
Osteoarthritis and Cartilage 22 (2014) 1419e1428
Rapid, automated imaging of mouse articular cartilage by microCT for
early detection of osteoarthritis and finite element modelling of joint
mechanics
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s u m m a r y

Objective: Mouse articular cartilage (AC) is mostly assessed by histopathology and its mechanics is poorly
characterised. In this study: (1) we developed non-destructive imaging for quantitative assessment of AC
morphology and (2) evaluated the mechanical implications of AC structural changes.
Methods: Knee joints obtained from naïve mice and from mice with osteoarthritis (OA) induced by
destabilization of medial meniscus (DMM) for 4 and 12 weeks, were imaged by phosphotungstic acid
(PTA) contrast enhanced micro-computed tomography (PTA-CT) and scored by conventional histopa-
thology. Our software (Matlab) automatically segmented tibial AC, drew two regions centred on each
tibial condyle and evaluated the volumes included. A finite element (FE) model of the whole mouse joint
was implemented to evaluate AC mechanics.
Results: Ourmethod achieved rapid, automated analysis ofmouse AC (structural parameters in<10 h from
knee dissection) and was able to localise AC loss in the central region of the medial tibial condyle. AC
thickness decreased by 15% at 4 weeks and 25% at 12 weeks post DMM surgery, whereas histopathology
scores were significantly increased only at 12 weeks. FE simulations estimated that AC thinning at early-
stages in the DMMmodel (4 weeks) increases contact pressures (þ39%) and Tresca stresses (þ43%) in AC.
Conclusion: PTA-CT imaging is a fast and simple method to assess OA in murine models. Once applied
more extensively to confirm its robustness, our approach will be useful for rapidly phenotyping
genetically modified mice used for OA research and to improve the current understanding of mouse
cartilage mechanics.
© 2014 The Authors. Published by Elsevier Ltd and Osteoarthritis Research Society International. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Introduction

Cartilage pathogenesis in osteoarthritis (OA) has been shown to
bedrivenbycommonmolecularplayers sharedbyhumanandmouse
and, thanks to their amenability to genetic studies,murinemodels of
OAarebecomingessential tools fordrugdiscovery1.Mousemodels of
OA include spontaneously occurring OA, as in the Str/ort strain2, and
surgically-, chemically- or overloading- induced OA3. The main lim-
itation ofmousemodels is that, due to the limited size of their joints,
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it is not possible to use established non-invasive imaging technolo-
gies (e.g., quantitative computed tomography, QCT, and magnetic
resonance imaging, MRI) used in humans to diagnose OA4e6.
Currently, most research labs use conventional histopathology
scoring to assess the articular cartilage (AC) in the mouse knee. Be-
sides limiting the translational potential, this makes the murine
models extremely time consuming, low throughput and costly3.

Efforts by different labs to develop non-destructive (ex vivo)
imaging methods to assess mouse AC more efficiently have multi-
plied in the past 5 years7e10. The benefits of these efforts include
3D-dimensional (3D) visualisation of the mouse AC surface and
computation its volume, which have allowed localising OA lesions
and apply quantitative approaches to the determination of OA
severity.

Micro-computed tomography (microCT) is a high-resolution,
non-destructive, 3D imaging technology which revolutionised
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bone research in small rodents11 and was recently employed to
quantify changes in subchondral bone (SCB) in rodent models of
OA12. Using radiopaque staining agents, microCTcan be used also to
visualise soft tissuewith high accuracy13e15. Ionic partition contrast
agents (e.g., ioxaglate) have been used to visualise AC and estimate
sulphated glycosaminoglycans (sGAGs), content in small rodent
models of arthritis8,16e18. Whilst providing useful compositional
information, with the potential to be used diagnostically in the
clinic19,20, these methods are affected by a variable cartilage
contrast (depending on composition), which limits their applica-
bility to determine AC structure. Alternatively, mouse AC and SCB
were successfully visualised in 3D at multiple scales, using special
fixation/staining protocols combined with new generation, phase-
contrast X-ray microCT9. New lab-based non-commercial systems
exploiting phase-contrast X-ray microCT have opened the possi-
bility to image mouse cartilage without the need of contrast
agents21 but will require further development. However, in all the
above-cited imaging methods, time consuming manual contouring
had to be employed for the assessment of mouse AC in microCT
datasets. This greatly limits the throughput of the analysis and is
affected by the imprecision naturally associated with manual op-
erations and by subjective interpretation of the anatomy.

Originally used as mordant for histological staining22 and sub-
sequently as heavy metal tissue stain for electron microscopy23,
phosphotungstic acid (PTA) has been lately shown to be an excel-
lent contrast agent to image soft tissue by microCT14,15. PTA reveals
preferentially collagenous structures24, although the binding
mechanism is not fully understood25,26.

In the current study, we tested whether PTA would provide
sufficient contrast enhancement, for conventional microCT imag-
ing, to visualise in 3D and automatically segment mouse AC.

Although altered mechanics is a recognised factor in OA
pathogenesis27, the mechanical characterisation of the mouse
joint has been surprisingly neglected. Due to its limited size and
thickness, the mechanical response of mouse AC is extremely
difficult to test empirically. Finite element (FE) models allows in
silico evaluation of stresses and displacements at the joint
interface with very high spatial resolution. The relationship be-
tween the local mechanical response of AC and the progressive
structural damage induced by OA pathology can therefore be
explored. However, the construction of realistic (FE) models re-
quires accurate 3D morphology of the mouse AC, which is
currently not available. Here, we demonstrate that automatically
segmented datasets of the mouse knee, including cartilage and
its mineralised support, can be used to rapidly build FE models,
thereby achieving high-throughput biomechanical characterisa-
tion of mouse AC.

Method

Animals and destabilisation of medial meniscus surgery

The work was conducted in the UK according to the Animals
Scientific Procedures Act (1986) and was subject to both local
ethical review and UK Home Office regulations. Male C57BL/6 mice
(10 week old) were purchased from Charles River (UK), housed in
cages on a 12-h light/dark cycle and allowed food and water ad
libitum. Thirteenmice underwent surgical destabilization of medial
meniscus (DMM) on the right knee, while the left knee was used as
contralateral control (CTRL)28. Mice were euthanized 4-weeks
(n ¼ 9 per group) and 12-weeks (n ¼ 4 per group) post-surgery.
A group of naïve mice (n ¼ 9) was used to assess the dynamic
uptake of PTA in AC (n ¼ 3) and AC structure before DMM surgery
(baseline, n ¼ 6). Additional seven naïve mice were used for testing
the sensitivity to artificial lesions on AC (see details below). All
naïve mice were euthanized at 10 weeks of age. Hind limbs were
dissected and fixed for 24 h in 10% buffered formalin and subse-
quently stored in 70% ethanol.

PTA contrast enhanced microCT (PTA-CT) imaging

Before imaging, fixed knee joints were further dissected under a
dissection microscope to disarticulate them, carefully remove the
menisci and expose the AC of the tibia. Tibiae were incubated in 1%
PTA solution at room temperature for 24 h and scanned in a
microCT scanner (SkyScan 1172) within the same solution. The
24 h incubation time was determined after uptake experiments
from 0.5 to 72.5 h. Image acquisition (resolution 5 mm/pixel)
required 35 min (parameters: 50 kV, 200 mA, 0.5 mm aluminium
filter, 180� scan). Image reconstruction required 20 min (NRecon
software, SkyScan). X-ray attenuation is reported in Hounsfield
units (HU). After imaging, samples were washed in 70% ethanol (to
remove PTA) and stored in 70% ethanol for histomorphometry.

Ex vivo lesions for method validation

(1) Mechanical damage

ACwas scarified by a surgical scalpel to cause artificial lesions on
either medial or lateral sides (n ¼ 2).

(2) Papain digestion ex vivo

Tibiae were incubated in papain solution (125 mg/mL papain,
0.005 M HCl, 0.1 M sodium phosphate, pH ¼ 6.2)29, digested for
12 h at 60�C, washed, fixed and stored as detailed above (n ¼ 2).

(3) Chondroitinase ABC (ChABC) digestion ex vivo

Right tibiae were immersed in 5 ml of ChABC solution prepared
(0.1 U/ml of ChABC in 50mMTris, 60mMNaOAc, 0.02% BSA, pH 8.0)
and incubated at 37�C degrees for 8 h to induce proteoglycan
depletion17, Left tibiae (contralateral) were kept in cold phosphate
buffered saline solution (PBS). After the 8 h incubation, both
digested and contralateral tibiae (n ¼ 3) were fixed and stored as
detailed above.

Automated analysis of PTA-CT images

Reconstructed datasets were re-sliced coronally. AC was
segmented automatically using the Otsu's method which de-
termines the optimum threshold separating two classes of grey
levels (foreground and background (BKG)) as the value that mini-
mizes intra-class variance30. A software utility (Matlab, Math-
Works, USA) was developed to place automatically two regions of
interest (ROIs), on the medial and lateral condyle of the tibia,
centred on themid coronal axis [Fig.1(A)]. These ROIs, 500 mmwide
and 800 mm long [Fig. 1(A)], were positioned using the top edge of
the tibia (detected by an edge detection algorithm) and the sym-
metry of the condyles around the tibial central antero-posterior
axis. The volume contained in the ROIs [Fig. 1(B)] was measured
counting the voxels, while the average thickness of such volume
was computed as the average diameter the best-fitting set of
spheres (routine ‘Thickness’ in the public domain plugin for ImageJ
software called BoneJ31). Intra-samples reproducibility was coeffi-
cient of variation (CV) ¼ 6.4% (obtained from the same sample
scanned and analysed three times) and inter-samples was
CV ¼ 8.5% (evaluated from six samples from naïve mice). Thickness
maps of AC were generated by projecting onto a plane the local
volumetric thickness values (Matlab).



Fig. 1. Automated mapping of ROIs generated by Matlab software on the load bearing regions on the tibial condyles. A, Top view of a 3D rendering of mouse tibia obtained by PTA-
CT showing the ROIs in the medial and lateral condyles of the tibia, extending 800 mm by 500 mm. B, Coronal view of (A) and magnification of one ROI including the AC layer
(coloured in blue) and extending down to the underlying subchondral mineralised plate (made of calcified cartilage and cortical bone) and subchondral trabecular bone.

P. Das Neves Borges et al. / Osteoarthritis and Cartilage 22 (2014) 1419e1428 1421
Undecalcified histology and histopathology grading

Undecalcified histomorphometry was used for validating the
localisation of PTA staining in artificially damaged samples (n ¼ 10)
and in a part of the 4-week DMM group (n ¼ 4). Tibiae were
embedded in methyl methacrylate (MMA), using a previously
described protocol32. Coronal sections (8 mm thick) were stained
with light green/safranin-o or Von Kossa/safranin-o or toluidine
blue.
A

B

Fig. 2. A, Representative coronal views of the lateral condyle of a mouse tibia imaged by micr
(uncalcifiedecalcified cartilage boundary) was manually drawn on the first time point (at 0
beyond the tidemark. The leftmost panel shows the same view of the lateral condyle before P
undetectable without contrast agent. B, Representative profiles of grey levels along thewhite
time point (in PTA solution). Transitions between BKG and AC, AC and SCP, SCP and BM are m
condyle of a mouse tibia showing the three ROIs AC, BKG and SCP used to measure X-ray a
time course of X-ray absorption of AC as a function of PTA incubation time (n ¼ 3). E, Represe
of interest within an image e over PTA incubation time. SBR was computed for AC vs B
72 h evaluated in one sample and up to 24 h evaluated in three samples (from naïve mice).
Decalcified histomorphometry was used for conventional OA
histopathology grading. Samples obtained from the DMM operated
mice were decalcified in ethylenediaminetetraacetic acid (EDTA)
and embedded in paraffin. Coronal sections (4 mm thick) were cut
at regular spacing (80 mm between each level) across the joints (12
levels/joint) and stained with haematoxylin & eosin/safranin-o.
Medial and lateral side were graded 0e6 by two independent
assessors, using the scoring system for murine OA defined by
OARSI guidelines33. The 2D thickness of AC in safranin-o stained
C

D

E

oCT showing the uptake of PTA over time (n ¼ 3). The red line contouring the tidemark
.5 h) and copied across on all subsequent time points to better visualise PTA diffusion
TA was added in the sample holder within the microCT scanner. Note that soft tissue is
dotted line shown on each coronal image in (A). Each profile represents an incubation
arked on the profiles by grey dotted lines. C, Representative coronal view of the lateral
bsorption (reported as HU levels for each ROI) and related contrasts. D, Representative
ntative time course of SBR e a quantitative measure of the contrast achieved by an area
KG (SBRAC�BKG) as well as for AC vs SCP (SBRAC�SCP). PTA uptake time course up to
Finally the 24 h time point uptake was evaluated in 12 samples (all the naïve samples).
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sections was evaluated by manual segmentation of the AC within
the ROIs described above (ImageJ).

FE modelling of automatically segmented cartilage

PTA-CT scans of a pair of CTRL and DMM tibiae (from 4-week
DMM group) and a femur and a tibia from a naïve mouse, were
segmented as described above and imported in Mimics software
(Materialise, Belgium). Menisci and other soft tissue elements were
not included in the model. A coarser tetrahedral mesh (average
element length (AEL) ¼ 57 mm) was used for the peripheral regions
away from the contact regions, while a high density tetrahedral
mesh (AEL ¼ 5.7 mm) was employed to discretise the contact areas
(radius ¼ 0.3 mm) between tibia and femur, to improve accuracy
and resolution34 [Fig. 7(A)e(C)]. The mesh was imported in Abaqus
software (Simulia, USA) to apply the required boundary conditions.
The discretisation (4-node linear tetrahedron element, Abaqus
C3D4) resulted in meshes of the order of one million elements for
the tibiae, with over 300,000 elements assigned to the AC. A step-
loading event was modelled with the joint bent at 80� flexion
[Fig. 7(A)], which is the approximate flexion observed at the
beginning of the gait in small rodents and when maximum contact
pressure is expected in the load-bearing regions of the joint35. Tibia
and femur were used to apply boundary conditions and for moni-
toring force and tied to two rigid holders placed far away from the
contacting surfaces, thus not affecting AC response. These rigid
holders were as we evaluated the contact pressure at the
tibiaefemur interface in steady-state scenario, a static step was set
up. AC and bone were modelled as isotropic linear elastic materials
(respectively, elastic modulus E ¼ 6 MPa/Poisson ratio n ¼ 0.4936,
A

B

C

D

Fig. 3. Visualisation of mechanically or chemically damaged cartilage by PTA-CT. A, Represe
(n ¼ 2), and correspondent histological section (undecalcified) stained with toluidine blue
diffusion of PTA below the tidemark only locally around the zone of the cut. B, Representative
and correspondent histological section (undecalcified) stained with Von Kossa/safranin-o. A
of the enzymatic digestion e is visible on the surface of the SCP in both images. CeD, Repr
treated (D) tibiae (n ¼ 3) and correspondent histological sections stained with toluidine blu
showing the expected loss of sGAGs induced by chondroitinase digestion. However, no qu
imaging. (E) Bar graph showing the X-ray absorption of AC (expressed as mean HU level
changes were found (n ¼ 3).
and E¼ 18 GPa/n¼ 0.337), which is valid only in first approximation
but appropriate in the context of this work, where a comparative
analysis is performed based on the change in morphology rather
than in the material characteristics of the tissues under consider-
ation. The tibia holder was completely fixed while a vertical
displacement was imposed to the femur holder in order to push it
toward the tibia. A displacement of 0.05 mmwas applied to induce
loads comparable to those observed in vivo, while the vertical re-
action force on the femoral holder was monitored. A load of 0.6 N
(approximately ten times the load imposed by 25 g mouse on a
single leg) was chosen to compare the three models. Each simula-
tion required 8 h per sample.

Statistical analysis

Data were reported as mean values ± 95% confidence intervals
(CIs). For all PTA-CT data, the statistical significance of the dif-
ferences between paired samples e DMM or artificially damaged
vs contralaterals e were determined using a two-tail, paired
Student's t test. Differences between the two time points were
determined using a two-tail, unpaired Student's t test. Before
applying the parametric t test, the near normal distribution of the
data was assumed by prior knowledge and confirmed by Kolmo-
goroveSmirnov test which resulted non significant. Histopathol-
ogy data were evaluated using paired nonparametric analysis
(Wilcoxon signed-rank test). Linear regression and Pearson's
correlation was computed between histomorphometry and PTA-
CT parameters. Values were considered statistically different at
P < 0.05. All statistics were computed using Prism6 software
(GraphPad, USA).
E

ntative PTA-CT coronal view of a medial tibial condyle scarified using a surgical scalpel
, showing a deep cut (red arrow) extending from the AC surface to the SCP. Note the
PTA-CT coronal view of a tibial epiphysis after 24 h digestion in papain protease (n ¼ 2)

thin layer of stained material above the mineralised tissue e likely to be cartilage debris
esentative coronal views of the medial condyles from a pair of untreated (C) or ChABC
e. The AC of the treated samples appeared discoloured compared with untreated AC e

alitative changes between treated vs untreated samples were observed in the PTA-CT
of the red dashed ROI) in treated and untreated groups e no statistically significant
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Fig. 4. Automated assessment of AC in the DMM model and histological validation. AeB, Representative coronal views of a DMM tibia at 4 weeks (A) and 12 weeks (B) post
surgery imaged by PTA-CT and correspondent histological section stained with safranin-o (contrasted with fast green in A or with haematoxylin in B). Note that a small lesions on
the medial AC (red arrow head) are visible in the PTA-CT image and are well matched in the histological sections. CeD, Boxplot charts of the modified histopathology OARSI score
for the CTRL and DMM joints at 4 and 12 weeks post DMM surgery. Data were grouped into medial and lateral. The median score of the medial side of the DMM was elevated
compared with the CTRL at 4 weeks, although borderline significant (P ¼ 0.06, n ¼ 5, Wilcoxon signed rank test) and further increased at 12 weeks (P ¼ 0.035, n ¼ 4). EeF, Line
charts of AC average thickness measured automatically from the volumes contained in the ROIs obtained from segmented PTA-CT scans of CTRL and DMM joints at 4 and 12 weeks
post DMM surgery. Data grouped into medial and lateral. Symbols represent the means and error bars show 95% CI (n ¼ 4 for experimental groups and n ¼ 6 for naïve mice used as
baseline). *P < 0.05 and **P < 0.01 for DMM vs CTRL by paired, two-tailed Student's t test; #P < 0.05 for 4-weeks DMM vs 12-weeks DMM by unpaired, two-tailed Student's t test. G,
Correlation graph for AC thickness in PTA-CT and histological images (includes 4- and 12-week CTRL and DMM samples, n ¼ 19). AC thickness was measured in the load-bearing
regions (delimited by the red ROIs in AeB) from both methods. The coefficient of determination R2, obtained from the linear regression, is reported on the graph.
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Results

Characterisation of PTA-CT imaging

In order to measure PTA uptake into adult mouse AC, consecu-
tive microCT scans of the same sample were acquired from time
zero to 72 h. Stain-free reference images acquired prior to the up-
take experiment showed no detectable cartilage layer [Fig. 2(A)]. In
the presence of 1% PTA, the uptake of the stain in AC was pro-
gressive, starting from the surface at 30 min minutes (incomplete
stain) and reaching the tidemark level by the 1.5 h [Fig. 2(A)]. By
1.5 h, AC appeared completely stained in the central part of the
condyle but not at the margins where a less stained area could still
be noted [Fig. 2(A)]. PTA uptake in AC compared with adjacent
tissues were estimated by plotting themean X-ray absorption along
a line starting from the BKG space, above the AC surface, and ending
in the marrow space in the SCB trabecular compartment [Fig. 2(A),
(B)]. These profiles showed that AC surface was stained first and the
upper edge of AC surface did not move over time. From 8 h, all
profiles displayed a similar shape with a steep drop at the bottom
edge of AC, i.e., at the tidemark [Fig. 2(B)]. PTA uptake dynamics was
highly reproducible across the three samples tested. It is worth
noting that the penetration of PTA stain through bone into the
marrow was limited by the tidemark at least for up to
24 h incubation in PTA. This is supported by observing that, from
1.5 h, the X-ray absorption in the profiles fluctuated within limited
bands for each distinct zone, with the exception of the bone
marrow (BM) zone whose absorption increased at 72.5 h [Fig. 2(B)].

The rate of PTA uptake in AC was estimated plotting the average
X-ray absorption of a ROI within AC over time [Fig. 2(C), (D)]. PTA
kept accumulating at a much slower rate after 1.5 h where a plateau
was reached [Fig. 2(D)].

Incubation of tibiae (not fixed) in aqueous PTA solution yielded a
slower uptake and a worse contrast compared to 70% ethanol,
although still sufficient for segmentation (data not shown).

The contrast of the AC layer was evaluated computing the
average signal to background ratio (SBR) between a region within
the AC and a region just outside AC, either in the true BKG space
(SBRAC�BKG) or in the subchondral calcified plate (SCP) (SBRAC�SCP)
[Fig. 2(E)]. The SBRAC�BKG reached a plateau of 80e90% after the



Fig. 5. Thickness heat maps of AC obtained from PTA-CT datasets of the 4-weeks DMM group (CTRL and DMM side). AeB, Mediolateral (A) and medial anteroposterior (B) thickness
maps of the AC for a representative pair of CTRL and DMM tibiae. Below each panel the red profiles show the changes in thickness along the horizontal bars highlighted on the maps
(each profile is the average of four samples). Thickness profiles of naïve mice (n ¼ 6) are displayed in black (maps not shown for naïve mice). The position of the automated ROIs on
the maps is indicated by dashed squares. Note that the peak thickness fall in the automated ROIs and is markedly decreased 12 weeks post DMM surgery. The arrow head shows a
second peak in AC thickness in the mediolateral DMM profile, presumably due to the newly formed cartilage covering a medial osteophyte.

Fig. 6. AeB, Representative PTA-CT images of a mouse distal femur displayed in coronal (A) and sagittal (B) views. C, Representative PTA-CT image showing a coronal view of a
whole, intact mouse knee joint.
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first 30 min incubation in PTA which was maintained up to
72.5 h [Fig. 2(E)]. SBRAC�SCP peaked from 1.5 h incubation at ~40%
and decreased to ~30% from 24.5 h [Fig. 2(E)]. In summary, an in-
cubation time beyond 4.5 h and up to 72.5 h in PTA yields uniform
and consistent contrast to visualise adult murine AC by microCT.
We chose the 24 h incubation time point for all the following ex-
periments mainly for historical (our initial tests) and practical
reasons (experimental convenience).

Mechanical and chemical damage of AC

A thin cut made with a surgical scalpel on the AC surface was
clearly visible in PTA-CT images and was validated by toluidine
blue-stained undecalcified histology [Fig. 3(A)]. Notably, an accu-
mulation of PTA in themineralisedmatrix below the cut was clearly
visible. The reason for PTA leaching through the lesion is likely to be
fact that the knife cut visibly broke the integrity of the tidemark
which works as a barrier for PTA diffusion into the mineralized
tissue. Excellent agreement between PTA-CT and histology was
found for samples subjected to prolonged papain digestion. The
PTA and safranin stained material (above the mineralised matrix) is
likely to be a layer of debris of digested AC [Fig. 3(B)].

Incubation in chondroitinase caused GAGs loss which was
revealed in the histological sections as a reduction in toluidine blue
staining [Fig. 3(C), (D)] but was not detectable neither qualitatively
[Fig. 3(C), (D)] nor quantitatively [Fig. 3(E)] in PTA-CT images.



Fig. 7. FE analysis of the mechanical stresses in AC caused by the structural changes induced by DMM surgery. AeC, model of the whole knee joint at 80� flexion (A); mesh structure
and high density contact areas (darker blue) of the AC covering the (naïve) distal femur (B) and the (naïve) proximal tibia (C). D, Contact pressure maps on the surface of the AC of
the three tibiae (naïve, CTRL and DMM) used in the FE simulations. E, Sagittal view of the distribution of Tresca stresses in the three modelled joints (naïve, CTRL and DMM tibiae
loaded by the same naïve femur) at the end of the FE simulations.

Table I
Relative % differences in the quantitative structural parameters of the mouse AC
between paired DMM and CTRL samples in the medial and lateral condyles of the
tibia at 4- and 12-week post DMM surgery. Percentage differences calculated be-
tween DMM/CTRL pairs of means; n ¼ 4; *P < 0.05 for differences between 12-week
medial vs 4-week medial parameters (computed by two-tails, unpaired, Student's t
test)

PTA-CT parameters 4-weeks 12-weeks

Medial Lateral Medial Lateral

Thickness �14.8% þ1.2% �24.8%* þ6.7%
Volume �15.4% þ1.3% �26.9%* þ11.8%

Table II
Correlation table. 3D thickness values measured automatically in PTA-CT scans were
paired with 2D thickness values measured manually in histological sections and
linear regression was computed. Data were analysed in three sub-groups including
both DMM and CTRL samples: a) 4-week (n ¼ 9), b) 12-week (n ¼ 10) or c) all
together 4-week þ 12-week (n ¼ 19) post DMM surgery. The coefficient of deter-
mination R2 and the P-values for each correlation coefficient are reported

Time point
(weeks)

ThicknessPTA-CT vs
ThicknessHistology

VolumePTA-CT vs
ThicknessHistology

R2 P-value R2 P-value

4 0.8039 0.0011 0.9438 <0.0001
12 0.9354 <0.0001 0.6762 0.0035
4 þ 12 0.8708 <0.0001 0.7606 <0.0001
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Automated assessment of OA in the DMM model

Small AC lesions at 4 and 12 weeks post DMM surgery were
clearly visualised on the medial condyles of the tibiae by PTA-CT
and validated by histomorphometry [Fig. 4(A), (B)]. Histopatholo-
gy score increased on the medial side at 4 weeks, (P ¼ 0.06) and 12
weeks (P ¼ 0.035), but not on the lateral side [Fig. 4(C), (D)]. The
automatically mapped ROIs included the load-bearing regions
which presented themost prominent OA lesions in the DMMmodel
[Fig. 4(A), (B)]. AC structure in 4-week and 12-week DMM groups
and in naïve mice was automatically evaluated from PTA-CT scans.
The average thickness of AC in DMM was increasingly reduced
compared to CTRL from the 4-week to the 12-week DMM group, in
the medial but not in the lateral side [Fig. 4(E), (F)]. Similar trends
were found for the volume parameter and are summarised in
Table I. Homologous anatomical regions (i.e., lateral or medial) did
not show significant differences in CTRL compared with naïve
[Fig. 4(E), (F)].

Linear regression revealed a strong correlation between 3D AC
thickness from PTA-CT scans and the 2D thickness measured
manually in histological sections [Fig. 4(G), Table II].

However, comparing medial and lateral sides in either naïve or
CTRL tibiae, we found that AC on the medial condyle was signifi-
cantly thinner than on the lateral condyle [Fig. 4(E), (F)], a result
that disproved our assumption of symmetry of AC along the tibial
mid-coronal axis.

3D thickness maps of AC

In order to investigate on the axis of symmetry of AC, we
generated thickness maps of the entire AC layer. The mediolateral
and anteroposterior profiles of AC thickness (n ¼ 4e6 samples per
group) showed that the peak thickness was identical between
medial and lateral side, confirming that symmetry between the
condyles did exist. Maps of the CTRL and naive AC [Fig. 5(A), (B)]



P. Das Neves Borges et al. / Osteoarthritis and Cartilage 22 (2014) 1419e14281426
revealed that the location of the maximal AC thickness was not
symmetric along the mid-coronal axis of the tibia but along a
different axis tilted approximately by 12� from it. Moreover, the
maximum thickness was located in the centre of each condyle and
decreased radially away from the centre [Fig. 5]. Nevertheless, our
automated ROIs [Fig. 5(A)] included the thicker zone of AC on both
condyles and, despite generating asymmetric measurements, were
considered adequate to evaluate AC loss. The AC thickness profiles
of DMM samples evidenced a clear reduction in the thickness peak
compared to CTRL (4-week post surgery) which was mostly con-
tained within our automated ROIs.

FE model of DMM-induced mechanical changes

The FE model was based on the 3D structure determined in the
PTA-CT images of intact femoro-tibial joint joints [Fig. 6]. One axial
loading event (no sliding) with the knee configured at a fixed
flexion angle of 80� was simulated [Fig. 7(A)]. In order to focus on
the effect of the structural changes in AC, and greatly simplify the
model, the menisci and the altered joint mechanics induced by the
DMM surgery were not included in the model. The contact regions,
evidenced by the denser meshes, were centred over the areas of the
maximal thickness of AC [Fig. 7(B), (C)], as displayed in the thick-
ness maps [Fig. 5(A)]. The contact pressure on the tibial cartilage
was elevated in the DMM compared with either CTRL or naïve
(þ39% and þ45% respectively) [Fig. 7(D)]. An increase in contact
pressure for a fixed displacement implies an increased local strain
compared to normal levels.

Tresca stresses at the bone-cartilage interface increased in both
tibia and femur in the DMMoperated comparedwith either CTRL or
naïve knees, as clearly visible in the sagittal views of the model
(þ43% and þ53% respectively) [Fig. 7(E)]. Since Tresca stresses
provide an estimate of the proximity to failure of a material under
load, an elevation in local Tresca stresses at the bone-cartilage
interface indicates an increased tendency of this tissue interface
to permanently deform, i.e., to develop a structural lesion.

Discussion

The current study demonstrates that the complete 3D geometry
of the murine cartilage can be imaged by conventional microCT and
segmented automatically. The key difference (and novelty),
compared to recent similar studies9,18, lies in the use of a conven-
tional microCT scanner and in the unprecedented speed of the
quantitative analysis of AC; in summary, a much increased
throughput in the assessment of murine AC. We estimated that the
total time required to assess AC by PTA-CT imaging is <10 h (8 h
incubation in PTA, 1 h for scanning and reconstruction, 30 min for
automated image analysis), compared to over 15 days using
histopathology.

However, since PTA is toxic and requires long incubation times,
PTA-CT cannot be extended to in vivo imaging. It should be also
noted that, although we show that intact joints can be successfully
imaged by PTA-CT [Fig. 6(C)], in the present study we split the joint
and focused exclusively on the tibial cartilage. This is because other
soft tissues surrounding AC (especially the menisci), also take up
PTA [Fig. 6(C)] and cause errors in the automated segmentation of
AC, thereby compromising analysis throughput. Nevertheless,
conventional histological analysis has shown that most OA lesions
in the murine DMM model are prevalent in the medial tibial epi-
physis28,38e40, supporting that notion that assessing OA in the tibia
should provide a representative measure of OA in this model.
Moreover, it is also possible to “virtually split” a joint by manual
contouring a PTA-CT scan of an intact joint. Physical or virtual
splitting of the joint will depend on users' needs or skills.
AC thickness values obtained by PTA-CT imaging were strongly
correlated with histomorphometric thickness and in line with
existing literature2,8,9,18,41. Our method, but not the histopathology
score, showed statistically significant changes at 4-weeks post
DMM surgery, suggesting that 3D quantitative measurements may
achieve sensitivity compared to 2D histopathology scores, possibly
owing to their reduced standard deviation. This conclusion is fully
consistent with Ruan et al. (2013)9. Disease progression from 4 to 12
weeks after DMM surgery was confirmed by histopathology and
our method accordingly.

To speed up and simplify the analysis, our software places
automatically two ROIs in the load bearing area of each tibial
condyle. This was motivated by previous histopathology stud-
ies28,38e40 and, by our thickness maps of AC [Fig. 5], which, for the
first time, have visualised the thickness distribution of AC on the
mouse tibia.

Unlike ionic contrast agents8, PTA uptake in AC was not affected
by changes in sGAG content caused be enzymatic digestion. This is a
limitation of PTA-CT imaging, since sGAG loss is regarded as an
early event at the onset of OA8, but also a strength, since AC seg-
mentation is not affected by sGAG content.

Since calcified cartilage remained undistinguishable from SCB in
PTA-CT images, it was not possible to determinewhether the loss of
AC thickness started from its surface or from an advancement of the
tidemarks. However, the latter is unlikely in light of the recent
finding that the calcified cartilage thickness does not significantly
increase at 8 weeks post DMM18.

To our knowledge, this is the first study where FEmodelling was
employed to estimate the distribution of stresses in mouse AC
whose 3D structurewas directly obtained from segmentedmicroCT
scans. Whilst constituting a significant advancement in terms of
resolution and realistic representation of the joints with respect to
similar models in the literature2, our FE model should be consid-
ered an initial feasibility demonstration and, as such, presents
several limitations. Firstly, it does not include the menisci and
therefore does not take into account the altered joint mechanics
due to DMM surgery, hence largely underestimating the increased
loading on the medial side. Secondly, only one configuration is
studied under compressive load and the full kinematics of the joint
are not included in the simulations. Moreover, it does not consider:
(1) the shear caused by the sliding surfaces on the joints during
dynamic gait; (2) AC viscoelasticity and biphasic behaviour; (3)
compositional changes induced by OA in AC and SCB (assigned
constant, uniform properties). We can prove that this latter
assumption is valid for bone since lowering bone elastic modulus
from that of cortical bone (used in the present simulations) to that
of homogeneous trabecular tissue had no significant effects on the
simulations of the cartilage response (data not shown). However,
the above limitations do not affect the outcome of this study due to
its comparative nature. Importantly, as shown in Fig. 7, significant
increases in contact pressure on the cartilage surface were co-
localised with the regions of thickness loss in AC at early stages
in the DMM model, which confirmed the focal and mechanical
nature of OA pathogenesis. Consistently, contact pressures in AC
were shown to increase as AC thickness decreases in another FE
analysis where AC was modelled as a layer with arbitrary varying
thickness2. However, any conclusion inferred fromof our present FE
simulations will need to be supported by more extensive in-
vestigations and data analysis.

In conclusion, we described a fast and simple method to visu-
alise and automatically quantify 3D structural changes in adult
mouse AC non-destructively. Once applied more extensively to
confirm its robustness, this method may be used to increase
screening throughput in the assessment of murine OA. The com-
bined FE analysis might help linking genetic determinant of OA in



P. Das Neves Borges et al. / Osteoarthritis and Cartilage 22 (2014) 1419e1428 1427
murine models to cartilage mechanical changes, which will be
crucial for the understanding of the pathogenesis of OA.
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