
Research Article
Random Subspace Aggregation for Cancer Prediction with
Gene Expression Profiles

Liying Yang,1 Zhimin Liu,1 Xiguo Yuan,1 Jianhua Wei,2 and Junying Zhang1

1School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
2State Key Laboratory of Military Stomatology, Department of Maxillofacial Surgery, School of Stomatology,
the Fourth Military Medical University, Xi’an, China

Correspondence should be addressed to Liying Yang; yangliying1208@163.com and Jianhua Wei; weiyoyo@fmmu.edu.cn

Received 3 July 2016; Revised 8 October 2016; Accepted 20 October 2016

Academic Editor: Bing Niu

Copyright © 2016 Liying Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profilesmake it possible to analyze patterns
between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous
challenges for its characteristics, such as high dimensionality, small sample size, and low Signal-to-Noise Ratio. Results. This paper
proposes a method, termed RS SVM, to predict gene expression profiles via aggregating SVM trained on random subspaces. After
choosing gene features through statistical analysis, RS SVMrandomly selects feature subsets to yield randomsubspaces and training
SVM classifiers accordingly and then aggregates SVM classifiers to capture the advantage of ensemble learning. Experiments
on eight real gene expression datasets are performed to validate the RS SVM method. Experimental results show that RS SVM
achieved better classification accuracy and generalization performance in contrast with single SVM, 𝐾-nearest neighbor, decision
tree, Bagging, AdaBoost, and the state-of-the-art methods. Experiments also explored the effect of subspace size on prediction
performance. Conclusions. The proposed RS SVM method yielded superior performance in analyzing gene expression profiles,
which demonstrates that RS SVM provides a good channel for such biological data.

1. Introduction

Cancer usually has an association with genes which carry
human heritage information. Completion of human genome
sequencing makes genetic analysis on the genome-wide scale
available and provides a deeper understanding of the under-
lyingmechanism of cancers [1–4]. Biological technology now
can simultaneouslymonitor ten thousands of gene expression
levels [5, 6]. It is meaningful to design novel methods to
precisely and efficiently classify tumor samples from normal
samples or recognize subclasses of some disease with gene
expression profiles. Classification of gene expression data,
however, faces enormous difficulties. Firstly, the data have
up to ten thousands of dimensions. Traditional classifica-
tion methods become intractable, since high dimensionality
makes sample distribution dispersing and distance between
samples ambiguous. Secondly, sample size is small for high

expenses or ethical consideration. Therefore, there is no
enough data to train a classical learner. Low Signal-to-Noise
Ratio (SNR) is the third issue to consider for gene expression
data analysis, which means noise may significantly decline
performance.

To tackle the high dimensionality issue, some researches
make an attempt to select important gene features by exploit-
ing the association among genes and eliminating redundant
and irrelevant information. Based on Recursive Feature
Elimination (RFE), Guyon et al. used SVM method to select
genes and proved that the genes filtered by SVM method
perform better [7]. By feature extraction and defining “cor-
relation feature space” for samples built on gene expression
profiles through iterative utilization of Pearson’s correlation
coefficient, Ren et al. proposed an original method to further
propel gene expression profiling technologies from bench
to bedside [8]. Considering the possible interactions among
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genes, Zhang et al. proposed a binary matrix shuffling filter
to surmount troubles linked with searching schemes of
conventional wrapper method and overfitting [9].

Ensemble art is also introduced in some recent researches.
Bolón-Canedo et al. provided a novel framework for feature
selection by an ensemble of filters and classifiers [10]. Com-
bining classifiers from different classification families into an
ensemble based on the evaluation of performance of each
classifier, Nagi and Bhattacharyya proposed an ensemble
method named as SD-EnClass [11]. To ensure a high classifi-
cation accuracy, Ghorai et al. showed an ensemble of nonpar-
allel plane proximal classifiers based on the genetic algorithm
through simultaneous feature and model selection scheme
[12]. Given the fact that forward feature selection (FFS)
method is able to obtain an expected feature subset with
less iteration than that of backward feature selection (BFS)
method, Luo et al. proposed two FFS methods based on the
pruning of the classifier ensembles generated by a single gene
feature [13].

“Blessing of nonuniformity” effect, which means samples
are concentrated in a relatively low instance space rather than
uniformly throughout the whole space, inspired some novel
methods to perform classification in subspaces [14]. Con-
structing subspace in random process was firstly proposed
by Ho for decision forests to overcome the dilemma between
avoiding overfitting and achieving maximum accuracy [15].

Recently, researchers have done much work on cancer
classification based on gene expression data. Daxa et al.
proposed a framework to find informative gene combinations
and to classify gene combinations belonging to their relevant
subtype by using fuzzy logic, while they only focused on
identifying 2-gene and 3-gene combinations [16]. Kim et al.
presented a genetic filter to identify gene subset for cancer-
type classification on gene expression profiles, which was
only tested on one dataset, that is, Leukemia dataset [17].
Vosooghifard and Ebrahimpour proposed a hybrid method
using GWO and C4.5 for gene selection and cancer classi-
fication. In essence, GWO is a group optimization method,
so time consuming is a factor which should be considered
[18]. Buza summarized the classification of gene expression
data in reference [19], where he indicated that the robustness
of SVM to classify gene expression data relies on the strong
fundamentals of statistical learning theory.

This paper attempts to classify gene expression data by
aggregating SVMs trained on random subspaces (RS). RS
method shows great potential in scenarios where the number
of features is much bigger than the number of samples [20–
23]. In addition, RS method has an excellent performance
in coping with correlation and redundancy between features.
Bias risk is relatively small in RS because of its independence
of specific hypothesis on data. SVM is usually used to cope
with gene expression data, since only support vectors work
in classification process, and the number of support vectors
is usually much smaller than that of training samples. We
elaborately explored the trick of choosing parameters and the
effect of size of subspaces on the classification performance.
The possible reason leading to unsatisfied outcome was also
revealed.

2. Materials and Methods

2.1. Gene Expression Datasets. Eight real gene expression
datasets are used. They are provided by Kent Ridge Biomed-
ical Dataset Repository and collected by Li and Liu from
Nanyang Technological University, Singapore [24]. Detailed
information is listed in Table 1.

Breast Cancer dataset labels the patients who had got
distance metastases in five years as “relapse” and label the
patients who remained healthy since the initial diagnosis for
interval of at least five years as “nonrelapse.” Missing values
are replaced by 100 [25].

Leukemia dataset was originally published in reference
[26]. Dataset used in this work is an extended and more
heterogeneous version than the initial one. Samples are from
DFCI (Dana-Farber Cancer Institute), CALGB (Cancer and
LeukemiaGroup B), and SJCRH (St. JudeChildren’s Research
Hospital).There are two categories, ALL (Acute Lymphoblas-
tic Leukemia) and AML (Acute Myeloid Leukemia), inside
the total 72 samples over 7129 probes. Training dataset con-
sists of 38 bone marrow samples (27 ALL and 11 AML), while
34 testing samples (20 ALL versus 14 AML) are provided with
24 bone marrow and 10 peripheral blood specimens.

Lung Cancer dataset was firstly presented in reference
[27]. Training set consists of 16 malignant pleural mesothe-
lioma (MPM) samples and 16 adenocarcinoma (ADCA)
samples. Testing set contains 15MPMsamples and 134ADCA
samples. 12533 genes expression levels were obtained via hy-
bridizing cRNA to human U95A oligonucleotide probe
arrays. All the ADCA samples and 12 MPM samples were
processed at theDana-FarberCancer Institute and theWhite-
head Institute. The remaining 19 MPM samples were pro-
cessed separately at Brigham and Women’s Hospital.

Prostate dataset has an independent testing set, which
is from a different experiment and has a nearly tenfold dif-
ference in overall microarray intensity from the training data
[40].

Colon Tumor dataset was introduced in reference [41].
Rather than elaborating time-course data, this dataset con-
sists of snapshots of the expression pattern of distinct cell
types. Raw dataset, based on 22 normal colon tissue sam-
ples (positive) and 40 colon tumor samples (negative) of
colon adenocarcinoma specimens, was from an Affymetrix
oligonucleotide array complementary to more than 6,500
genes and expressed sequence tags (ESTs). Two thousand
genes were selected to generate the dataset used here, with
the highest minimal intensity across 62 samples.

CNS (central nervous system) dataset was originally
published in reference [42], while only dataset C mentioned
to analyze the outcome of the treatment is used here. 60
samples consist of 39 medulloblastoma survivors (Class 0)
and 21 treatment failures (Class 1). The dataset contains 60
patient samples, with 21 medulloblastoma survivors (labelled
as “Class 1”) and 39 treatment failures (labelled as “Class 0”).
There are 7129 genes in the dataset.

Ovarian dataset was originally published in reference
[43], inside which experiments are to identify proteomic
patterns in serum that distinguish ovarian cancer from non-
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Table 1: Dataset.

Data Feature Sample Class

Breast Cancer 24481
97

78 training (34 relapse + 44 nonrelapse)
19 test (12 relapse + 7 nonrelapse)

Relapse
Nonrelapse

Leukemia 7129
72

38 training (27 ALL + 11 AML)
34 test (20 ALL + 14 AML)

All
AML

Lung Cancer 12533
181

32 training (16 mesothelioma + 16 ADCA)
149 test (15 mesothelioma + 134 ADCA)

Mesothelioma
ADCA

Prostate 12600
136

102 training (52 tumor + 50 normal)
34 test (25 tumor + 9 normal)

Tumor
Normal

Colon Tumor 2000 62
22 positive + 40 negative

Positive
Negative

CNS 7129 60
21 Class 1 + 39 Class 0

Class 1
Class 0

Ovarian 15154 253
162 cancer + 91 normal

Cancer
Normal

DLBCL 4026 47
24 germinal + 23 activated

Germinal
Activated

cancer. The proteomic spectra were generated by mass spec-
troscopy and dataset used in this work includes 91 “Normal”
samples and 162 “Cancer” samples without separated training
set and testing set. The raw spectral data of each sample
contains the relative amplitude of the intensity at each
molecular mass/charge (𝑀/𝑍) identity. There are totally
15154𝑀/𝑍 identities. The intensity values were normalized
according to the formula NV = (𝑉 − Min)/(Max − Min),
where NV is the normalized value, 𝑉 the raw value, Min
the minimum intensity, and Max the maximum intensity.
The normalization is done over all the 253 samples for all
15154𝑀/𝑍 identities. Thus, each intensity value falls into the
range of 0 to 1.

As the most common subtype of non-Hodgkin’s lym-
phoma, DLBCL (diffuse large B cell lymphoma) is due to
an aggressive malignancy of mature B lymphocytes. DLBCL
consists of two molecularly different subclasses [44]. One
subclass is “germinal centre B like DLBCL” expressing gene
characteristics of germinal centre B cells and the other is
“activated B-likeDLBCL” expressing genes normally induced
during in vitro activation of peripheral blood B cells. DLBCL
dataset contains 47mRNA samples consisting of 24 germinal
centre B-like DLBCL and 23 activated B-like DLBCL. Each
of 4026 column score responding to cDNA clones indicates a
gene expression level. Log-transformation was implemented
on raw dataset to produce the dataset used in this work.

2.2. Method Description. SVM has an advantage in small
sample cases and RSmethod shows an excellent performance
in coping with high-dimension data. Algorithm 1 presents a
description of RS SVM method used in this paper, which
aggregates SVMs trained on random subspaces. Figure 1
shows the framework of RS SVM.

2.3. Gene Selection. Gene expression profile usually contains
a large number of genes with constant or near constant
expression levels across samples. These genes are redundant
for classification and even decline distinction between nor-
mal and tumor samples, since they sharply increase space
dimensions. To address this problem, gene selection based
on statistical analysis is adopted to yield a new gene set from
the original one. Since 𝑡-test is the first method for feature
selection when microarray technology came into being, it is
used in this work. Firstly, we compute 𝑝 value of each gene
across total samples and rank genes according to 𝑝 value;
then, top genes are filtered at 0.95 significant level. Number of
top genes and optimal size of subspace on eight datasets are
presented in Table 2.

2.4. Size and Number of Random Subspaces. Random sub-
space size (𝑆) has an enormous influence on RS SVM.
Supposing that 𝑆 value is relatively small, some important
gene features may not be selected into feature subsets to
train SVMs; thus, underfitting easily occurs. In contrast,
if 𝑆 is extremely large, diversity among SVM classifiers
may be reduced, leading to a useless aggregation. Following
experiment sets, default 𝑆 to be the square root of𝑀 (feature
number of selected data by 𝑡-test), recommended by Breiman
[45], and then adjust 𝑆 until achieving the optimal testing
error. We analyze the influence of random subspace size on
classification performance via illustrating the variation of
training error and testing errorwith different 𝑆 in Figure 3. An
appropriate number of random subspaces (𝐿) can guarantee
that each feature has enough chance to be selected. Since
the lack of prior knowledge about 𝐿, it is set to 1000
experimentally.
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Input:
Dataset𝐷 = {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), . . . , (𝑥(𝑛), 𝑦(𝑛))}, sample size 𝑛;
Sample 𝑥(𝑖) = {𝑥1

(𝑖), 𝑥2
(𝑖), . . . , 𝑥𝑚

(𝑖)}, number of total feature𝑚;
Class of 𝑖th sample 𝑦(𝑖) in 𝑌 = {normal, tumor};
Split function: yield training set and testing set from original dataset. If the original
dataset has been divided into training and testing partition, this step could be skipped.
Gene select function: R𝑚 → R𝑀, where𝑀 is the feature number of selected data,𝑀 < 𝑚;
RS preject function: R𝑀 → R𝑆, where 𝑆 is the size of a random subspace, 𝑆 < 𝑀;
Number of random subspaces 𝐿;

Learning algorithm: SVM
Output:
Classification hypotheses𝐻:𝑋 → 𝑌
Start:
Data processing:

(Trainset, Testset) = Split(𝐷)
TrainsetNew = Gene select(Trainset,𝑀)
TestsetNew = Gene select(Testset,𝑀)

Generate and aggregate SVM classifiers on random subspaces:
For 𝑖 = 1 to 𝐿
𝐷𝑖 = RS project(TrainsetNew, 𝑆)
ℎ𝑖 = SVM(𝐷𝑖)

End
Test:

For each 𝑥 in TestsetNew
𝐻(𝑥) = argmax𝑦∈𝑌∑

𝐿
𝑖=1(ℎ𝑖(𝑥) = 𝑦)

End
End

Algorithm 1

Table 2: Number of selected features and optimal size of subspace.

Data Number of selected
features by 𝑡-test

Optimal size of
subspace

Breast Cancer 1810 800
Leukemia 1697 400
Lung Cancer 3134 170
Prostate 5707 100
Colon Tumor 394 150
CNS 378 180
Ovarian 7949 1300
DLBCL 972 150

3. Results and Discussion

To validate the effectiveness of RS SVM, we perform exper-
iments on eight real gene expression datasets mentioned
above. Three experiments are designed to validate the pro-
posed method. In the first experiment, we computed testing
error of RS SVM and peer methods, including single SVM,
KNN (𝐾-nearest neighbor), CART (classification and regres-
sion tree), Bagging, andAdaBoost on eight datasets. Compar-
ison of RS SVM with the state-of-the-art methods in related
literatures is also given. The second experiment explored
influence of subspaces size by presenting the fluctuation of
training error and testing error. In addition, sensitivity and

specificity are also obtained at different subspace size.The last
experiment shows the effectiveness of gene selection based on
𝑡-test.

The code is written in R-2.15.2, and all the packages
are downloaded from the official site (https://www.r-project
.org/). Table 3 gives a detailed description of the functions, the
relative parameters, and packages used in experiments. Note
that there is no training set and testing set partition on Colon
Tumor, CNS, Ovarian, and DLBCL; we perform leave-one-
out cross validation on these datasets.

3.1. Testing Error Comparison of RS SVM and Other Methods.
Table 4 shows testing error of RS SVM and other peer
methods on eight datasets. Testing error of each method is
computed on the same dataset. To eschew the interference of
randomness, values in Table 4 are the average of 50 iterations.
It is clear that RS SVM performs best on five datasets, that is,
Breast Cancer, Lung Cancer, Prostate, Ovarian, and DLBCL.
It also achieves good results on Leukemia dataset. Effect of
aggregation is obvious by comparing RS SVM with single
SVM, since testing error of RS SVM is lower on six datasets,
and RS SVM obtains the same result with single SVM on
Colon Tumor. The only exception is CNS. For CNS, all the
methods do not perform well, which probably was due to the
special distribution of data.

Table 5 shows testing error of RS SVM and the state-
of-the-art methods in literatures. It is obvious that none of
these methods is always the winner, since distribution or

http://www.r-project.org/
http://www.r-project.org/
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Table 3: Function and package used in R.

Function Package Parameter

𝑡.test() stats Confidence level of the interval is 0.95. Assume two variances are
equal

svm() e1071 Choose “radial” kernel; gamma is 1/dimension; epsilon is 0.1
knn() class Choose 𝑘 = 3
rpart() rpart Choose method = “class”

ada() ada Use decision trees as base classifiers; iteration is 50; under exponential
loss, type of boosting algorithm to perform is “discrete”

ipredbagg() ipred Use decision trees as base classifiers; number of bootstrap replications
is 25

Table 4: Testing error comparison of RS SVM and peer methods (%).

RS SVM Single SVM KNN CART AdaBoost Bagging
Breast Cancer 5.30 15.79 47.37 31.58 10.53 31.58
Leukemia 5.89 26.47 2.94 8.82 41.18 8.82
Lung Cancer 1.34 9.40 2.68 9.40 51.01 9.40
Prostate 0 73.53 73.53 73.53 73.53 14.71
Colon Tumor 14.52 14.52 16.13 22.58 19.35 11.29
CNS 33.33 31.67 35.00 36.67 41.67 45.00
Ovarian 1.19 1.58 4.35 3.16 6.72 1.98
DLBCL 4.26 10.64 14.89 29.79 19.15 23.40

Table 5: Testing error comparison of RS SVM and the state-of-the-art methods (%).

Breast Cancer Leukemia Lung Cancer Prostate Colon Tumor CNS Ovarian DLBCL
RS SVM 5.30 5.89 1.34 0 14.52 33.33 1.19 4.26
Nanni et al. [28] 11.43 0 0 3.85 26.67 33.33 0 1.43
Ye et al. [29] — 2.50 — 7.5 15.00 — — —
Liu et al. [30] — 0 0 3.00 8.10 — 0.80 2
Tan and Gilbert [31] — 8.90 6.80 26.50 4.90 11.7 — —
Ding and Peng [32] — 0 2.70 — 6.50 — — —
Bonilla Huerta et al. [33] — 0 0.70 4.00 8.1 13.40 0 0
Cheng [34] — 0 0.67 5.88 — — — —
Paliwal and Sharma [35] 26.3 0 2.70 23.5 — — — —

Bolón-Canedo et al. [10]
36.22 11.96 2.75 11.81 13.10 36.67 1.20 20.50
46.56 4.11 0 41.87 16.19 30.00 0.8 6.50
28.11 5.54 1.11 12.53 19.05 36.67 0 4.00

Porto-Dı́az et al. [36] 21.05 0 0.67 20.59 10.00 25.00 0 0

Hu et al. [37] — — 12.50 19.30 9.70 — — —
— — 11.60 18.20 9.70 — — —

Nagi and Bhattacharyya [11] 26.51 7.55 18.12 47.06 5.60 9.85 1.11
Pati and Das [38] — 7.89 6.25 — — — — —

Dash et al. [39]

— 0 11.55 — 10.95 — — —
— 0.45 0 — 0 — — —
— 28.22 16 — 23.33 — — —
— 0.41 0.95 — 0.31 — — —

Ghorai et al. [12] 18.79 5.48 3.62 9.84 17.23 — — —

Luo et al. [13] — 2.07 — — 18.60 — — 6.00
— 2.45 — — 19.12 — — 7.19

The state-of-the-art methods are indexed by the first author in literatures. “—” means that there are no corresponding results in the given literature.
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Original data

Training Testing

Compute p-value by t-test
Rank features by descending

Select significant features
Generate new data

Generate random

Train SVMs on random subspaces

Aggregate all classifiers by majority

Testing

Figure 1: RS SVMmethod.

correlation between gene features is diverse among different
datasets. Each method has peculiar perspective for certain
gene pattern. RS SVM achieved the lowest testing error on
Breast Cancer and Prostate and also relatively low testing
error on the datasets of Leukemia, LungCancer, Ovarian, and
DLBCL, which implies a good generalization performance.

In spite of good performances mentioned in Tables 4
and 5, an unsatisfied outcome is revealed on Colon Tumor
and CNS. Possible reason might be traced to heterogeneity
phenomenon appearing in the two datasets [37], which
means greater variability existing in gene expression level
between the categories. To visually describe the distribution,
Figure 2 projects high-dimension data to two-dimension
space by Principle Component Analysis (PCA). Heterogene-
ity phenomenon is obvious in Colon Tumor and CNS data.
For CNS, distribution of “Class 1” is relatively concentrated
and “Class 0” is more dispersing. Similar case happens on
Colon Tumor. This suggests that RS SVM is not suitable for
heterogeneous data.

3.2. Influence of Subspace Size. Figure 3 shows training error
and testing error with respect to subspace size. Breast Cancer,
Leukemia, Lung Cancer, Ovarian, and DLBCL share nearly

similar curve trend. Initially, both training error and testing
error are high when subspace size is small, which indicates
underfitting exists. With the increasing of subspace size, both
errors converge to nearly zero and underfitting fades away.
However, the convergence rate is different among different
datasets. Ovarian data converges much slower than the other
four datasets. Errors of Ovarian are not near zero until
subspace size is almost 800.

For Colon Tumor, when training error is near zero, there
is a small gap between training and testing errors. This
indicates that slight overfitting exists. More severe overfitting
exists on CNS, because there is an obviously large gap
between training error and testing error when training error
is converging to zero. The terrible overfitting may explain
RS SVM’s high testing error in Tables 4 and 5.

For Prostate datasets, there is little variation on training
error by increasing subspace size. Testing error, however,
fluctuates dramatically, especially changing subspace size
from 90 to 116. During this interval, testing error firstly drops
down and minimum is obtained at the point when subspace
size is set to 100, followed by rising up sharply, and finally
tends to be steady. This phenomenon may be due to great
differences between the distribution of training and testing
set. As shown in Figure 4, tumor samples mainly concentrate
in the left bottom in training set, while dispersing in the
left in testing set. This indicates that the model generated on
training set may not fit testing set well.

Figure 5 presents sensitivity and specificity with respect to
subspace size. Sensitivity shows the ability to detect positives
while specificity is the ability to reject negatives. To some
extent, there is a trade-off between sensitivity and specificity.
The best subspace size is a compromising value between
sensitivity and specificity. For Breast Cancer, Leukemia, Lung
Cancer, Ovarian, and DLBC, both sensitivity and specificity
are high, which coincides with the low testing errors in
Tables 4 and 5. Even though two curves of Colon Tumor
are relatively steady, the whole level is not high. CNS dataset
cannot achieve both high sensitivity and specificity, since
when one rises up, the other drops down. The characteristic
of Prostate dataset is also reflected in Figure 5.The sensitivity
curve of Prostate rises up rapidly and then remains steady,
but specificity curve drops down sharply when subspace size
passes over the optimal value, which indicates that, with the
increasing of subspace size, more and more tumor samples
are predicted falsely.

3.3. Validation of Gene Selection by 𝑡-Test. The above exper-
iments are performed on the datasets after gene selection
via 𝑡-test, which is designed to reduce dimensionality and
eliminate noise. In order to validate the effect of gene
selection, we carry out experiment on datasets both with
and without gene selection. Table 6 gives the testing error
of RS SVM on eight datasets. For the sake of contrast,
parameters of two cases are all uniform. Size of subspace
chooses the optimal value obtained in Table 2. It shows that
gene selection improves classification performance obviously
by reducing testing errors.
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Figure 2: Scattering Colon Tumor and CNS data by Principle Component Analysis.
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Table 6: Effect of gene selection based on 𝑡-test (%).

Breast Cancer Leukemia Lung Cancer Prostate Colon Tumor CNS Ovarian DLBCL
With selection 5.30 5.89 1.34 0 14.52 33.33 1.19 4.26
Without selection 63.16 41.18 3.36 26.47 35.48 35.00 3.20 44.68
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Figure 4: Scatter of training set and test set on Prostate based on the top two principle components.
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Figure 5: Variation of sensitivity and specificity with subspace size.

4. Conclusions

This work proposed a cancer classification method, termed
RS SVM, to analyze gene expression profiles. The robustness
of SVM relies on the strong fundamentals of statistical learn-
ing theory and the technique can be extended to nonlinear

discrimination by embedding the data in a nonlinear space
using kernel functions. In pattern recognition systems, no
single model exists for all pattern recognition problems and
no single technique is applicable to all problems. Ensemble
learning is to integrate several models for the same problem.
Random subspace is one of the ensemble learning methods
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and suitable for high-dimension data. For high-dimension
gene expression data, only a small fraction of all genes
is effective in performing certain diagnostic test. Hence,
gene expression data analysis is confronted with enormous
challenges for its characteristics, such as high dimensionality,
small sample size, and low Signal-to-Noise Ratio. RS SVM
takes advantage of both subspace and SVM to handle the
high-dimension and small sample problem in gene expres-
sion data, after obtaining the significant features through 𝑡-
test, which could be regarded as prior knowledge to reduce
the computing pressure. Experimental results on eight real
gene expression profiles show that RS SVM outperforms
single SVM, KNN, CART, Bagging, AdaBoost, and 16 state-
of-the-art methods in literatures. We also applied PCA on
two gene expression profiles, where the experimental results
are not satisfied, to probe the unsuitability. It suggests that
RS SVM is not suitable for heterogeneous data.

In RS SVM, optimal values of subspace size and subspace
number were obtained empirically, which was arduous and
time-consuming. How to address this problem is still an open
issue. We have collected next-generation sequencing gene
expression data from TCGA and will continue this research
on the new data.
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