differences in

virulence. In this context, further investigations are needed to describe the genetic differences

between Bsal strains and it’s effect on Mexican taxa to apply better conservation strategies.

Most Mexican salamander species have a restricted distribution, including those species

that inhabit hotspots. Salamander communities mainly inhabit pine-oak forests, tropical for-

ests and cloud forests [52]. These environments in Mexico are highly affected by anthropo-

genic activities, including deforestation and land use transformation [53–55]. Thus, habitat

loss has been one of the main causes of species decline: major amphibian declines were

observed between 1970 and 1980 east of the Trans-Mexican Volcanic Belt, Northern Oaxaca

and Sierra Madre del Sur in Chiapas, which coincide with four of the hotspots identified in

this study (hotspots 4, 11, 12 and 13). Lips et al. [56] reported population declines and local

extinctions in the Pacific slope Sierra Madre del Sur in Guerrero (hotspot 11), Northern

Oaxaca (hotspot 12) and Sierra Madre del Sur in Chiapas (hotspot 13). Later, Rovito et al. [57]

documented declines in salamander populations of El Chico in Hidalgo (hotspot 4) and Cerro

San Felipe in Oaxaca (hotspot 12), where populations of Chiropterotriton and Pseudoeurycea,

respectively, were the most affected.

Fig 4. Relationship between hotspots and salamander species. (A) Number of salamander species present in the

hotspot areas and their associated distribution range. (B) Number of salamander species present in the hotspot areas

and the associated IUCN categories.

https://doi.org/10.1371/journal.pone.0211960.g004
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For Mexican amphibians, in addition to habitat loss, the presence of Bd has also been con-

sidered a threat. This pathogen was detected in individuals collected in the 1970s, suggesting

that chytridiomycosis has affected amphibian populations since then [7, 56]. The presence of

Bd has been corroborated in many localities, including all 13 hotspots identified in this study

[58, 59]. The combined effects of Bd and Bsal together in amphibian populations are unknown,

but we can only assume that they could dramatically affect the amphibian populations that are

already threatened by habitat loss.

Conservation efforts for amphibians in Mexico should focus on preventing the arrival of

Bsal and its transmission among populations. Amphibian trade restrictions are being imple-

mented in the USA, Canada and the European Union, and Mexico should not be the excep-

tion. As the country with the second-highest salamander species diversity, Mexico is

potentially at risk of facing dramatic declines upon the arrival of an emerging pathogen such

as Bsal. If Bsal is detected in Mexico, immediate management actions to prevent its spread,

such as restricting site-level access, especially in hotspots, should be considered.

Conclusions

This study integrated ecological niche modeling of Bsal and salamander distribution in Mexico

and found high overlap between them. The areas most suitable for Bsal in Mexico are Central

and Southern Mexico, which coincide with the highest salamander richness areas and with the

largest number of endemic and threatened species. We identified 13 areas as potential hotspots

for population risk with both high salamander diversity and areas that are moderately to highly

suitable for Bsal. We propose that the hotspots should be monitored for the presence of Bsal to
prevent the spread of the pathogen if it is introduced to Mexico.
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