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Only 3% of the transcribed human genome is translated into protein, and small non-coding RNAs from
these untranslated regions have demonstrated critical roles in transcriptional and translational regulation of
proteins. Here, we provide a resource that will facilitate cell line selection for gene expression studies
involving sncRNAs in cancer research. As the most accessible and tractable models of tumours, cancer cell
lines are widely used to study cancer development and progression. The NCI-60 panel of 59 cancer cell lines
was curated to provide common models for drug screening in 9 tissue types; however, its prominence has
extended to use in gene regulation, xenograft models, and beyond. Here, we present the complete small
non-coding RNA (sncRNA) transcriptomes of these 59 cancer cell lines. Additionally, we examine the
abundance and unique sequences of annotated microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs),
small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), and reveal novel unannotated
microRNA sequences.

Design Type(s)
cell type comparison design • sequence analysis objective • transcription
profiling identification objective

Measurement Type(s) non-protein coding RNA sequence

Technology Type(s) RNA sequencing

Factor Type(s) cancer cell line

Sample Characteristic(s)

Homo sapiens • breast cancer cell line • glioblastoma cell line • glioma cell
line • colonic adenocarcinoma cell line • colonic cancer cell line
• lymphoblastic leukemia cell line • acute myeloid leukemia cell line
• chronic myeloid leukemia cell line • multiple myeloma cell line • non-
Hodgkin lymphoma cell line • melanoma cell line • mammary gland tumor
cell line • non-small cell lung cancer cell line • large cell lung cancer cell line
• ovary cancer cell line • prostate cancer cell line • renal cancer cell line
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Background & Summary
The NCI-60 Human Tumour Cell Lines Screen is an initiative started by the National Institutes of Health
(NIH) in the late 1980s, focusing on the development of 59 human tumour cell lines for use as an in vitro
drug screen model1–3 (Table 1 (available online only)). These cell lines, derived from nine solid and blood
malignancies, have shown great utility both in its original purpose for therapeutic screening as well as in
basic cancer research (reviewed by Shoemaker et al.4). They have since been extensively characterized for
various molecular features, including karyotypic complexity1, DNA fingerprinting2, gene expression
microarray profiling5,6, and human leukocyte antigen typing3. However, the small non-coding RNA
(sncRNA) transcriptomes of the NCI-60 cell lines have yet to have been reported at the sequencing level.

The advent of next-generation sequencing has revealed the large proportion of non-coding genes in
the human genome, and the relevance of these non-coding species in regulating the expression of both
neighbouring and distant protein-coding genes. In the context of cancer, microRNAs (miRNAs) remain
the best-studied non-coding RNA species, and have been implicated in all stages of cancer: initiation,
progression, and response to therapy (reviewed by Hayes et al.7). Recent advances in the bioinformatic
tools used for the discovery of small non-coding RNA have considerably expanded the number of known
miRNA sequences8. Other types of sncRNA, including PIWI-interacting RNAs (piRNAs), small nuclear
RNAs (snRNAs), and small nucleolar RNAs (snoRNAs) are emerging topics in cancer biology (reviewed
by Ng et al. and Mannoor et al.9,10). Beyond their functions in gene regulation, sncRNAs are attractive
prognostic biomarkers due to their abundance and stability in various biofluids11.

We sequenced the sncRNA transcriptomes of the 59 cell lines in the panel (Fig. 1). SncRNA profiles
were generated using the OASIS analysis platform v2.0 (ref. 12). For known sncRNA species (miRNAs,
piRNAs, snoRNA, snRNA, and rRNA), high quality reads were mapped to the hg38 build of the human
genome and quantified based on annotations containing their specific chromosomal locations. Detection
of novel miRNAs was performed using well-established prediction algorithms that assess reads for
miRNA folding characteristics, among other factors that indicate the probability that the tested sequence
belongs to the miRNA family of sncRNAs13. In total, the genomic loci of 49,961 sncRNAs were examined.
Using a detection threshold of greater than or equal to 5 reads across all tissues, we detected a total of
24,621 unique sncRNAs [Data Citation 1].

We then examined the genomic distribution of the detected sncRNAs across all tissue types (Table 2,
Fig. 2). Notably, sncRNAs are expressed across all chromosomes in every tissue type assessed. SncRNA
loci commonly expressed among all tissues may indicate their involvement in preserved biological or
cancer-relevant processes, whereas differences in expression may denote tissue specificity.

We also examined the relative frequency of detection for each sncRNA species, both in the entire
NCI-60 cell line panel and in lines grouped by organ type (Fig. 3a). Beyond those annotated in miRBase
(v.21), novel unannotated miRNAs were determined by integrating secondary structure formation

Figure 1. Experimental workflow. Graphical representation of experimental procedure used to extract,

process, and analyze RNA from cell lines.
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potential with free energy scoring14. These novel miRNAs represent an increase of approximately 10% of
total miRNAs expressed across all tissue types (Fig. 3b), highlighting the constant expansion of the
known non-coding transcriptome as sequencing technologies and bioinformatic tools advance.

Number of sncRNA Sequencing details

Total miRNA novel
miRNA

piRNA snoRNA snRNA Other Average
number of
reads per
sample

Average
contig
length

Avg. quality %GC Average
coverage

Tissue type 24,794 2,509 288 19,018 259 1,602 412 23,457,233 22.34 33.25 46.26% 28.94

Breast 11,079 1,905 183 6,909 239 1,248 403 25,310,156 22.32 33.23 45.81% 25.36

CNS 10,120 1,793 180 6,150 236 1,175 397 25,633,608 22.35 33.34 44.57% 45.08

Colon 13,985 1,977 211 8,050 232 1,276 392 25,850,349 22.22 33.2 46.15% 22.97

Leukemia 10,728 1,841 185 5,604 228 1,112 387 18,921,562 22.41 33.25 48.77% 20.23

Melanoma 9,536 1,830 179 4,694 224 1,020 383 16,116,671 22.36 32.64 46.56% 28.45

NSCLC 15,707 2,051 232 9,385 236 1,293 398 23,407,812 22.34 33.3 46.18% 22.8

Ovarian 10,422 1,916 188 6,312 238 1,167 398 27,221,870 22.4 34.12 46.56% 41.49

Prostate 6,167 1,393 121 2,589 216 771 344 35,637,053 22.3 33.54 44.44% 30.11

Renal 14,532 1,943 209 8,549 234 1,288 396 23,949,373 22.3 33 45.99% 27.05

Table 2. Average number of sncRNA species detected and sequencing coverage per tissue type.

Figure 2. Genome-wide distribution of expressed small non-coding RNA by tissue type. Genomic position

of sncRNAs detected (reads≥ 5) in each tissue type in reference to the hg38 chromosome build karyotype.

From inner-most ring to outer: breast (red), CNS (magenta), colon (purple), leukemia (blue), melanoma (teal),

lung (green), ovarian (yellow), prostate (orange), and renal (red).
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Consistent with the number of annotated loci in the human genome, piRNAs represent the largest
proportion of sncRNA species expressed, followed by miRNA and snRNA (Fig. 3a). Of note, an
appreciable number of tissue-specific piRNA sequences across all tissues analyzed increased the relative
fraction of piRNAs for all tissues expressed (Fig. 3c,d). Thus, as parts of the small non-coding RNA
transcriptome are significantly understudied, we provide this resource to the research community for
studying sncRNA-related genetic and epigenetic regulation in cancer using the NCI-60 cell models.

Methods
Cell line and sequencing information
Cell line doubling times were obtained directly from the National Institutes of Health NCI (https://dtp.
cancer.gov/discovery_development/nci-60/cell_list.htm), and year-of-origin information refers to data of
first publication containing the cell line (Table 1 (available online only)). Cell lines were obtained directly
from the National Cancer Institute (NCI), were thawed and passaged twice precisely before total RNA
was manually extracted using phenol-chloroform protocols from all cell lines using Trizol reagent
(Invitrogen, CA, USA). 5,000 ng of extracted RNA per sample was used for sequencing input. Sequencing
was performed in accordance with The Cancer Genome Atlas miRNA sequencing protocol (described by
Chu et al.15). Briefly, after ligation to adaptors, 15 cycles of PCR was performed for amplification (98 °
C-15 s, 62 °C-30 s and 72 °C-15 s), followed by 5 min at 72 °C. Small RNA exclusion was performed using
gel extraction on a 3% MetaPhor Agarose gel (Lonza Inc., Basel, Switzerland), selecting species shorter
that 200 nucleotides in order to enrich for targets optimized at 22 nucleotides in length, and was
subsequently ethanol-precipitated. Library quality was confirmed by analysis on the Agilent Bioanalyzer
DNA1000 chip (Agilent Technologies). Small non-coding RNA sequencing was performed on the
Illumina HiSeq2500 platform at the Michael Smith Genome Sciences Centre at the BC Cancer Research
Centre, with 8 multiplexed libraries per sequencing lane (Table 3 (available online only), Fig. 1)15,16. Data
resulting from small non-coding RNA sequencing can be found on the Sequence Read Archive [Data
Citation 2].

Pre-processing and small non-coding RNA species detection
Small-RNA sequencing data was analyzed according to published protocols17. In order to extract

Figure 3. sncRNA distribution by tissue type. (a) Relative fraction of sncRNA species detected per tissue

type. (b) Average fraction of currently annotated (blue) and novel unannotated (red) miRNA per tissue type.

(c) Relative fraction of tissue-specific unique sncRNA sequences detected per tissue type. (d) Fraction of tissue-

specific unique sncRNA species.
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information for the sncRNA species of interest, unaligned reads (in FASTQ format) were trimmed for
adaptors (Cutadapt v1.7.1) and based on sequencing quality (‘trim bases’ from Partek Flow v6.0.17.0614)
to reach a Phred quality score ≥20 (Fig. 4a–d). FASTQ files were then aligned using the Spliced
Transcripts Alignment to a Reference (STAR v2.4.1d) aligner to the human genome (hg38)18.
Quantification algorithms (featureCounts v1.4.6 (ref. 19) were applied using chromosomal location
annotations for known miRNA (Mirbase v.21 (ref. 20), piRNA (piRNAbank v.2 (ref. 21), snoRNA
(Ensembl v.84 (ref. 22), and snRNA (Ensembl v.84 (ref. 22) locations12. Detection of novel miRNA is
performed using the miRDeep2 algorithm (v2.0.0.5), which considers the relative free energy of miRNAs
and their random folding P-values13. Chromosomal position of expressed small RNAs was plotted against
and hg38 karyotype obtained from UCSC Genome Browser (Fig. 2). According to OASIS sncRNA
software recommendation (v2.0), sncRNA species were considered expressed if the total reads across all
samples considered summed to ≥5 reads12. Data resulting from species quantification can be found in
Data Citation 1.

Normalization and quantification
Raw reads were scaled/normalized using reads per kilobase exon per million mapped reads (RPKM)
method23, and expression correlation matrices were created using Pearson scores with unsupervised
hierarchal clustering performed using one-minus-Pearson correlation scores (Fig. 5). For validation of
sncRNA expression, we then correlated miRNA species present in two published microarray cohorts of
the NCI-60 cell lines. For the 50 (of the 59) cell lines also present in the Sanger Cell Line Database24

(http://www.cancerrxgene.org/translation/CellLine), raw reads from each unique sequence were
correlated with expression of the sequence previously detected by microarray by rank-normalized
Spearman`s correlations (Table 4 (available online only)), and performed a similar analysis against all cell
lines present in the cohort described by Sokilde et al.5.

Data Records
Raw unaligned sequencing reads (in FASTQ file format) are available through the Sequence Read Archive
(Data Citation 2). Raw sequencing file names (in FASTQ format) are listed in Table 3 (available online
only). A summary of raw sequencing reads for each detected small RNA species are available at through
Figshare (Data Citation 1).

Technical Validation
High-throughput sequencing allows for direct in-depth analyses of the human genome, recently revealing
a critical role for the expression of the non-coding transcriptome in both genetic and epigenetic
regulatory processes.

Figure 4. Sequencing and mapping quality. (a) Phred quality score per sncRNA base position. (b) Genome-

wide read depth (column) and genome coverage (line) per sample. (c) Fraction of sequencing reads per Phred

score. (d) Percentage of total reads aligned (unique: green, unaligned: red).
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Sequencing quality control
We examined only high-confidence reads from miRNA sequencing. Samples were sequenced to an
average depth of 22.34± 0.14 (mean± s.d.; Table 3 (available online only), Fig. 4b). In order to assure
only the calling of high-quality sequencing reads, we filtered detected reads to only to include Phred
scores ≥20. On average, samples had a Phred score of 33.24± 1.28 (Table 3 (available online only), Fig.
4c). Additionally, reads for each sample had an average percent GC content of 46.26± 1.6% (Table 3)
(available online only). Unsupervised hierarchical clustering and similarity (one-minus-Spearman
correlation) of normalized reads revealed relative similarity of sncRNA expression profiles across all cell
lines and tissue types analyzed (Fig. 5).

Figure 5. Cell line similarity matrix of small non-coding RNA expression profiles of NCI-60 cell lines by

tissue type.
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miRNA detection validation
In order to validate the detection of the sncRNA species in these cell lines, we correlated the raw reads per
miRNA detected with corresponding miRNA detected by microarray24,25. This analysis was performed
for the 50 NCI-60 cell lines present in the Sanger Cell Line miRNA Normalized Data from the Broad
Institute (http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi; File name: Sanger_miR_data1.pn.cn.
matlab2.res). Using Spearman’s Rank-Order correlation, we analyzed the correlation of this RMA-
normalized miRNA expression to reads obtained from sequencing this cell line panel. Expression of
miRNAs in all lines analyzed correlated significantly between sequencing and microarray
analysis (Table 4 (available online only); P-values o0.0001, rmean= 0.67). Similarly, we correlated
sequencing-detected miRNA expression against a complete NCI-60 microarray cohort described by
Sokilde et al.5. In this study, profiling was performed on the LNA-enhanced mercury Dx 9.2 microarray
platform, and data was log2-normalized after pre-processing (Table 4; P-value range o0.0001–0.0647,
rmean= 0.28). Microarray data from multiple platforms was compared to sequencing data presented here
in order to de-emphasize platform bias and illustrate the need for comprehensive profiling when
considering small RNA expression26.
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