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Abstract

Background: Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the
Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may
contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be
regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation
regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must
be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact,
their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of
cortactin in different processes.

Methodology/Principal Findings: In the present study, we try to overcome these problems by using a Functional
Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of
which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine
phosphorylation of cortactin and explore its relationship with cortactin acetylation.

Conclusions/Significance: Using this system, we provide definitive evidence that a competition exists between acetylation
and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from
the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading
promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction,
which may explain how it inhibits cell spreading.
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Introduction

The actin cytoskeleton remodels to accomplish many cellular

processes and therefore undergoes significant changes during cell

migration, adhesion, endocytosis and bacterial invasion [1]. The

cortactin protein has emerged as an important node in the

network regulating the actin cytoskeleton during numerous

biological processes [2,3]. It was originally described as a substrate

of Src kinase located primarily at the cell cortex [4]. Almost

simultaneously, cortactin was cloned as the product of the CTTN

gene (formerly EMS1), located in chromosomal region 11q13,

which is frequently amplified in different human carcinomas [5].

Today, cortactin is considered an oncoprotein and a bona fide

invadopodial marker [6].

Cortactin is a modular protein that contains an N-terminal

acidic (NTA) domain with a 20DDW22 motif that directly binds

and activates the Arp2/3 complex. The NTA domain is followed

by six and a half amino acid ‘repeats’ that bind to F-actin and

define the actin-binding region (ABR) [7]. Since cortactin only

weakly activates the Arp2/3 complex in vitro [8], it is unclear

whether cortactin requires post-translational modifications to be

fully active. The ABR is followed by a helical, proline-rich region,

followed in turn by a C-terminal Src homology (SH3) domain.

Cortactin binds several proteins through its SH3 domain, such as

WIP [9] and neural Wiskott-Aldrich syndrome protein (N-WASP)

[10,11].

Cortactin regulation is very complex [12]. Although tradition-

ally studied as a substrate of Src family kinases (SFKs) [4], it can

also be phosphorylated by other tyrosine kinases such as Fer [13]

and Abl/Arg [14]. The effects of tyrosine phosphorylation on

cortactin structure and function remain largely unknown. This

phosphorylation was shown to decrease cortactin binding to F-

actin [15], and this binding is required for cortactin activation of

the Arp2/3 complex [16]. This phosphorylation is also required

for inducing bone metastasis of breast cancer cells in nude mice

[17], and it appears to be involved in bacterial invasion of cells,

such as for the adhesion of enteropathogenic Escherichia coli (EPEC)

[18]. Protein phosphatase 1B (PTB-1B) dephosphorylates tyrosine

421 in cortactin [19], suggesting reversible regulation. The data

seem to indicate that tyrosine phosphorylation of cortactin is
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tightly controlled, but the details of this regulation are far from

clear. Tyrosine phosphorylation-dephosphorylation of cortactin

may regulate its ability to form complexes with other proteins

[20,21].

Cortactin is also the target of serine-threonine kinases, including

ERK [22] and Pak [23,24]. In fact, phosphoproteomic analysis has

revealed numerous phosphorylation sites, most of which are

serines and threonines [25].

Cortactin promotes actin polimerization through two pathways:

directly, by activating the Arp2/3 complex; and indirectly, when

the SH3 domain binds and activates N-WASP [10]. In vitro,

cortactin binds and activates N-WASP only when phosphorylated

on serines by ERK, whereas phosphorylation by Src at tyrosines

421, 466 and 482 terminates cortactin activation of N-WASP,

which suggests that phosphorylation indeed affects cortactin

structure. Based on studies by our group [10] and others [22],

we proposed a model in which serine/tyrosine phosphorylation

controls the accessibility of the SH3 domain of cortactin [10]. This

model was subsequently named the ‘S-Y Switch’ model [26], and

its most easily testable prediction is that cortactin can be regulated

by a conformational change. The structure of unmodified

cortactin [27] reveals a closed, globular conformation achieved

mainly through interactions between the SH3 domain and ABR

region.

Studies with mutant forms of cortactin have been carried out to

understand the functional consequences of serine and tyrosine

phosphorylation. Indeed it has been proposed that different

cortactin phosphoforms have distinct cellular functions: in this

proposal, tyrosine-phosphocortactin mainly regulates focal adhe-

sion turnover, whereas serine-phosphocortactin controls actin

polimerization [28]. More recently, antibodies specific for

phospho-serine have been used to show that serine phosphoryla-

tion of cortactin is essential for lamellipodial persistence [29].

Adding another layer of complexity to cortactin regulation,

studies have shown that the protein is also regulated by reversible

acetylation. The protein can be acetylated by histone acetyltrans-

ferase p300/CBP-associated factor (PCAF) and deacetylated

mainly by Histone Deacetylase 6 (HDAC6). Acetylated cortactin

has a reduced capacity to bind F-actin [30].

Although numerous studies of cortactin have suggested a

complex network of regulatory post-translational modifications,

they have been unable to indicate definitively how Src-mediated

phosphorylation affects cortactin structure and activity, and how

this phosphorylation relates to other post-translational modifica-

tions. These difficulties may reflect the low basal level of phospho-

tyrosine cortactin in most cell types, which makes cell culture-

based studies of cortactin challenging. Here we attempt to

overcome this problem using the Functional Interaction Trap

(FIT) system [31,32]. The FIT system involves fusing a kinase and

a substrate of interest to complementary leucine zippers;

cotransfection with the two expression vectors allows for specific

and efficient phosphorylation of the substrate.

Methods

Cells, reagents and antibodies (Abs)
The following cell lines were obtained from the American Type

Culture Collection (ATCC): human epithelial HeLa cells; mouse

fibroblasts deficient in Src, Yes, and Fyn kinase (Src2/2, Yes2/2,

Fyn2/2; abbreviated SYF); and SYF fibroblasts rescued for Src

(Src+/+, Yes2/2, Fyn2/2; abbreviated Rsrc). Wild-type (WT) and

HDAC6-deficient MEFs immortalized by p53 gene deletion [33]

were obtained from Dr. Tso-Pang Yao (Department of Pharma-

cology and Cancer Biology, Duke University). Cells were grown in

Iscove’s modified Dulbecco’s medium (IMDM) supplemented with

10% fetal bovine serum (FBS) and antibiotics. The deacetylase

inhibitor Trichostatin A (TSA) from Streptomyces sp was purchased

from Sigma. The selective Src-family kinase inhibitor PP2 was

purchased from Calbiochem.

The following commercial Abs were purchased from Millipore:

mouse cortactin 4F11 MoAb; mouse Src GD11 MoAb; mouse

myc 4A6 MoAb; Platinum phospho-tyrosine (for WB), which is a

mixture of two generic phosphotyrosine Abs: PY20 and 4G10;

vinculin MoAb; and FAK 2A7 MoAb (for IPs). For immunopre-

cipitations (IPs), we used phosphotyrosine MoAb and for FAK

WB, the Ab from Cell Signaling. Mouse actin C4 MoAb was from

MP Biomedicals, and rabbit cortactin MoAb was from Novus

Biologicals. The rabbit cortactin polyclonal Ab (Applied Biological

Materials) was raised against an unphosphorylated peptide around

tyrosine 466. This Ab recognizes both unphosphorylated and

tyrosine-phosphorylated cortactin. Rabbit phosphocortactin Y466

polyclonal Abs were obtained from Santa Cruz Biotechnology and

from Abcam (data not shown). Myc (A14) Ab was from Santa

Cruz. pY421 cortactin Ab was from Abcam. Rabbit Ab against

acetyl-cortactin was initially obtained from Dr. Edward Seto (H.

Lee Moffitt Cancer Center and Research Institute, Tampa,

Florida) and subsequently from Millipore.

IRDye 800CW-labeled goat rabbit and mouse secondary Abs

(Fisher Scientific) were used to give green signal. IRDye 680CW-

labeled goat rabbit Ab (Fisher Scientific) and Alexa 680-labeled

goat mouse Ab (Invitrogen) were used to give red signal. All

secondary Abs were purchased at a concentration of 1 mg/ml and

used at 1:5,000 dilution.

Constructs
All FIT constructs used, including MycCortactin, were a

generous donation of Dr. Bruce J. Mayer (Connecticut Health

Center, CT, USA). Cortactin with mutations of all three tyrosines

that can be phosphorylated by Src (Y421/466/482F, referred to as

the 3F mutant) was produced using the QuikChange site-directed

mutagenesis kit (Stratagene). Mutations were produced sequen-

tially: first the 421F mutant was generated, and then this was used

as template to mutate Y466 and Y482 (primer sequences available

upon request). After verifying the sequence, the insert was

subcloned into an empty ZipB vector. WT GFP-cortactin and

3F-GFP constructs were previously described [10].

Cell transfection and Western blotting (WB)
For transfection, plasmid DNAs were purified with endotoxin-

free, transfection-grade JetStar 2.0 Midi columns (Genomed) as

per the manufacturer’s instructions. Cell transfections were carried

out using Lipofectamine 2000 (Invitrogen) or Fugene HD

transfection reagent (Roche). Briefly, cells were grown to 60–

75% confluence for Lipofectamine transfections or to 50–60%

confluence for Fugene transfections in 6-well plates using 2 mg of

the indicated plasmids per well. Transfections were incubated for

approximately 20 h in medium containing 10% FBS but no

antibiotics.

WB was carried out on cells from a single well or, when

necessary, from a 100-mm plate. Cells were washed once with cold

Dulbecco’s phosphate-buffered saline (D-PBS) with calcium and

magnesium (Invitrogen) and scraped into 300 ml 26 Laemmli

buffer. Samples were homogenized by three passages through a

syringe with a 25-gauge needle and then centrifuged at 21,0006g

for 5 min at 4uC. Samples were resolved by 10% SDS-PAGE and

transferred to nitrocellulose membranes (Amersham) using a

BioRad transfer system. Membranes were blocked for 1 h with

Odyssey blocking buffer and incubated overnight with primary Ab

Acetylation versus Phosphorylation of Cortactin
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in blocking buffer containing 0.1% Tween 20. Membranes were

washed 4 times for 5 min with PBS containing 0.1% Tween 20,

then incubated for 1 h with the appropriate secondary antibody,

and washed as before. Membranes were scanned with the Odyssey

infrared system (Lycor, Fisher Scientific) using the red (700 nm)

and green (800 nm) channels. When required, membranes were

stripped using Odyssey stripping buffer according to the

manufacturer’s instructions. When significantly different intensities

were observed between the two color signals, we performed

sequential Ab incubations. After stripping membranes, we

incubated them with secondary Ab alone and scanned them to

confirm the efficiency of stripping before incubating them with

another primary Ab.

Quantification of the bands was performed on the scanned

images using the Odyssey Scan band tool. The results were

analyzed by the two-tailed Student’s t test and displayed

graphically using GraphPad Prism software (version 5.0).

Pervanadate treatment
Pervanadate solution was prepared by mixing 1 mM Na3VO4

with 1% H2O2 (both from Sigma), diluting two-fold with IMDM

medium and used for 30 min at 37uC and 5% CO2.

Immunoprecipitation (IP) experiments
Cells were grown on 150-mm plates and transfected as

described above with 20 mg of each plasmid. After transfection

cells were washed once with D-PBS and scraped into 700 ml

modified RIPA buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl,

15% glycerol, 2 mM EDTA, 0.1% SDS, 1% Triton X-100, 1 mM

Na3VO4, 10 mM NaF, 1 mM PMSF, protease inhibitor cocktail

(Amersham), phosphatase inhibitor (PhosSTOP, Roche)]. When

indicated, TSA was added to the RIPA buffer at a final

concentration of 400 ng/ml to detect cortactin acetylation [30],

except in the case of lysates from WT or HDAC6-deficient cells.

Magnetic mouse or protein G Dynabeads (30 ml/IP, Invitrogen)

were washed and blocked with PBS containing 0.1% BSA for

10 min, then incubated 1 h with 4 mg Ab per IP. After one wash

with PBS-0.1% BSA, the beads were added to 200–300 ml cell

lysate and incubated with rotation at 4uC for 4 h. The beads were

washed 3 times with the help of a magnet (Invitrogen) and 200 ml

lysis buffer diluted 1:10 in PBS supplemented with TSA, except in

the case of lysates from WT or HDAC6-deficient cells, when TSA

was omitted. The beads were resuspended in 40 ml 26 Laemmli

buffer and processed for SDS-PAGE or frozen at 280uC until

further analysis.

Pull-down (PD) experiments
GST and the GST-cortactin SH3 domain were produced in

BL21 E. coli, purified and coupled to GSH-beads [10]. The

proteins were added to 200 ml cell lysate and incubated for 3 h

with tumbling at 4uC. Pull-downs were washed twice with 200 ml

lysis buffer diluted 1:10 in PBS.

Immunofluorescence microscopy
Cells were fixed for 20 min at room temperature with 4%

formalin (Sigma) and permeabilized with 0.1% Triton X-100 for

5 min. After three washes with PBS, cells were blocked with 2%

BSA in PBS for 10 min, stained at room temperature (RT) with

the appropriate primary Ab for 1 h, washed 3 times with PBS, and

finally incubated 1 h with secondary Ab. Actin cytoskeleton was

visualized with 1 mg/ml tetramethyl-rhodamine-isothiocyanate

(TRITC)-phalloidin (Sigma) or a 1:25 dilution of Alexa Fluor

350-phalloidin (Invitrogen). The secondary Abs (Invitrogen) were

Alexa Fluor 405-labelled mouse (blue), Alexa Fluor 488-labeled

mouse and -rabbit (green), and Alexa 568-labeled rabbit (red).

Counting was done using a Nikon Eclipse TE 200-U

fluorescence microscope equipped with a Hamamatsu camera.

Images were processed with Adobe Photoshop. Confocal micros-

copy was performed at the Parque Cientı́fico de Madrid

microscopy facility with a Leica Confocal SP2/DMEIR2, using

Leica software (version 2.61).

Spreading experiments
Cells were transfected for 20 h, trypsinized and washed once

with trypsin inhibitor at 0.5 mg/ml (Sigma). For immunofluores-

cence studies, 2.56105 cells per time point were replated on 4

coverslips previously treated with 30 mg/ml fibronectin (Calbio-

chem) in each well of a 6-well plate. After fixation they were

processed for immunofluorescence. For FAK pull-down and IP

experiments, transfections were carried out in 150-mm plates, and

cultures were trypsinized 20 h later. For each condition, 2.56106

trypsinized cells were kept in suspension or replated on

fibronectin-treated 100-mm plates.

Results

Efficient tyrosine phosphorylation of cortactin by Src in
cells transfected with the FIT system

To specifically phosphorylate cortactin in cells with Src kinase,

we used the FIT system (Fig. 1, schematic cartoon). HA-tagged Src

kinase lacking the SH2 and SH3 domains was expressed with a C-

terminal leucine zipper from the Leucine-ZipA vector (ZipAHA-

DSrc), while myc-tagged cortactin was expressed with an N-

terminal leucine zipper from the Leucine-ZipB vector (ZipBMyc-

Cortactin) (Fig. 1, lane 5). As controls, we transfected different

vector combinations (Fig. 1A) and left cells untransfected (lane 9).

We performed these transfections in SYF fibroblasts, which lack

the three SFKs (Src, Yes, Fyn) predominant for that cell type [34].

We also performed these transfections in control cells reconstituted

with Src (Rsrc cells).

WB of cell lysates was carried out using the Odyssey two-color

infrared scanning system. Src targets tyrosines 421, 466, and 482

of mouse cortactin [35]. We observed strong tyrosine phosphor-

ylation of transfected cortactin using a phospho-specific Ab against

tyrosine 466 (pY466 Ab). Simultaneously we detected both

endogenous cortactin, migrating at 80–85 kDa, and transfected

cortactin using the 4F11 mouse MoAb (Fig. 1A). We next merged

the images to show that the phosphorylated band superimposes on

the transfected cortactin band, and that the mobility of both bands

was slightly lower than that of unphosphorylated cortactin. Actin

was detected as a loading control. Similar results were obtained

with a different cortactin pY466 Ab (data not shown). Using the

FIT system, we found no appreciable differences in the levels of

cortactin phosphorylation between SYF and Rsrc cells.

To analyze how efficiently the FIT system generated phosphor-

ylated cortactin, we transfected truncated Src kinase and cortactin

without the ZipA or ZipB domains, respectively (Fig. 1A, lines 4

and 8). The results show that cotransfection of Src and cortactin

increases tyrosine phosphorylation of cortactin, and that the

phosphorylation level is much higher when the leucine zipper

domains are used, in agreement with previous studies using the

FIT system [32].

We also analyzed the phosphorylation of position 421 using a

pY421 Ab (Fig. 1B). The results in Fig. 1A and 1B indicate that the

FIT system allows efficient phosphorylation of cortactin on

tyrosines 421 and 466. In subsequent experiments, we used the

pY466 Ab because it gave a stronger signal than the pY421 Ab.

Acetylation versus Phosphorylation of Cortactin
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To specifically detect transfected cortactin, we performed WB

with mouse myc 4A6 MoAb and rabbit cortactin MoAb. Fig. S1A

shows that transfected cortactin is recognized equally well by both

Abs. This was further confirmed by the superposition of bands

generated with the 4F11 Ab and the rabbit cortactin MoAb (data

not shown). These results show that endogenous and transfected

ZipBMyc-Cortactin can be detected by either MoAb, though the

signal intensity was greater with the rabbit MoAb.

As a control for the transfections we blotted with antibodies

against the HA tag to detect both HA-DSrc (Fig. S1B, lanes 1, 4

and 8) and ZipAHA-DSrc (lanes 2 and 5). We confirmed the

genotype of the SYF and Rsrc cells by blotting with Src MoAb

GD11 (Fig. S1B).

Substrate specificity of Src kinase in the FIT system
To determine whether cortactin is the primary Src substrate

phosphorylated in cells transfected with the FIT system, we

analyzed the cell lysates by WB using mouse MoAbs against

generic phospho-tyrosine (Platinum Ab: 4G10+PY20) (Fig. S2).

The same membrane was also incubated with rabbit cortactin

MoAb. We observed a strong phospho-tyrosine band that

comigrated with transfected cortactin (lane 5, asterisk). When

Src kinase is activated, it is phosphorylated on tyrosines, which

explains why we observed in lanes 2 and 5 a band of slightly higher

molecular weight than actin that corresponds to ZipAHA-DSrc.

Similarly, we observed Src kinase in the reconstituted Rsrc cells.

These results demonstrate that the major phospho-protein in our

lysates is transfected ZipBMyc-Cortactin that is tyrosine-phos-

phorylated by ZipAHA-DSrc (lane 5, asterisk).

As a second control of phosphorylation specificity, we analyzed

whether the Src substrate paxillin [36] is phosphorylated by our

transfected Src kinase. We performed WB using a phospho-

paxillin (p-paxillin) Ab. In Fig. 2A we show the most relevant

transfections (lanes 4 and 5) from two FIT experiments (FIT8 and

FIT9), after blotting with p-paxillin Ab. As an internal control, we

treated both cell types with pervanadate, a generic phosphatase

inhibitor that induced a strong signal for p-paxillin. While

untreated cell lysates did not show detectable paxillin phosphor-

ylation, lysates of treated cells did. Thus we can conclude that our

transfected cells express a basal level of phospho-paxillin.

Positional specificity of Src kinase in the FIT system
Src phosphorylates tyrosines 421, 466 and 482 in mouse

cortactin [35]. After detecting cortactin phosphorylation at

positions 421 and 466, we wanted to exclude the possibility of

phosphorylation at other tyrosines. For this purpose we used a

non-phosphorylatable mutant in which the three major residues

targeted by Src kinase were replaced by phenylalanine (3F). We

carried out our experiments in HeLa cells because the experiments

described above showed similar results in SYF and Rsrc cells, and

HeLa cells are easier to handle and widely used.

We cotransfected cells with ZipAHA-DSrc and either ZipBMyc-

Cortactin or ZipBMyc-Cortactin 3F, and performed WB using

Abs against generic phospho-tyrosine and cortactin. Cortactin was

phosphorylated on tyrosines, while the 3F mutant was not (Fig. 2B,

lanes 4 and 5), indicating that cortactin is phosphorylated

specifically on the expected tyrosines.

Relationship between tyrosine phosphorylation and
acetylation of cortactin

Cortactin is acetylated mainly in the cortactin repeat region,

and this modification decreases the ability of cortactin to bind F-

actin [30]. Because cortactin phosphorylation by Src has a similar

effect [15], we wanted to analyze whether a relationship exists

between the two post-translational modifications.

Figure 1. Efficient tyrosine phosphorylation of cortactin by Src in cells using the FIT system. SYF and Rsrc cells were transfected with
different combinations of Src and cortactin FIT fusion vectors (lanes 1–8) or left untransfected (lane 9). Cell lysates were blotted for actin as a loading
control and with different Abs, then blotted with the respective conjugated secondary antibodies and finally visualized with the Odyssey system. The
lysates were blotted with (A) pY466 or (B) with pY421 cortactin Abs. In both cases, we observed a clear specific phosphorylation band (in green)
when ZipA-HA-DSrc and ZipB-MycCortactin were cotransfected (transfection 5), and this band superimposes (asterisks) on the cortactin band
detected with the 4F11 MoAb (in red). Sizes of the molecular weight markers (denoted M) are shown in kDa. A schematic cartoon of the FIT system is
shown.
doi:10.1371/journal.pone.0033662.g001
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For this purpose, we decided to use HeLa cells because cortactin

acetylation was previously detected in this cell type [30]. Cells

were transfected with empty vectors (Fig. 3, lane 1), with

ZipBMyc-Cortactin plus HA empty vector (lane 2), or with

ZipBMyc-Cortactin together with HA-DSrc (lane 3) or ZipAHA-

DSrc (lane 4). Transfected cells were left untreated or treated with

Trichostatin A (TSA), a deacetylase inhibitor previously used to

prevent deacetylation of cortactin [30]. WB experiments were

performed to confirm tyrosine phosphorylation of cortactin using

the pY466 Ab (Fig. S3A). As expected, cortactin was strongly

phosphorylated when ZipBMyc-Cortactin was cotransfected with

ZipAHA-DSrc (lane 4), and the phosphorylation signal was much

lower when ZipBMyc-Cortactin was cotransfected with HA-DSrc

(lane 3).

To analyze whether phospho-cortactin was simultaneously

acetylated, we performed IPs of transfected cortactin using a

myc MoAb, followed by WB with an Ab specific for acetyl-

cortactin (Fig. 3A). The results show that cortactin was efficiently

immunoprecipitated in all samples, while it was undetectable in

the isotype control IP (Fig. 3A, right panels). Acetyl-cortactin was

nearly undetectable in the sample in which cortactin was strongly

phosphorylated (lane 4), whereas it was clearly detectable when

cortactin was not phosphorylated (lane 2). Treating cells with TSA

increased the apparent level of acetyl-cortactin, suggesting that it

prevents the deacetylation of cortactin as previously described

[30].

In addition to checking cortactin phosphorylation in the lysates

used to perform the IPs (Fig. S3A), we wanted to check the

phosphorylation status in the immunoprecipitates (Fig. 3A). The

membrane was gently stripped until the green acetyl signal was lost

and then reprobed with pY466 Ab and myc MoAb. As expected,

the myc immunoprecipitates showed cortactin phosphorylation

mainly when ZipAHA-DSrc and ZipBMyc-Cortactin were cotrans-

fected (lane 4). When transfected alone, ZipBMyc-Cortactin was not

detectably phosphorylated, yet it presented a strong acetylation

signal (Fig. 3A, lane 2). The results suggest that acetylation and

phosphorylation of cortactin occur antagonistically.

To confirm these results separate IPs were carried out in parallel

with myc MoAb and generic phospho-tyrosine MoAb (pTyr

MoAb) (Fig. 3B). To simplify the experiment we used only TSA-

treated cells and the most relevant vector combinations: empty

vectors (lane 1), empty HA-vector and ZypBMyc-Cortactin (lane

2), and ZipAHA-DSrc and ZipBMyc-Cortactin (lane 3). IP with

pTyr MoAb was performed only in the cotransfection of ZipAHA-

DSrc and ZipBMyc-Cortactin, where cortactin should be

phosphorylated. Again, we observed that tyrosine-phosphorylated

cortactin was not acetylated and vice versa. Thus no signal for

acetylation was detected in the phospho-tyrosine IP, which pulled

down only tyrosine-phosphorylated cortactin. In contrast, a very

faint acetylation signal was detected in the myc IP, which pulled

down primarily phosphorylated cortactin but also a small fraction

of unphosphorylated protein. We found a statistically significant

difference in acetylation signal between unphosphorylated cortac-

tin (transfection 2) and tyrosine-phosphorylated protein (transfec-

tion 3; Fig. 3B).

To verify these results with tyrosine-phosphocortactin by a

different approach we performed IPs with the pY466 cortactin Ab

(Fig. S3B) using the same vector combinations as above (Fig. 3B).

The immunoprecipitates and lysates were blotted with cortactin

4F11 MoAb, which detects both transfected and endogenous

cortactin in lysates. Tyrosine-phosphorylated cortactin was

efficiently immunoprecipitated when ZipAHA-DSrc and ZipB-

Myc-Cortactin were cotransfected (lane 3). WB with acetyl-

cortactin Ab revealed that pY466 immunoprecipitates did not

contain acetylated cortactin, which is consistent with previous

results (Fig. 3A, B). These results indicate that the two

modifications did not occur simultaneously, suggesting that a

competition exists between phosphorylation and acetylation of

cortactin.

To exclude any non-specific effects due to the fusion tag and to

further characterize how these two post-translational modifications

relate to each other, we performed transfections using GFP-tagged

cortactin constructs (Fig. 4). We transfected HeLa cells with empty

vector and a vector encoding GFP-WT cortactin or GFP-3F

cortactin, and we blotted the lysates with acetyl-cortactin Ab. We

observed that WT and GFP-3F cortactin were acetylated (Fig. 4A)

and found no statistically significant difference in acetylation level

between the two constructs (data not shown). This indicates that

Figure 2. Specificity of tyrosine phosphorylation in the FIT
system. (A) Detection of the phosphorylation status of paxillin,
another Src kinase substrate. SYF and Rsrc cells were transfected with
FIT fusion vectors and the most relevant lysates (4 and 5) from two
different experiments (FIT 8 and 9) were analyzed by WB with a rabbit
Ab against phospho-paxillin (in green) and with a MoAb against actin
(in red). As controls, cells were left untreated or treated with
pervanadate (PV), a potent phosphatase inhibitor that induces the
phosphorylation of paxillin. Rsrc cells showed a higher basal level of
phospho-paxillin than did SYF cells, though in both cell lines, this basal
level was enhanced by treatment with PV. The FIT system did not
increase the basal level of phospho-paxillin. (B) Tyrosine phosphoryla-
tion of cortactin occurs on the expected tyrosines (Y421, Y466 and
Y482). HeLa cell lysates were transfected with ZipA-HA-DSrc and ZipB-
MycCortactin (lane 4) or with ZipA-HA-DSrc and ZipB-MycCortactin with
the triple mutation Y421/466/482F (3F) (lane 5). Several control
cotransfections were done (lanes 1–3). WB with generic pTyr MoAb
demonstrated that only ZipB-Myc WT cortactin, and not the 3F mutant,
was phosphorylated (in green). Cortactin was detected with a rabbit
MoAb (in red). Actin is shown as a loading control.
doi:10.1371/journal.pone.0033662.g002
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phosphorylation of cortactin at positions 421, 466 and 482 is not

required for cortactin acetylation.

We next examined the effects of pervanadate (PV) and TSA on

GFP-cortactin; these compounds induce phosphorylation and

acetylation, respectively (Fig. 4B). Lysates of cells transfected with

GFP-cortactin were left untreated or treated with PV or TSA, and

subjected to WB with the acetyl-cortactin Ab first, followed by

gentle stripping and then reprobing with the pY466 cortactin Ab.

As a transfection control, lysates were also blotted with GFP

MoAb. Treating lysates with TSA increased the amount of acetyl-

cortactin over basal levels. However, we cannot determine

whether it simultaneously decreased the level of phospho-cortactin

because the basal level of the phospho-protein is undetectable. In

contrast, PV strongly induced tyrosine phosphorylation of

cortactin, and this was accompanied by a decrease in the level

of acetyl-cortactin, such that the ratio of the two forms of cortactin

differed significantly from basal conditions (Fig. 4B). These results

indicate that induction of tyrosine phosphorylation of cortactin

decreases its acetylation.

Analysis of the acetylation and phosphorylation status of
endogenous cortactin

The experiments described so far established that acetylation

and phosphorylation of transfected cortactin are mutually

exclusive events. We next analyzed whether the same relationship

holds for endogenous cortactin (Figs. 5, 6). First we performed

experiments in WT and HDAC6-deficient mouse embryonic

fibroblasts (MEFs), because HDAC6 is the major cortactin

deacetylase in cells [30]. IPs using 4F11 MoAb were blotted with

acetyl-cortactin Ab, then the membranes were stripped and

blotted with pY466 Ab (Fig. 5A). IPs from HDAC6-deficient cell

lysates using 4F11 MoAb showed a significantly higher basal level

of acetylated cortactin than did IPs from WT cell lysates. In

addition, the ratio of the acetyl:pY466 signals was significantly

higher in the HDAC6-deficient cells. These results indicate that

the lack of HDAC6 deacetylase significantly increases the

acetyl:pY466 cortactin ratio and that HDAC6-deficient cells are

a valuable reagent to characterize how acetylation and tyrosine

phosphorylation of cortactin relate to each other. Consequently,

we performed cortactin IPs using the acetyl-cortactin Ab and

blotted them with pY466 Ab and 4F11 MoAb. No signal was

detected by pY466 Ab in the immunoprecipitates in which

cortactin was detectable with the 4F11 MoAb (Fig. 5B). To

confirm this result, acetyl-cortactin immunoprecipitates were

analyzed using generic pTyr mouse MoAb or cortactin rabbit

MoAb on separate membranes. Similar results were obtained (Fig.

S4). We confirmed the HDAC6-deficient phenotype of the MEFs

by WB with HDAC6 Ab (Fig. 5C). These results show that

Figure 3. Analysis of acetylation and tyrosine phosphorylation of transfected cortactin. (A) Lysates from various transfection
combinations (lanes 1–4), treated or not with the deacetylase inhibitor Trichostatin A (TSA), were used to perform IPs using a myc MoAb that were
examined by WB first with acetyl-cortactin Ab (in green) and second with myc MoAb (in red). The merge of both images is shown. After the
membrane was gently stripped to remove the acetyl signal, it was blotted with pY466 Ab. The isotype control IP (Ctrl.) is also shown. (B) TSA-treated
cell lysates from various transfection combinations (lanes 1–3) were subjected to parallel IP experiments with the myc MoAb and the generic pTyr
MoAb. The IPs were blotted first with acetyl-cortactin Ab, and second with the myc MoAb; then the membranes were stripped and reprobed with
pY466 Ab and myc MoAb. The asterisks denote non-specific bands. Quantification of the signals from cortactin immunoprecipitates showed a
statistically significant inverse relationship between acetylation and tyrosine phosphorylation signals. a.u.: arbitrary units. *, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0033662.g003
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endogenous acetylated cortactin is not tyrosine-phosphorylated in

WT or HDAC6-deficient cells.

We next examined cortactin acetylation in SYF and Rsrc

MEFs, because they represent cell types with different levels of

tyrosine-phosphorylated cortactin (Fig. 6). Separate IPs were

carried out in parallel using 4F11 and pTyr MoAb and blotted first

with rabbit acetyl-cortactin Ab. Then the blot was stripped and

reprobed with pY466 cortactin Ab. To detect immunoprecipitated

cortactin the membrane was stripped again and reprobed with a

cortactin Ab (Fig. 6A). We detected acetyl-cortactin in immuno-

precipitates prepared from SYF and Rsrc cell lysates using

cortactin 4F11 MoAb. Parallel IPs performed with the pTyr

MoAb showed that endogenous tyrosine-phosphorylated cortactin

was present only in Rsrc cell lysates, as expected. Furthermore,

this cortactin fraction was not acetylated (see asterisks, Fig. 6A).

We quantified three independent experiments and found that

4F11 immunoprecipitates from SYF and Rsrc cells differed

significantly in the ratio of acetyl:pY466 cortactin (Fig. 6A). These

results indicate that when most of the immunoprecipitated

cortactin is tyrosine-phosphorylated, then is not concomitantly

acetylated.

To confirm these results, we performed IPs from SYF and Rsrc

cell lysates with pY466 cortactin Ab (Fig. 6B). The immunopre-

cipitates were blotted with acetyl-cortactin Ab and cortactin 4F11

MoAb, gently stripped, and then reprobed with pY466 cortactin

antibody (Fig. 6B). As detected in Fig. 6A, tyrosine-phosphorylated

cortactin was immunoprecipitated only from Rsrc cell lysates.

More importantly, cortactin phosphorylated on Y466 was not

acetylated (Fig. 6B). Again as detected in Fig. 6A, when cortactin

was immunoprecipitated with a generic antibody such as 4F11

MoAb, the immunoprecipitates contained both acetylated and

tyrosine-phosphorylated cortactin. On the contrary, when cortac-

tin was immunoprecipitated with a generic phospho-tyrosine

MoAb or a specific pY466-cortactin Ab, only tyrosine-phosphor-

ylated cortactin was immunoprecipitated and it was not acetylated.

Together these results demonstrate that the majority of endoge-

nous cortactin is acetylated or tyrosine-phosphorylated, consistent

with the results obtained with transfected cortactin.

Analysis of cortactin acetylation and tyrosine
phosphorylation during cell spreading

We performed FIT transfections of SYF and Rsrc cells to

visualize the location of nonphosphorylated cortactin (transfection

2) and phosphorylated protein (transfection 3). As negative

controls, we left cells untransfected and we transfected them with

empty vectors (Fig. S5 and data not shown). We visualized cell

morphology with TRICT-phalloidin (Fig. S5). We also examined

high-magnification images to study cell morphology in detail. We

detected cortactin expression using myc MoAb and cortactin

phosphorylation using pY466 Ab. As in the IPs (Fig. 6), the level of

endogenous cortactin that was tyrosine-phosphorylated in SYF

cells under our experimental conditions was nearly undetectable;

the level of phosphorylation was similar to that observed in cells

transfected only with cortactin (transfection 2, TF2). Cotransfec-

tion of cortactin and Src kinase in the FIT system (TF3) increased

the level of phospho-cortactin in cells, and this level was easier to

observe in SYF cells because of their null background level. In SYF

cells, cortactin localized to the cell periphery and around the

nucleus, as previously described for endogenous cortactin [7].

In contrast to SYF cells, untransfected Rsrc cells showed, as

expected, a detectable level of tyrosine-phosphorylated cortactin

(data not shown), as did Rsrc cells transfected in the TF2

experiment. Some cells showed clusters of actin and phospho-

cortactin (arrows, Fig. S5). Images from TF3 showed that Rsrc

cells were somewhat more retracted and detached than their TF2

counterparts. These results demonstrate that transfected and

endogenous tyrosine-phosphorylated cortactin show similar local-

ization, and suggest a role for phospho-cortactin in cell adhesion.

To test this hypothesis, we examined the spreading of

transfected SYF and Rsrc cells on fibronectin (Fig. 7). Fig. 7A

shows representative spread and non-spread SYF and Rsrc cells

Figure 4. Analysis of acetylation and tyrosine phosphorylation of transfected GFP-cortactin. (A) Tyrosine phosphorylation of cortactin is
not required for acetylation of the protein. HeLa cells were transfected with vectors encoding GFP fused with WT cortactin or the Y421/466/482F non-
phosphorylatable cortactin mutant (3F). Lysates were blotted with acetyl-cortactin Ab and GFP MoAb. Transfected cortactin was acetylated and no
statistically significant difference was found in acetylation level between WT and 3F transfectants (data not shown). (B) Tyrosine phosphorylation of
cortactin decreases acetylation of the protein. HeLa cells were transfected with a vector encoding GFP fused with WT cortactin. Transfectants were
left untreated (-) or treated with pervanadate (PV), a generic phosphatase inhibitor, or with Thrichostatin A (TSA), a deacetylase inhibitor. Lysates were
blotted with acetyl-cortactin Ab and with GFP MoAb. After stripping, the membrane was incubated with pY466 cortactin, which was merged with the
GFP cortactin signal. The ratio of acetyl:pY466 cortactin is shown for untreated (-) and PV-treated cells. a.u.: arbitrary units. **, p,0.01.
doi:10.1371/journal.pone.0033662.g004
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transfected with ZipB-MycCortactin and empty HA vector (TF2)

or ZipB-MycCortactin and ZipAHA-DSrc (TF3). We counted 100

transfected cells and classified then as spread or non-spread for two

different time points under three transfection conditions [TF1

(empty vectors), TF2 (cortactin) and TF3 (tyrosine-phosphorylated

cortactin)]. In TF3 we counted only transfected cells that also

showed significant phosphorylation signal. Quantification of the

results showed that at 1 h after replating, cells overexpressing

cortactin (TF2) showed significantly more cell spreading than did

TF1 or TF3 cells. More importantly, expression of tyrosine-

phosphorylated cortactin (TF3) significantly inhibited cell spread-

ing compared to TF1 or cortactin-transfected cells (TF2). This

pattern of spreading was also observed at 3 h after replating.

Analysis of cells that did not spread confirmed that cortactin favors

spreading, while tyrosine-phosphorylated cortactin inhibits it.

Indeed, at 6 and 18 h after replating, most Rsrc cells in TF3

were detached (data not shown). Similar results were found in SYF

cells, although the differences among the three transfection

conditions did not reach statistical significance. These results

suggest that cortactin expression favors cell spreading, while

cortactin phosphorylation counteracts this effect (Fig. 7A).

To further understand the role of tyrosine phosphorylation of

cortactin and explore how it relates to cortactin acetylation during

cell spreading, we analyzed the spreading of Rsrc cells on

fibronectin in the presence and absence of PP2, a widely used

Src family kinase inhibitor (Fig. 7B). Untreated cells were plated

and allowed to spread for 1 and 3 h. Cells on a third plate were

allowed to spread for 1 h and then they were cultured for 2 h in

the medium containing 10 mM PP2. Cell lysates were subjected to

IPs with cortactin 4F11 MoAb or isotype control Ab. The

membranes were first blotted with acetyl-cortactin Ab, the acetyl

signal was stripped, and then the membranes were reprobed with

pY466 cortactin Ab and 4F11 cortactin MoAb. We observed that

PP2 treatment nearly abolished cortactin tyrosine phosphorylation

(right panel IPs, Fig. 7B) and increased the intensity of the acetyl-

cortactin signal (left panel IPs). Quantification of three indepen-

dent experiments showed that treatments with PP2 significantly

increased the ratio of acetyl:pY466 cortactin. These results

indicate that inhibition of tyrosine phosphorylation of cortactin

during cell spreading induces cortactin acetylation.

To characterize how cell spreading is altered by tyrosine

phosphorylation of cortactin, we stained focal adhesions using

vinculin as a marker (Fig. 8). We performed FIT transfections of

SYF and Rsrc cells as before and allowed them to spread on FN

for 3 hours (Fig. 8). We visualized focal adhesions by immunoflu-

orescence staining with vinculin MoAb and detected expressed

protein using myc Ab in cells transfected with empty vectors (TF1)

or in cells overexpressing unphosphorylated cortactin (TF2) or

tyrosine-phosphorylated cortactin (TF3). We observed that cells

overexpressing tyrosine-phosphorylated cortactin (TF3) showed

markedly fewer focal adhesions than under the TF1 and TF2

conditions, and these differences were more apparent in Rsrc cells

(Fig. 8) than in SYF cells. Many cells in TF3 had an elongated

morphology, in agreement with previous observations (Fig. 7).

Cell spreading induces the interaction of cortactin with
focal adhesion kinase (FAK), and this interaction is lost
upon tyrosine phosphorylation of cortactin

To understand how tyrosine phosphorylation of cortactin may

affect the formation of focal adhesions, we focused on a recently

described cortactin partner, focal adhesion kinase (FAK) [37],

which plays important roles in focal adhesion dynamics [38].

We examined the spreading of HeLa cells on fibronectin, and in

parallel left them in suspension as a negative control (Fig. 9). Since

Figure 5. Analysis of acetylation and tyrosine phosphorylation of endogenous cortactin in WT and HDAC6-deficient MEFs. (A)
Isotype control (Ctrl.) and 4F11 immunoprecipitates from cell lysates of WT and HDAC6-deficient MEFs (H) were blotted first with acetyl-cortactin Ab
(in green) and second with the 4F11 cortactin MoAb (in red). The merge of both images is shown. After gentle stripping to remove the acetyl signal,
the membrane was blotted with pY466 Ab and 4F11 MoAb. Quantification and statistical analysis of three independent 4F11 immunoprecipitates and
the ratio of acetyl:pY466 cortactin signals are shown. a.u.: arbitrary units. *, p,0.05. (B) Immunoprecipitates obtained with acetyl-cortactin Ab were
blotted with pY466 Ab and 4F11. The phosphorylation signal did not coincide with acetylated cortactin. (C) Blotting of WT and HDAC6-deficient cell
lysates with HDAC6 Ab is shown as a control of cell phenotype.
doi:10.1371/journal.pone.0033662.g005
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previous work has shown that WT cortactin interacts with FAK,

while cortactin lacking the SH3 domain does not [37], we

performed pull-down experiments on the lysates using recombi-

nant purified cortactin SH3 domain fused to GST (GST-SH3) or

GST alone as a negative control (Fig. 9A). We found that cortactin

SH3 domain was able to pull down much more FAK from the

lysates of spread cells than from lysates of suspended cells. Similar

results where obtained with Rsrc lysates (data not shown). These

results indicate that focal adhesion formation during cell spreading

induces cortactin-FAK association (Fig. 9B).

To confirm the cortactin-FAK interaction during cell spreading

and to determine whether it is affected by tyrosine phosphoryla-

tion of cortactin, we performed IPs from cell lysates overexpressing

cortactin (TF2) or tyrosine-phosphorylated cortactin (TF3)

(Fig. 9C). We immunoprecipitated FAK using a FAK mouse

MoAb. The immunoprecitates were blotted sequentially, first with

myc Ab and secondly with FAK Ab, and lastly with pY466

cortactin Ab. Interestingly, we observed that FAK immunopre-

cipitated cortactin but not tyrosine-phosphorylated cortactin (see

asterisk, Fig. 9C). This result implies that FAK is associated with

cortactin, but not when it is tyrosine-phosphorylated.

Discussion

Cortactin phosphorylation is predicted to have important

physiological consequences [26] that are not yet fully understood.

Although cortactin is a classical Src kinase substrate, the functional

consequences of its tyrosine phosphorylation remain unclear. The

low basal level of tyrosine-phosphorylated cortactin, and poor

reproducibility of results when stimulating cell cultures with

growth factors such as EGF and PDGF, have made it challenging

to understand how tyrosine phosphorylation regulates cortactin

activity. To avoid these problems, we used the FIT system to study

the effect of Src-mediated phosphorylation of cortactin in cells. In

this system, a leucine zipper motif, consisting of a pair of

complementary amphipathic helices [39], is added to both Src and

its substrate, in this case cortactin.

Src kinase targets tyrosines 421, 466 and 482 of murine

cortactin [35]. Src family kinases (SFKs) are composed of

separable modules that include SH2 and SH3 domains [34].

Different systems have been used to study SFK substrates and

signal transduction pathways. The hemopoietic cell Src kinase

(Hck) was reengineered by substituting the SH2 and SH3 domains

with a PDZ domain to alter the kinase’s substrate specificity [40].

In another study, a temperature-sensitive vSrc mutant was found

to increase tyrosine phosphorylation of cortactin [41]. The FIT

system has been used successfully to force efficient phosphorylation

of desired substrates in cells [31], including Src-mediated

phosphorylation of paxillin, p130Cas and cortactin [32].

In the present study, we set up the FIT system and

simultaneously detected levels of total cortactin and tyrosine-

phosphorylated protein, both transfected and endogenous, using

two commercial Abs against phospho-Y466 and the 4F11 MoAb

(Fig. 1A). Transfected cortactin was also detected using a rabbit

cortactin MoAb and a MoAb to recognize the myc tag on our

cortactin constructs. Western blots were visualized with the

Odyssey scanning system, which allowed unambiguous double

labeling of cortactin and phospho-cortactin. We performed these

experiments in SYF and Rsrc fibroblasts to exclude any

contribution from endogenous Src kinases. When cells were

cotransfected with Src and cortactin, both fused to leucine zipper

interaction motifs, we observed a strong phosphorylation signal at

positions 421 and 466 that superimposed on the transfected

cortactin band (Fig. 1A, B).

We next performed various analyses to determine the

phosphorylation specificity of our FIT system. We determined

that cortactin is the major phosphoprotein in our samples, based

on experiments using two generic phospho-tyrosine MoAbs (Fig.

S2). We also showed that our FIT system is specific to cortactin:

the transfections did not affect the phosphorylation status of

paxillin, a known Src substrate (Fig. 2A). Finally, using the non-

phosphorylatable triple cortactin mutant Y421/466/482F (3F), we

verified that Src-mediated phosphorylation of cortactin occurs at

the expected tyrosines (Fig. 2B).

Like phosphorylation, acetylation regulates numerous cellular

functions. In fact, many proteins related to cytoskeletal dynamics

are regulated by acetylation, such as Arp2/3, tubulin, cofilin and

coronin [42]. Cortactin is regulated by reversible acetylation that

occurs mainly in the ABR of the protein [30], and this acetylation

was recently confirmed by ‘‘acetylome’’ analysis [42]. Acetylation

of lysines in the ABR was shown to reduce binding to F-actin,

which inhibits cell migration [30].

Like cortactin acetylation, Src-mediated phosphorylation of

cortactin decreases its binding to F-actin [15]. This binding is

required to activate the Arp2/3 complex [16]. We hypothesized

that the two modifications are interrelated since they have similar

effects on cortactin function, and we explored this idea in the

present study. Using the FIT system, we overexpressed phosphor-

ylated or unphosphorylated cortactin in cells, immunoprecipitated

the protein, and performed WB experiments with Abs against

Figure 6. Analysis of acetylation and tyrosine phosphorylation
of endogenous cortactin in SYF and Rsrc MEFs. Cell lysates of SYF
and Rsrc MEFs were subjected to IPs using (A) isotype control Ab (Ctrl),
4F11 MoAb and generic phospho-tyrosine (pTyr) MoAb. These IPs were
performed in parallel by probing first with acetyl-cortactin Ab (in
green), after a gentle stripping, with pY466 and at last, the membrane
was stripped and reprobed with cortactin Ab. Statistical analysis of the
ratio of acetyl:pY466 cortactin signals is shown for 4F11 immunopre-
cipitates. a.u.: arbitrary units. **, p,0.01. Asterisks denote evidence that
pTyr immunoprecipitates from Rsrc cell lysates contain phospho-
cortactin but not acetyl-cortactin. (B) IPs with pY466 and isotype
control Abs were probed with acetyl-cortactin Ab and 4F11 cortactin
MoAb, and reprobed, after gentle stripping, with pY466 Ab and 4F11
MoAb.
doi:10.1371/journal.pone.0033662.g006
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Figure 7. Tyrosine phosphorylation of cortactin affects cell spreading. (A) SYF and Rsrc cells were transfected for 20 h with empty vectors
(not shown), ZipB-MycCortactin and empty vector (TF2), or ZipB-MycCortactin and ZipA-HADSrc (TF3). Cells were then trypsinized, replated on
fibronectin-treated coverslips, and fixed at 1 and 3 h. Pictures were taken in a confocal microscope at 6006 magnification. Immunofluorescence
staining was done using myc MoAb (in green), pY466 cortactin Ab (in red) and Alexa Fluor 350-phalloidin (in blue). For each experimental condition, a
representative image of a non-spread and spread cell is shown. * Denotes that spreading of Rsrc cells is incomplete. Images were merged using Leica
software. Scale bars are shown. A total of 100 transfected cells were quantified and classified into two categories: spread or non-spread. Statistical
analysis from 7 independent experiments at 1 and 3 h after replating Rsrc cells is shown for tranfections TF1 (empty vectors), TF2 (cortactin) and TF3
(phosphorylated cortactin). *, p,0.05; **, p,0.01; ***, p,0.001. (B) Inhibition of cortactin phosphorylation increases its acetylation during cell
spreading. Rsrc cells were replated on fibronectin (FN)-coated coverslips and allowed to spread for 1 or 3 h. A third plate was allowed to spread for
1 h and then treated with PP2 for 2 h. The lysates were subjected to IPs using isotype control (Ctrl.) MoAb or 4F11 MoAb and were blotted first with
acetyl-cortactin Ab and second with anti 4F11 MoAb. After gentle stripping, the membrane was incubated with pY466 cortactin Ab and 4F11 MoAb.
Quantification of the ratio of acetyl:pY466 cortactin signals indicated a significantly higher ratio after PP2 treatment. a.u.: arbitrary units. **, p,0.01.
doi:10.1371/journal.pone.0033662.g007

Acetylation versus Phosphorylation of Cortactin

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e33662



acetyl-cortactin and pY466-cortactin (Fig. 3). To be sure of our

results, we performed the IPs using a myc MoAb, and then again

using a generic phospho-tyrosine MoAb (Fig. 3A, B) and pY466

cortactin Ab (Fig. S3). The first set of IPs brought down

phosphorylated and unphosphorylated cortactin, whereas the

second set brought down only phosphorylated cortactin. Blotting

with pY466 Ab detected cortactin phosphorylation mainly in the

sample transfected with Zip-cortactin and Zip-Src. These

experiments show that acetylation and phosphorylation of

cortactin are mutually exclusive: acetylated cortactin is not

phosphorylated and vice versa (Fig. 3). Another major finding of

our study is that when WT cortactin is expressed in transfected

cells, at least some of it is acetylated (Figs. 3 and 4) and therefore

predicted to be inactive [30].

To determine whether the competition observed between

acetylation and phosphorylation of transfected cortactin also holds

for the endogenous protein, we carried out experiments in two cell

types. The first was WT and HDAC6-deficient MEFs. HDAC6 is

the major deacetylase acting on cortactin [30]. As expected, we

found the HDAC6-deficient cells to have a significantly higher

basal level of acetylated cortactin than did WT cells, as previously

described using siRNA techniques [30]. More importantly, we

confirmed in both cell types our finding of a competition between

acetylation and tyrosine phosphorylation. We did this in two types

of IP experiments, one using the 4F11 MoAb and the other using

an Ab against acetyl-cortactin (Fig. 5). In the latter IPs, acetyl-

cortactin did not show detectable tyrosine phosphorylation, as

assessed by either pY466 cortactin Ab or generic pTyr MoAb (Fig.

S4). These two IP experiments were repeated on endogenous

cortactin in a second cell type, SYF cells, for which Rsrc cells

served as control (Fig. 6). Since SYF and Rsrc cells have different

levels of tyrosine-phosphorylated cortactin, we performed IPs with

4F11, pTyr Ab and pY466 Ab. As in WT and HDAC6 deficient

MEFs, endogenous tyrosine-phosphorylated cortactin was not

acetylated.

A major conclusion of our work is that phosphorylation of

cortactin has important repercussions on cell spreading, extending

the insights of a previous study showing that cortactin mutants

mimicking tyrosine phosphorylation affect focal adhesion turnover

[28]. Using the FIT system to control tyrosine phosphorylation of

cortactin, we analyzed the effect of phosphorylating cortactin on

cell location (Fig. S5) and cell spreading (Fig. 7). We found that

phosphorylated and unphosphorylated cortactin expressed

through transient transfection has an intracellular distribution

similar to that of endogenous protein [12]. More importantly,

phosphorylation affects cell spreading: cortactin expression

facilitated cell adhesion, while tyrosine phosphorylation inhibited

it. This phenotype was more noticeable in Rsrc cells, which

express Src, than in SYF cells, which do not contain the major

SFKs expressed in fibroblasts (Src, Yes and Fyn). This difference

between the cell lines is understandable given that many proteins

besides cortactin participate in cell adhesion, and many of them

are regulated by Src-mediated phosphorylation [43].

In an effort to understand the molecular mechanism underlying

the inhibitory effect of tyrosine phosphorylated cortactin on cell

spreading, we hypothesized that this post-translational modifica-

tion would affect the binding of cortactin SH3 domain to

interacting proteins that function in cell spreading. One obvious

candidate was FAK [37]. Our results in the present study

demonstrate that in vivo, as previously proposed in vitro [10],

tyrosine phosphorylation of cortactin prevents the SH3 domain

from interacting with FAK and potentially other proteins as well.

While we were preparing this manuscript for submission,

researchers reported that a tyrosine phosphorylation-mimicking

mutant of cortactin no longer binds FAK and promotes cell

motility [44]. This result is comparable to our results obtained with

cortactin mutants and with the endogenous protein after

Figure 8. Tyrosine phosphorylation of cortactin affects focal adhesion formation: staining for vinculin. SYF and Rsrc cells were
transfected with empty vectors, with ZipB-MycCortactin and empty vector (TF2) or with ZipB-MycCortactin and ZipA-HADSrc (TF3). Cells were fixed
and visualized by immunofluorescence using vinculin MoAb (in green) and myc Ab (in red). Photographs were taken using a Nikon Eclipse TE 200-U
fluorescence microscope equipped with a Hamamatsu camera. Images were processed with Adobe Photoshop. A scale bar is shown.
doi:10.1371/journal.pone.0033662.g008
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Helicobacter infection [37]. In the present study, we used not mutant

forms of cortactin but the phosphorylated form of the WT protein

to demonstrate directly that phosphorylation inhibits cortactin

binding to FAK and cell spreading. Our results point to a

significant role for tyrosine phosphorylation of cortactin in

regulating cell adhesion to fibronectin. This further suggests the

possibility that cortactin and its phosphorylation contribute to

integrin signaling.

Model
We propose a model for the ‘sequential’ activation of cortactin

(Fig. 10). The major tyrosines targeted by Src are located in the

proline-rich region at the C-terminus of the protein. Cortactin has

a closed, globular conformation, achieved mainly through

interactions among the SH3 domain, the ABR and helical region

[27]. This agrees with previous studies showing that in unmodified

cortactin, the SH3 domain is masked [10,22]. Since acetylated

cortactin has also been proposed to be inactive [30], we

hypothesize that acetylated cortactin has a closed conformation

as well.

Based on our observation that acetylation and tyrosine

phosphorylation are not present simultaneously, we propose that

in acetylated cortactin, the tyrosines targeted by Src are hidden.

Analysis of the tertiary structure of cortactin suggests that both

acetyl and phosphate groups can be close to each other in space

[45], which may explain why one process excludes the other.

Acetylation of the e-amino group of lysines has already been

suggested to ‘‘rival’’ phosphorylation in some cases [46]. Some

examples of phosphorylation-acetylation switches in the regulation

of proteins are already known. For example, Signal Transducers

and Activators of Transcription 1 (STAT1) is activated by

phosphorylation and inactivated by acetylation [47]. We further

propose that upon appropriate stimulation, such as focal adhesion

formation during cell spreading, cortactin is deacetylated, mainly

by HDAC6, which like cortactin can translocate to the cell

periphery [48]. This deacetylated status would be maintained by

rapid Src-mediated tyrosine phosphorylation, although we cannot

exclude the possibility that other post-translational modifications

contribute to inhibiting reacetylation. In essence, we propose that

tyrosine-phosphorylated cortactin is a ‘pre-activation state’. At the

present moment we do not know whether this species has an open

or closed configuration; this will require high-resolution structural

analysis.

Figure 9. Tyrosine phosphorylation of cortactin terminates its interaction with focal adhesion kinase (FAK) during cell spreading.
(A) Coomassie staining of purified GST and GST-cortactin SH3 domain was scanned in the Odyssey system. (B) HeLa cells were detached with trypsin-
EDTA, washed with trypsin inhibitor and kept in suspension (susp.) or allowed to spread for 3 h on fibronectin (FN)-treated 100-mm plates. RIPA cell
lysates were used for pull-down experiments with GST or GST-SH3, which were analyzed by SDS-PAGE and WB with focal adhesion kinase (FAK) Ab,
followed by labeling with a 800CW-conjugated goat rabbit Ab. (C) HeLa cells were transfected with ZipB-MycCortactin and empty vector (TF2) or with
ZipB-MycCortactin and ZipA-HADSrc (TF3). After 20 h cells were detached with trypsin-EDTA, washed with trypsin inhibitor and allowed to spread on
FN-coated 100-mm plates for 3 h. Cell lysates were subjected to immunoprecipitation with FAK MoAb. The immunoprecipitates were subjected to
WB and probed in three steps: (1) with myc Ab to detect transfected cortactin, followed by a 680CW-labeled goat mouseAb (red); (2) with FAK Ab,
followed by a 800CW-labeled goat rabbit Ab (green); and (3) with pY466 cortactin Ab, followed by a 800CW-labeled goat rabbit Ab. Transfected
cortactin was immunoprecipitated by FAK (asterisk) only when the protein was not tyrosine-phosphorylated.
doi:10.1371/journal.pone.0033662.g009
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Supporting Information

Figure S1 Western-blotting controls for the transfec-
tions of the FIT vectors. (A) To detect our transfected protein,

lysates were analyzed by WB with a rabbit cortactin MoAb and a

mouse myc MoAb. Both MoAbs recognize transfected cortactin.

(B) Transfection and cell phenotype controls were performed by

WB with HA Ab (in green), and myc and Src MoAbs (in red).

(TIF)

Figure S2 Specificity of the FIT system as detected with
phosphotyrosine generic antibodies. SYF and Rsrc cells

were transfected with different combinations of Src and cortactin

FIT fusion vectors (lanes 1–8) or left untransfected (lane 9). The

cell lysates were blotted for actin as a loading control, and with a

mixture of two generic phosphotyrosine MoAbs: 4G10 and PY20

(Platinum). The major tyrosine-phosphorylated band observed in

our lysates corresponded to cortactin detected with rabbit

cortactin MoAb (in red) in the lysates cotransfected with ZipA-

HA-DSrc and ZipB-MycCortactin (lane 5, asterisks).

(TIF)

Figure S3 Analysis of acetylation and tyrosine phos-
phorylation of transfected cortactin. (A) Lysates from

various transfection combinations (lanes 1–4), treated or not with

the deacetylase inhibitor Trichostatin A (TSA), were blotted using

pY466 cortactin Ab (pY466) (in green) and 4F11 MoAb (in red) to

analyze the phosphorylation of transfected cortactin. (B) TSA-

treated cell lysates from various transfection combinations (lanes

1–3) were subjected to IP experiments with the pY466 Ab or

isotype control Ab (Ctrl.). The IPs were blotted first with acetyl-

cortactin Ab, and second with the cortactin 4F11 MoAb; then the

membrane was stripped and reprobed with pY466 Ab and with

cortactin 4F11 MoAb. The asterisk denotes nonspecific bands.

(TIF)

Figure S4 Analysis of acetylation and tyrosine phos-
phorylation of endogenous cortactin in WT and HDAC6-
deficient MEFs. Immunoprecipitates obtained with acetyl-

cortactin Ab were blotted with phospho-tyrosine generic mouse

MoAb (pTyr) and cortactin rabbit MoAb. There was not

phosphorylation signal to coincide with acetylated cortactin.

(TIF)

Figure S5 Localization of tyrosine-phosphorylated cor-
tactin. SYF and Rsrc cells were transfected with empty vectors

(not shown), with ZipB-MycCortactin and empty vector (TF2) or

with ZipB-MycCortactin and ZipA-HADSrc (TF3). Cells were

fixed and visualized by immunofluorescence using myc MoAb (in

blue), pY466 cortactin Ab (in green) and TRITC-phalloidin to

label actin cytoskeleton (in red). Pictures were taken on a confocal

microscope at 6006 magnification. Images were merged and a

zoomed view was generated using Leica software. Scale bars are

shown. Some cells showed clusters of actin and phospho-cortactin

(arrows).

(TIF)

Acknowledgments

We are indebted to Dr. Bruce J. Mayer (Connecticut Health Center, CT,

USA) for providing the FIT vectors and Dr. Tso Pang Yao (Duke

University, NC, USA) for WT and HDAC6-deficient MEFs. We are very

grateful to Dr. Seto (H Lee Moffitt Cancer Center, FL, USA) for sharing

the acetyl-cortactin Ab.

Author Contributions

Conceived and designed the experiments: NMQ EM ENP. Performed the

experiments: EM ENP NMQ. Analyzed the data: EM ENP NMQ.

Contributed reagents/materials/analysis tools: EM ENP NMQ. Wrote the

paper: NMQ. Revised the manuscript: EMR ENP NMQ.

References

1. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and

movement. Science 326: 1208–1212.

2. Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382:

13–25.

3. Ren G, Crampton MS, Yap AS (2009) Cortactin: Coordinating adhesion and

the actin cytoskeleton at cellular protrusions. Cell Motil Cytoskeleton 66:

865–873.

4. Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT (1991) Identification

and characterization of a novel cytoskeleton-associated pp60src substrate. Mol

Cell Biol 11: 5113–5124.

5. Schuuring E, Verhoeven E, Litvinov S, Michalides RJ (1993) The product of the

EMS1 gene, amplified and overexpressed in human carcinomas, is homologous

to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol

13: 2891–2898.

6. Weaver AM (2008) Cortactin in tumor invasiveness. Cancer Lett 265: 157–166.

7. Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical

actin assembly. Oncogene 20: 6418–6434.

8. Uruno T, Liu J, Zhang P, Fan Yx, Egile C, et al. (2001) Activation of Arp2/3

complex-mediated actin polymerization by cortactin. Nat Cell Biol 3: 259–266.

9. Kinley AW, Weed SA, Weaver AM, Karginov AV, Bissonette E, et al. (2003)

Cortactin interacts with WIP in regulating Arp2/3 activation and membrane

protrusion. Curr Biol 13: 384–393.

10. Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS (2004) Erk/

Src phosphorylation of cortactin acts as a switch on-switch off mechanism that

controls its ability to activate N-WASP. Mol Cell Biol 24: 5269–5280.

11. Mizutani K, Miki H, He H, Maruta H, Takenawa T (2002) Essential role of

neural Wiskott-Aldrich syndrome protein in podosome formation and

degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res

62: 669–674.

Figure 10. Model for sequential activation of cortactin by
deacetylation and phosphorylation. Acetylated cortactin is inac-
tive and probably has a closed conformation that masks the tyrosines
targeted by Src. Upon appropriate stimulation, cortactin is deacetylated
by HDAC6, exposing the tyrosines, which are then rapidly phosphor-
ylated by Src. This phosphorylation keeps cortactin deacetylated.
Whether this tyrosine-phosphorylated cortactin has an open or closed
configuration is unknown (question mark).
doi:10.1371/journal.pone.0033662.g010

Acetylation versus Phosphorylation of Cortactin

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e33662



12. Ammer AG, Weed SA (2008) Cortactin branches out: roles in regulating

protrusive actin dynamics. Cell Motil Cytoskeleton 65: 687–707.

13. Sangrar W, Gao Y, Scott M, Truesdell P, Greer PA (2007) Fer-mediated

cortactin phosphorylation is associated with efficient fibroblast migration and is

dependent on reactive oxygen species generation during integrin-mediated cell

adhesion. Mol Cell Biol 27: 6140–6152.

14. Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ (2007) A critical

role for cortactin phosphorylation by Abl-family kinases in PDGF-induced

dorsal-wave formation. Curr Biol 17: 445–451.

15. Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, et al. (1997) Down-

regulation of the filamentous actin cross-linking activity of cortactin by Src-

mediated tyrosine phosphorylation. J Biol Chem 272: 13911–13915.

16. Weaver AM, Karginov AV, Kinley AW, Weed SA, Li Y, et al. (2001) Cortactin

promotes and stabilizes Arp2/3-induced actin filament network formation. Curr

Biol 11: 370–374.

17. Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, et al. (2001) Cortactin

potentiates bone metastasis of breast cancer cells. Cancer Res 61: 6906–6911.

18. Nieto-Pelegrin E, Martinez-Quiles N (2009) Distinct phosphorylation require-

ments regulate cortactin activation by TirEPEC and its binding to N-WASP.

Cell Commun Signal 7: 11.

19. Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, et al. (2008)

Investigation of protein-tyrosine phosphatase 1B function by quantitative

proteomics. Mol Cell Proteomics 7: 1763–1777.

20. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, et al. (2009)

Cortactin regulates cofilin and N-WASp activities to control the stages of

invadopodium assembly and maturation. J Cell Biol 186: 571–587.

21. Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA (2007) Src

phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci U S A

104: 11933–11938.

22. Campbell DH, Sutherland RL, Daly RJ (1999) Signaling pathways and

structural domains required for phosphorylation of EMS1/cortactin. Cancer

Res 59: 5376–5385.

23. Grassart A, Meas-Yedid V, Dufour A, Olivo-Marin JC, Dautry-Varsat A, et al.

(2010) Pak1 phosphorylation enhances cortactin-N-WASP interaction in

clathrin-caveolin-independent endocytosis. Traffic 11: 1079–1091.

24. Webb BA, Zhou S, Eves R, Shen L, Jia L, et al. (2006) Phosphorylation of

cortactin by p21-activated kinase. Arch Biochem Biophys 456: 183–193.

25. Martin KH, Jeffery ED, Grigera PR, Shabanowitz J, Hunt DF, et al. (2006)

Cortactin phosphorylation sites mapped by mass spectrometry. J Cell Sci 119:

2851–2853.

26. Lua BL, Low BC (2005) Cortactin phosphorylation as a switch for actin

cytoskeletal network and cell dynamics control. FEBS Lett 579: 577–585.

27. Cowieson NP, King G, Cookson D, Ross I, Huber T, et al. (2008) Cortactin

adopts a globular conformation and bundles actin into sheets. J Biol Chem 283:

16187–16193.

28. Kruchten AE, Krueger EW, Wang Y, McNiven MA (2008) Distinct phospho-

forms of cortactin differentially regulate actin polymerization and focal

adhesions. Am J Physiol Cell Physiol 295: C1113–1122.

29. Kelley LC, Hayes KE, Ammer AG, Martin KH, Weed SA (2010) Cortactin

phosphorylated by ERK1/2 localizes to sites of dynamic actin regulation and is

required for carcinoma lamellipodia persistence. PLoS One 5: e13847.

30. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, et al. (2007) HDAC6

modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27:
197–213.

31. Sharma A, Antoku S, Fujiwara K, Mayer BJ (2003) Functional interaction trap:

a strategy for validating the functional consequences of tyrosine phosphorylation
of specific substrates in vivo. Mol Cell Proteomics 2: 1217–1224.

32. Sharma A, Mayer BJ (2008) Phosphorylation of p130Cas initiates Rac activation
and membrane ruffling. BMC Cell Biol 9: 50.

33. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, et al. (2003) The

deacetylase HDAC6 regulates aggresome formation and cell viability in response
to misfolded protein stress. Cell 115: 727–738.

34. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal
transduction. Oncogene 23: 7906–7909.

35. Huang C, Liu J, Haudenschild CC, Zhan X (1998) The role of tyrosine
phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem

273: 25770–25776.

36. Weng Z, Taylor JA, Turner CE, Brugge JS, Seidel-Dugan C (1993) Detection of
Src homology 3-binding proteins, including paxillin, in normal and v-Src-

transformed Balb/c 3T3 cells. J Biol Chem 268: 14956–14963.
37. Tegtmeyer N, Wittelsberger R, Hartig R, Wessler S, Martinez-Quiles N, et al.

(2011) Serine phosphorylation of cortactin controls focal adhesion kinase activity

and cell scattering induced by Helicobacter pylori. Cell Host Microbe 9:
520–531.

38. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA (2000) Focal adhesion
kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene

19: 5606–5613.
39. Arndt KM, Pelletier JN, Müller KM, Alber T, Michnick SW, et al. (2000) A

heterodimeric coiled-coil peptide pair selected in vivo from a designed library-

versus-library ensemble. J Mol Biol 295: 627–639.
40. Yadav SS, Yeh BJ, Craddock BP, Lim WA, Miller WT (2009) Reengineering

the signaling properties of a Src family kinase. Biochemistry 48: 10956–10962.
41. Kelley LC, Ammer AG, Hayes KE, Martin KH, Machida K, et al. (2010)

Oncogenic Src requires a wild-type counterpart to regulate invadopodia

maturation. J Cell Sci 123: 3923–3932.
42. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, et al. (2009) Lysine

acetylation targets protein complexes and co-regulates major cellular functions.
Science 325: 834–840.

43. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating
cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11: 633–643.

44. Wang W, Liu Y, Liao K (2011) Tyrosine phosphorylation of cortactin by the

FAK-Src complex at focal adhesions regulates cell motility. BMC Cell Biol 12:
49.

45. Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other
posttranslational modifications. Mol Cell 31: 449–61.

46. Yang XJ, Gregoire S (2007) Metabolism, cytoskeleton and cellular signalling in

the grip of protein Nepsilon - and O-acetylation. EMBO Rep 8: 556–562.
47. Kramer OH, Knauer SK, Greiner G, Jandt E, Reichardt S, et al. (2009) A

phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23:
223–235.

48. Gao YS, Hubbert CC, Lu J, Lee YS, Lee JY, et al. (2007) Histone deacetylase 6
regulates growth factor-induced actin remodeling and endocytosis. Mol Cell Biol

27: 8637–8647.

Acetylation versus Phosphorylation of Cortactin

PLoS ONE | www.plosone.org 14 March 2012 | Volume 7 | Issue 3 | e33662


