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Abstract

A number of neurologic diseases associated with expanded nucleotide repeats, including

an inherited form of amyotrophic lateral sclerosis, have an unconventional form of transla-

tion called repeat-associated non-AUG (RAN) translation. It has been speculated that the

repeat regions in the RNA fold into secondary structures in a length-dependent manner, pro-

moting RAN translation. Repeat protein products are translated, accumulate, and may con-

tribute to disease pathogenesis. Nucleotides that flank the repeat region, especially ones

closest to the initiation site, are believed to enhance translation initiation. A machine learning

model has been published to help identify ATG and near-cognate translation initiation sites;

however, this model has diminished predictive power due to its extensive feature selection

and limited training data. Here, we overcome this limitation and increase prediction accuracy

by the following: a) capture the effect of nucleotides most critical for translation initiation via

feature reduction, b) implement an alternative machine learning algorithm better suited for

limited data, c) build comprehensive and balanced training data (via sampling without

replacement) that includes previously unavailable sequences, and d) split ATG and near-

cognate translation initiation codon data to train two separate models. We also design a sup-

plementary scoring system to provide an additional prognostic assessment of model predic-

tions. The resultant models have high performance, with ~85–88% accuracy, exceeding

that of the previously published model by >18%. The models presented here are used to

identify translation initiation sites in genes associated with a number of neurologic repeat

expansion disorders. The results confirm a number of sites of translation initiation upstream

of the expanded repeats that have been found experimentally, and predict sites that are not

yet established.
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Introduction

Background

More than 40 neurologic diseases are caused by expansions of repeat nucleotide sequences in

causative genes. The repeats range from three nucleotides, such as ‘CTG’ associated with myo-

tonic dystrophy Types I and II, to up to 12 nucleotides, such as ‘CCCCGCCCCGCG’, associ-

ated with progressive myoclonus epilepsy. Protein products translated from expanded repeat

sequences tend to accumulate and aggregate, and have been proposed to contribute to disease

[1–10]. Interestingly, in some cases, the repeats have been shown to be translated in all three

reading frames from both the plus and minus strands of the RNA [11] by a process termed

repeat-associated non-AUG (RAN) translation.

It is believed that the affinity of translational machinery to folded regions of the RNA may

underlie translation of the repeat sequences, and that this may occur from sequences in a

repeat length-independent (RLI) mechanism. Sequences may be ordered in such a way that

they naturally increase the affinity of translational machinery to initiate at a particular codon.

In such a process, translation may initiate not only within the repeat region, but also from sites

upstream of the repeat sequences. In this case, repeat peptides will be produced if a stop codon

is not encountered by the translational machinery before encountering the repeats. The large

number of nucleotides that comprise and precede repeat sequences make the identification of

RLI translation initiation sites challenging without application of experimental results or

computational methods.

Novelties and contributions of the proposed work

Since finding translation initiations sites experimentally may be difficult, it is valuable to nar-

row testing to specific codons likely to initiate translation. Although predictive models could

potentially identify such codons, machine learning has never been used to help locate these

sites in neurologic disorders. One likely reason is a lack of sufficient experimental data (espe-

cially human data) with confirmed near-cognate translation initiation sites for model training.

While several models for predicting ATG initiation sites have been proposed, they are not

applicable for neurologic disorders as they do not predict near-cognate codons. In fact, there

may only be one model (called TITER) trained exclusively on human data for predicting

whether an ATG or near-cognate codon initiates translation [12]. TITER addresses limitations

of an earlier model that predicts whether a codon initiates translation [12, 13]. Unfortunately,

the large feature selection of TITER and limited training data may impair its predictive accu-

racy. In addition, there are no provided tools for TITER to predict all translation initiation

sites in a given sequence at once or to evaluate the strength of each prediction.

Here we describe predictive models that have ~85–88% accuracy, exceeding that of TITER

by>18%. Our models reduce feature selection to capture the effect of ten critical nucleotides

that flank both sides of a putative translation initiation codon since they have an important

impact on translation initiation [14–21]. One model is tailored for ATG and the second for

near-cognate codons because of their differences in initiating translation [22, 23]. These mod-

els use an alternative machine learning algorithm better suited for limited data [24]. We imple-

ment unbiased training data through sampling techniques without replacement using human

gene sequences. Furthermore, we create a unique scoring system that allows us to indepen-

dently evaluate the likelihood of each prediction, in addition to providing the prediction prob-

abilities associated with the models. Our models provide visualization of all predicted

translation initiation sites in a given sequence with supplemental scores. The models confirm

nearly all experimentally established translation initiation sites in genes with nucleotide repeat
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expansions that cause neurologic disease, and predict multiple sites that have not yet been

investigated.

Results

Kozak similarity score algorithm

Before applying machine learning, we evaluated the performance of a more straightforward

algorithm that uses a number of nucleotides as predictors of translation initiation. This algo-

rithm was designed to predict the ability of a codon to initiate translation based on the similar-

ity of its surrounding sequence profile to the Kozak consensus sequence (KCS). The KCS is a

nucleotide motif that most frequently borders the canonical translation initiation codon

(ATG) and optimizes translation initiation at the site. Although there exist slight variations,

this motif is typically accepted as a pattern of underlined nucleotides bordering the AUG

codon: CCRCCAUGG, with the nucleotide designated by R being a purine, most typically ade-

nine [14]. The sequence logo of the KCS (Fig 1) identifies conserved nucleotides that tend to

border ATG codons that initiate translation. The vertical length of each letter in the sequence

logo is related to the observed probability for a particular nucleotide to be at a certain position,

as well as the impact of the position on the efficiency of translation initiation. It is formulated

by the Shannon method [25].

We designed a weighted scoring algorithm based on the KCS sequence logo (Fig 1) and the

ten bases preceding and following the codon. Each nucleotide of the 23-base sequence has a

value assigned equal to the height of the nucleotide at its respective position, as illustrated in

Fig 1. If a nucleotide is not present in a position, it is assigned a value of zero. These values are

then summated, and the total divided by the maximal possible summated score had each

nucleotide in the sequence been assigned the largest possible value for its position. This divi-

sion serves to make final values more feasible for interpretation. As opposed to the pre-nor-

malized score range of about 0 to 0.5990, scores derived from the normalization procedure

more conveniently range from 0 to 1. Overall, the final output score of a codon, called the

Fig 1. Schematic of the Kozak similarity score algorithm. Based on the sequences flanking an input codon, the algorithm references the KCS

Sequence Logo to assign the codon a score.

https://doi.org/10.1371/journal.pone.0256411.g001
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Kozak similarity score (KSS), is deduced by the equation:

KSSðcodonÞ ¼
1

KSS bitsmax

X20

p¼1

bitsðnucleotidepÞ ð1Þ

In this equation, p denotes the position of a nucleotide bordering the codon. Values p = 1,

2, 3, . . ., 10 designate the positions of the ten nucleotides (from left to right) on the left side of

the codon, whereas values p = 11, 12, 13, . . ., 20 designate the positions of ten nucleotides

(from left to right) on the right side of the codon. Furthermore, bits(nucleotide) is the assigned

height of a particular nucleotide with reference to the KCS sequence logo (Fig 1). KSS_bitsmax

is the maximum possible value of
X20

p¼1

bitsðnucleotidepÞ.

We used this algorithm with sequences flanking known instances of ATG translation initia-

tion, and produced a histogram distribution of the resulting scores (Fig 2). We created two

baselines in order to compare the scoring of ATG translation initiation codons against ATG

codons that do not initiate translation. For the first baseline, we ran the algorithm on one hun-

dred thousand ‘dummy’ ATG codons that had completely randomized sequences without

missing nucleotides (i.e., a randomized adenine, cytosine, thymine, or guanine in every posi-

tion flanking the codons), and then graphed the resulting score distribution. For the second

Fig 2. Kozak similarity scores of ATG translation initiation codons against baseline.

https://doi.org/10.1371/journal.pone.0256411.g002
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baseline, we ran the algorithm on a series of ATG codons derived from the human genome

that are believed not to initiate translation.

These histograms were generated from a large dataset and therefore they may more accu-

rately serve as representations of algorithm scoring for codon classifications: codons that initi-

ate translation, a mixture of codons that initiate translation and do not initiate translation, and

codons that are not believed to initiate translation. Of note, the histogram in Fig 2, which rep-

resents a randomized combination of codons that initiate and do not initiate translation, is

centered at ~0.59 for both the mean and median. In contrast, the histogram representing ATG

codons that initiate translation has a left-skewed distribution, with mean and median scores of

about 0.73 and 0.74, respectively. The histogram representing ATG codons expected not to ini-

tiate translation has a slightly right-skewed distribution, with mean and median scores of

about 0.52 and 0.53, respectively.

Although the exact sequences bordering near-cognate initiation codons have not been iden-

tified, as in the case for canonical ATG initiation codons, similarities between the two

sequences have been described. For instance, a bioinformatics study that analyzed sequences

bordering forty-five mammalian near-cognate initiation codons (including CUG, GUG,

UUG, AUA, and ACG codons) found that a guanine or cytosine usually occupies the -6 posi-

tion (i.e., 6 bases upstream of the codon) [26]. As shown in Fig 1, a guanine or cytosine is also

most prevalent in the KCS at this position. The same study also noted the presence of a purine

(adenine or guanine) in the -3 position from the codon, which are the two most likely nucleo-

tides to occur in the same position of the KCS [26]. CUG near-cognate codons that most fre-

quently initiate translation usually have an adenine in the -3 position [27]. Although the

frequencies of adenine and guanine in the -3 position of the KCS are similar, analysis suggests

that adenine is more conserved. For example, if the nucleotide weightings in the KCS are ana-

lyzed, adenine is conserved in about 47% of cases at that position versus guanine, with about

37% conservation. Both the bioinformatics study as well as a publication analyzing peptide

translation from CUG-initiating mRNA constructs show enhanced translation when guanine

is at the +4 position (1 base downstream of the initiation codon) [19, 26]. In the KCS, guanine

is also most conserved at the +4 position.

Because of the above similarities, we applied the algorithm to score known near-cognate

codons that have been shown to initiate translation (Fig 3). Interestingly, the distributions of

all results are left-skewed, visibly differing from results derived from scoring of ‘dummy’

codons with randomized flanking sequences as well as codons expected not to initiate transla-

tion. The distribution of scores for known CTG codons has a mean and median of about 0.69,

while the distribution of scores for known GTG codons has a mean and median of about 0.69

and 0.70, respectively. The distribution of scores for known TTG codons has a mean and

median of about 0.65. These results are an indication that the KSS of near-cognate codons can

be used to predict their ability to initiate translation.

To use the KSS as a predictor of translation initiation ability, a threshold score has to first

be determined. In this way, an algorithm could classify codons with a score above the thresh-

old as initiating translation, and below it, not initiating translation. To find the best threshold,

virtual simulations were run using different score cutoffs to classify already known ATG initia-

tion codons and ATG codons expected not to initiate translation. Since there are at least

12,603 cases of known ATG initiation codons in contrast to at least 34,097 ATG codons

believed not to initiate translation, the data were first balanced. In this way, the cutoff derived

would not bias classifications of codons in favor of not initiating translation. Next, all possible

cutoff values were set, ranging from 0.580 to 0.700 by increments of 0.001. This range was

determined by contrasting distributions in Fig 2. For each of these cutoff values, one thousand

simulations were run classifying the data of 12,603 known ATG translation initiation codons
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on a randomized subset containing 12,603 of the total 34,097 non-initiating ATGs. Errors

were averaged for the one thousand runs at each cutoff value. A cutoff of about 0.64 had the

most minimized error. When tested on data containing the 12,603 known ATG-initiating

codons and randomized 12,603 instances of non-initiating ATGs, the average accuracy of the

model was ~80%.

The area under receiver operating characteristic (AUROC) score from one of the thousand

model simulations selected at random was calculated to be 0.876. This score is a useful metric

as it indicates the model’s discriminatory ability. In the model context, it would correctly

assign a greater prediction value for a codon to initiate translation if it indeed were a transla-

tion initiation codon 87.6% of the time [28]. A random classifier has a score of 0.5, whereas a

perfect classifier has a score of 1.0 [29]. This score is calculated as the area under the ROC

curve. This is a graphical illustration of the model’s ability to correctly categorize positives (i.e.,

the true positive rate) against decreased discrimination (increased false positive rates).

As carried out in the case of ATG, the cumulative data of the CTG, GTG, and TTG codons

was used to deduce a cutoff value for the algorithm’s scoring of all near-cognate codons. To

identify the best cutoff for near-cognate codons, the same simulation process was used as was

carried out for ATG codons. Using this simulation method, with balanced near-cognate codon

Fig 3. Kozak similarity scores of near-cognate translation initiation codons against baseline.

https://doi.org/10.1371/journal.pone.0256411.g003
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data consisting of equal numbers of positives (near-cognate initiation codons) and negatives

(near-cognate codons that do not initiate translation), the best cutoff of the algorithm classifi-

cation was about 0.61 for near-cognate codons. After a thousand simulations, the algorithm

revealed an average accuracy of about 75.60% for classifying near-cognate codons as initiating

translation or not initiating translation. The AUROC score calculated from one randomly

selected simulation was 0.835. Classifier accuracy for ATG and near-cognate codons is

depicted in Fig 4 as a function of KSS score cutoff. ROC curves for the ATG and near-cognate

classifiers are displayed in Fig 5.

KSS as a reference for likelihood of translation initiation

In the previous section, the weighted scoring algorithm based on the KCS was used as a model

to classify whether codons were likely to initiate translation. However, one could question

whether the scores of the weighting system could also be used as a metric. To investigate this

issue, 12,603 instances of ATGs that initiate translation and 34,097 ATGs believed not to initi-

ate translation were compiled. One thousand balanced test datasets, containing the 12,603 pos-

itive ATG instances along with randomly sampled negative ATG instances of the same

number, were gathered. The average proportion of codons that initiate translation with a KSS

exceeding particular values, across all test datasets was determined. These KSS thresholds ran-

ged from zero to one by increments of 0.02. The proportion of ATGs that initiate translation

had a positive correlation with the KSS. In other words, a greater proportion of ATGs would

initiate translation with an increased score. This score appeared useful since one could

Fig 4. Error classifying ATG and near-cognate codon ability to initiate translation using Kozak similarity score.

https://doi.org/10.1371/journal.pone.0256411.g004
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approximate the proportion of ATG codons that initiate translation with a similar KSS related

to a particular codon encountered.

The same evaluation was conducted for near-cognate codons to deduce if there was a simi-

lar trend. The procedures previously applied to the ATG data were used for the cumulative

total of 2,413 instances of near-cognate codons that initiate translation, and 141,071 instances

of near-cognate codons believed not to initiate translation. There was a positive correlation

between the proportion of near-cognate codons that initiate translation and the KSS. In fact,

the trend was quite similar to that obtained for ATG data. The results suggest that the KSS is

not limited as a metric for ATG codons, but could be used to estimate the likelihood of a near-

cognate codon to initiate translation as well. The results of the analysis for ATG and near-cog-

nate codons is shown in the graph and table of Fig 6.

Random forest classifiers

A strong and practical approach for identifying translation initiation codons also includes the

application of a machine learning model. Machine learning models are powerful, as they can

analyze large amounts of complex data, determine patterns and codependences that are diffi-

cult to process by a human, and learn from mistakes to improve over time [24]. Although bio-

logical pathways are often sophisticated and produce remarkably diverse data, machine

learning models can provide direction for such processes that are not completely understood.

We decided to implement a random forest classifier (RFC). This machine learning algo-

rithm typically produces satisfactory results with partly missing data, bears little impact from

outliers, and mitigates overfitting. Furthermore, the RFC is a highly preferred model in con-

temporary genomics [30]. The RFC is based on many decision trees, typically generated from

large subsets of data. As each decision tree may split data differently in the classification

Fig 5. ROC curves of the ATG and near-cognate Kozak similarity score classifiers. The AUROC score (area under

the curve) of the ATG classifier is 0.876. The AUROC score of the near-cognate RFC is 0.835.

https://doi.org/10.1371/journal.pone.0256411.g005
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process, the averaging of many such trees reduces variance and helps avoid overfitting. With

an overfit model, data inputs that vary slightly from trained data could have volatile classifica-

tions that are not reliable. The RFC, which implements the averaging process, may produce

greater accuracy than any one decision tree alone [31].

Accordingly, an RFC was implemented as a separate algorithm to elucidate whether codons

initiate translation. To create such an algorithm, the feature variables of codons for the RFC to

be trained on were first assigned. For an ATG classifier, these variables designated the ten

nucleotides that preceded the codon, and ten that followed it. This range was chosen as studies

suggest that alterations of bases in some of these positions are highly impactful, and may define

whether a flanked codon is an “optimal, strong, [or] moderate” translation initiation site [14–

21]. Although secondary structures influence translation, the successful identification of fea-

ture patterns may require exceptionally large amounts of training data that are currently

unavailable. Of note, the number of training samples required to differentiate data increases

exponentially as the number of attributes in a model increases [32]. Since five features are

needed to designate whether a nucleotide at each position, n, is either adenine, guanine, cyto-

sine, thymine, or missing, 5n distinct data (i.e., enough to cover all possible data variations)

may be required for a model to best approximate the impact of each nucleotide for every posi-

tion that is considered. By having our models trained on a relatively small number of nucleo-

tides known to influence translation initiation, we sought to optimize predictive power with

limited data. For a near-cognate codon classifier, we included additional features to designate

the nucleotide in the first base position of the codons (i.e., the underlined: CTG, GTG, TTG)

since the nucleotide at this position may significantly impact translation initiation from these

codons [22, 23].

Using the package, imbalanced-learn, in Python, we created the RFC models [33]. The

ATG RFC was trained using an imbalanced set of 12,603 ATG codons known to initiate trans-

lation (positives), and 3,433 of 34,097 generated distinct ATG codons that are believed not to

initiate translation (negatives). The set of 3,433 negatives consisted of the total of 1,805

sequences that were not missing nucleotides, and 1,628 (i.e., ten percent fewer) randomly sam-

pled negatives of the remaining 31,697 that were missing nucleotides. We left out five percent

of the total 3,433 negatives used (172 ATGs that do not initiate translation), as well as the same

number of positives (172 ATG translation initiation codons) from the training data to consti-

tute our test dataset. In this way, accuracy would be based on unbiased data that was balanced

with 344 combined cases of equally occurring positives and negatives.

The accuracy of the RFC model on the balanced 344 cases was 87.79%. In other words, the

algorithm correctly categorized 302 of the 344 ATGs, based on the sequences flanking each

codon. This accuracy is high in comparison to the 79.85% accuracy achieved using the KSS-

based classifier. We also calculated the AUROC score of the model to be 0.95, which is high as

well. Increasing the parameter value designating the total number of decision trees included in

the RFC had no visible effect on model performance. Other parameters were also left

unchanged for optimal predictions.

The same procedure was used to create an RFC for near-cognate codons as carried out for

ATG codons, using data available for near-cognate codons. To prevent imbalanced data bias

in the accuracy measurement for the near-cognate RFC, data that was equally representative of

all near-cognate codons was set aside to form the test dataset. Since the model was trained on

Fig 6. Proportion of ATG and near-cognate codons that initiate translation with KSSs above certain values. The

graph and table were both generated from the same results, using balanced data., i.e., an equal background proportion

of positives and negatives.

https://doi.org/10.1371/journal.pone.0256411.g006
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CTG, GTG, and TTG initiation codons, twenty positives and negatives were randomly isolated

for each of these codons prior to training. When run on this separated, balanced set of 120

data points, the trained near-cognate RFC performed with 85.00% accuracy. The AUROC

score of the near-cognate classifier was calculated to be 0.94. ROC curves for the ATG and

near-cognate RFCs are shown in Fig 7.

Analysis of the TITER neural network as a benchmark

There exist two other models for predicting both ATG and near-cognate translation initiation

codons. The most recent is the TITER machine learning algorithm [12], which addresses limi-

tations of the first model. We analyzed TITER as a benchmark to compare it with the perfor-

mance of our models.

TITER is a deep learning-based framework that predicts whether a codon initiates transla-

tion based on the product of two calculations, which is termed TISScore. One constituent is

based on the frequency of the codon of interest (e.g., ATG, CTG, GTG, etc.) in the dataset to

initiate translation. The second involves the averaging of calculated scores for a codon with

flanking sequences across thirty-two neural networks. A large number of neural networks was

used as part of a bootstrapping technique to account for training data imbalance.

Although TITER has a high AUROC score of 0.89 [12], ROC curves can present an “overly

optimistic” evaluation of a model’s performance “if there is a large skew in the class distribu-

tion” [28, 29]. This assessment is based on the true positive and false positive rates of the

model–and an imbalance of positives and negatives may distort its calculation [34]. One ques-

tions whether the test sample of the model is skewed as it consists of 767 positive and 9,914

negative samples in total [12]. Although the authors noted special procedures to account for

the data imbalance of the training dataset, it is not clear if such procedures were used for the

test dataset.

Fig 7. ROC curves of the ATG and near-cognate random forest classifiers. The AUROC score (area under the

curve) of the ATG RFC is equal to 0.95. The AUROC score of the near-cognate RFC is equal to 0.94.

https://doi.org/10.1371/journal.pone.0256411.g007
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Since TITER was open-source, TITER’s accuracy was averaged across a hundred balanced

subsets from its test dataset. Using all 767 positive samples, 767 negatives were randomly sam-

pled from the 9,914 total negatives, across the hundred runs to account for the data imbalance.

Through this technique, the unbiased average of the model accuracy was calculated to be

66.94%. This was the accuracy achieved by the best cutoff, 0.5, of the TISScore for classifica-

tion. When run on the same sequences comprising the RFC test datasets (with sequences

extended to include the additional features TITER was trained with), TITER demonstrated

62.21% and 58.33% accuracy for ATG and near-cognate codons, respectively. These values

were lower than the 75.60% and 79.85% accuracy achieved using the KSS scoring system for

ATG or near-cognate codons, or the 85.00% and 87.79% accuracy achieved using RFC models.

The fact that TITER was trained with less data than the RFC models presented here could

account for a reduced predictive power. Specifically, it was generated using 9,776 positive sam-

ples and 94,899 negatives compared to the total 15,016 positives and 175,168 negatives used

for the RFCs.

The performance of TITER may also be a result of the large number of features that this

machine learning model incorporated. Although contemporary research suggests a few bases

that flank a codon greatly influence translation initiation from this site [14–21], TITER ana-

lyzes a total of two hundred bases that flank each codon. Compared to our approach of analyz-

ing twenty nucleotides that flank the codon, TITER may implement up to 180�5 = 900

additional features via its one-hot encoding procedure. The expression ‘180�5‘ is used because

any one base at the 180 extra positions is represented by five features to designate whether the

Fig 8. ROC curves of all ATG and near-cognate classifiers derived from same test data. All classifiers were run on

the ATG and Near-cognate RFC test datasets, and their ROC curves were superimposed. The AUROC scores of the

ATG and near-cognate RFCs are 0.95 and 0.94, respectively. The AUROC scores of the ATG and near-cognate KSS

classifiers are 0.86 and 0.79 respectively on these test datasets. TITER’s AUROC scores are 0.62 and 0.60 for ATG and

near-cognate codons, respectively.

https://doi.org/10.1371/journal.pone.0256411.g008

PLOS ONE Machine learning, translation initiation, repeat expansion disorders

PLOS ONE | https://doi.org/10.1371/journal.pone.0256411 June 1, 2022 12 / 30

https://doi.org/10.1371/journal.pone.0256411.g008
https://doi.org/10.1371/journal.pone.0256411


base is adenine, guanine, cytosine, tyrosine, or is missing. Although the TITER publication

mentions feature reduction in the hidden layer of the neural networks, it is not clear how

much feature reduction occurred and whether features with significant correlations were inad-

vertently reduced. Of note, an excess of features may decrease effectiveness in machine learn-

ing because the number of training samples required to differentiate the data increases

exponentially as the number of attributes in a model increases. Thus, predictive power is lost.

In fact, this phenomenon is termed the “curse of dimensionality” in Data Science [32].

There are a number of reasons that our model’s performance may improve predictions of

translation initiation codons: a) feature reduction, b) implementation of the random forest

classifier, which is more robust to outliers and erroneous instances (especially when data is

limited), c) creation of two models to account for properties of different data types (i.e., ATG

codons versus near-cognate codons), d) use of sampling without replacement, which preserves

natural variations found in data (in place of bootstrapping).

ROC curves for TITER, our RFCs, and the KSS classifiers derived from the same dataset are

superimposed in Fig 8.

All else equal, RFCs perform better than neural networks

To demonstrate that the RFC has superior performance to the neural network with all else

equal, we evaluated performance of optimized convolutional neural networks using identical

data and features as those discussed in the RFC section. The best ATG neural network yielded

about 84.59% accuracy and an AUROC score of 0.91. The best near-cognate neural network

had about 76.67 accuracy and an AUROC score of 0.90. These results indicate that RFCs per-

form better than neural networks for our task. We speculate the better performance may be

due to neural network overfitting, especially for the more variable near-cognate data. Lower

neural network accuracy is consistent with other studies when only limited data are available,

i.e., when data may not number in the millions [35, 36].

Model selection and integration into software

Of the models generated, the RFCs appeared the best choice to use for predicting translation

initiation sites. Thus, we used the RFCs trained with high accuracy at 87.8% for ATGs and

85.0% for near-cognate codons. The RFCs outperform other published models designed for

the same function, for example, exceeding TITER by more than 18% in accuracy.

As a next step, we used the RFCs to identify repeat-length-independent (RLI) translation

initiation associated with neurologic diseases. To carry this out, the RFC models were imple-

mented into software. Developed in Python, the program could be used to evaluate a total

sequence consisting of the upstream region followed by ten nucleotide sequence repeats to rep-

resent the repeat expansion. Ten sequence repeats may be adequate to capture the repeat

expansion effect on translation initiation from upstream codons as well as codons within the

repeat expansion itself since ten nucleotide sequence repeats are at minimum thirty bases long,

and the integrated model only uses the ten bases that flank each side of a codon for analysis.

Nucleotides within this range have been shown to strongly impact translation initiation [14–

21].

The model can scan through each codon in the sequence and return a prediction from the

implemented RFCs. If a codon encountered is ‘ATG,’ then the ATG RFC with 87.79% accuracy

predicts whether it initiates translation based on the ten sequences flanking each side of the

codon. Otherwise, if the codon encountered is a near-cognate codon, then the near-cognate

RFC with 85.00% accuracy predicts whether it initiates translation via the same procedure.

Next, the program virtually simulates translation from each predicted codon and filters out
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those instances in which a stop codon (TAG, TGA, or TAA) is encountered upstream of the

repeat expansion. This feature was implemented to remove codons from consideration if their

initiated translation would not reach the repeat expansion and produce the repeat proteins

that may be associated with neurologic disease. The program can determine the nucleotide

sequence repeat as well as the associated translation product from the remaining codons.

Finally, the program outputs a visualization of the input sequence, with predicted codons

color-coded to distinguish the associated product translated. Software architecture is depicted

in Fig 9.

In the figures that follow, nucleotides have a bold font to distinguish initiation codons that

the software models were trained on. These codons include the canonical start codon ATG as

well as near-cognate codons CTG, GTG, and TTG. Because the features of the three near-

Fig 9. Software architecture.

https://doi.org/10.1371/journal.pone.0256411.g009
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cognate codons were used to extrapolate classifications of the other, less researched near-cog-

nate codons (viz., AAG, AGG, ACG, ATC, ATT, and ATA), it is possible to incur false predic-

tions for these less studied instances. Thus, these six near-cognate codons are designated only

with color-coding without bolding to denote that they should be acknowledged with less confi-

dence. If there is an overlap between predicted initiation codons (i.e., one or two nucleotides

overlap between predicted codons), the color of the overlapped region is the same as that of

the next predicted codon to prevent confusion. The overlapped region may or may not be

bolded depending on whether the software was trained on this next codon. An example of for-

matted output is shown in Fig 10. We also output the KSSs of each predicted codon to two dec-

imal points, as the score could be a useful metric to evaluate translation initiation likelihood.

This may be approximated through comparison of KSSs of a codon to the reference table and

graph (Fig 6). In this way, KSS might be used to further identify significant predictions.

Software identification of known RLI translation initiation sites

After the software was completed, its ability to distinguish RLI translation initiation sites was

analyzed. We first identified translation initiation codons upstream of repeats in the following

genes in which RAN translation is known to occur: C9orf72 (associated with amyotrophic lat-

eral sclerosis and frontotemporal dementia), FMR1 (associated with fragile X and fragile X-

associated tremor/ataxia syndrome), DM1 (associated with myotonic dystrophy type 1), and

HDL2 (associated with Huntington disease-like 2) genes. These examples were used as refer-

ences for software performance. It should be noted that translation initiation codons identified

for DM1 were obtained from an experiment that implemented a version of the conventional

DM1 antisense strand that had been slightly modified to determine whether changes in its

sequence could induce translation initiation from particular codons [37]. The associated

upstream regions and repeat expansion sequences for each gene, as recorded in the National

Center for Biotechnology Information database, were input into the software. Predictions

were generated in order to determine whether nucleotide sequences corresponded to experi-

mentally confirmed translation initiation codons (Table 1).

Comparison between the predictions and experimentally identified translation initiation

codons demonstrated high performance of the software. In fact, all translation initiation sites

previously identified from publications were correctly identified by the RFCs with only one

exception: ATC, which was experimentally determined to initiate translation in the modified

DM1 antisense strand seven bases upstream of the repeat [37]. Importantly, the near-cognate

RFC model successfully predicted all other instances of translation initiation from less

researched near-cognate codons. This accuracy is surprising considering that the near-cognate

RFC model was only trained on instances of CTG, GTG and TTG translation. As there was

insufficient data to train the model on less used near-cognate codons (ATA, ATC, ATT, AGG,

ACG, and AAG), predictions for these codons were extrapolated based on recognized patterns

from CTG, GTG, and TTG examples. However, for the same reason that they were not

Fig 10. An example of the formatting scheme in software output. This example shows predicted codons that are color-coded based on their reading frame:

‘ATT,’ ‘TTG,’ ‘CTG,’ ‘AGG,’ ‘GTG,’ and ‘CTG.’ Codons that the models were trained on show up with bold formatting. If there is an overlap between predicted

initiation codons (i.e., one or two nucleotides overlap between predicted codons), the color of the overlapped region is the same as the color of the next

predicted codon.

https://doi.org/10.1371/journal.pone.0256411.g010
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included in model training, near-cognate codons that are not CTG, GTG, or TTG should be

acknowledged with less confidence in predictions out of concern they may be false positives.

Predicted translation initiation sites associated with neurologic diseases

As shown above, experimentally identified translation initiation codons for C9orf72, FMR1,

DM1, and HDL2 were confirmed by the model presented here (Table 1, Figs 11 and 12). The

software was then used to predict translation initiation codons associated with repeats in genes

that cause neurologic diseases that have not been experimentally identified. These include

additional genes HTT, and DM2 (Fig 13). Best predictions for the translation initiation codons

for genes are highlighted in yellow in Figs 11–13 based on rules we suggest in the next section.

Predicted translation initiation codons with relatively high KSSs were flagged, alongside RFC

probabilities for the analyzed genes (Table 2). The RFC probability for a codon is calculated as

the number of decision trees in the classifier that predict translation initiation to occur, divided

by the total number of trees used, viz., one thousand in our case. A positive correlation

between KSSs and RFC probabilities is observed, particularly for ATG codons. One advantage

of the KSS is that it is an entirely separate scoring system from the RFCs. In all cases, predicted

translation initiation sites are not shown if they have a downstream stop codon located in the

same reading frame before the repeat.

Results displayed in the figures and table indicate translation initiation sites for proteins

translated from the repeat. Of note, the average KSS of all upstream predicted codons is about

0.66. With reference to the table in Fig 6, approximately 80% of ATG and near-cognate codons

with a score above 0.65 are estimated to initiate translation from a background population of

equally occurring translation initiation codons (positives) and codons believed not to initiate

translation (negatives).

With respect to the sequence upstream of the repeat on the C9orf72 sense strand, the soft-

ware predicts a codon to initiate translation of poly-GA, and another to initiate translation of

poly-GR—both of which have been confirmed through experimentation [4]. In the antisense

strand, there are ten codons that could initiate translation of poly-PR, and six predicted with

respect to poly-PG. The ATG located 194 bases upstream of the repeat expansion has been

confirmed [4].

Predictions for translation initiation codons from the FMR1 sense strand upstream from

the repeat identify nine codons that could be used to initiate translation of poly-G, and two for

poly-R. The translation initiation codon GTG located 11 bases upstream, the ACG located 35

Table 1. Previously published repeat length-independent translation initiation sites.

Gene Codon Number of Bases Upstream of Repeat Peptide Repeat Translated Kozak Similarity Score

C9orf72 (Sense) [4] AGG 1 Poly-GR 0.66

CTG 24 Poly-GA 0.69

C9orf72 (Antisense) [4] ATG 194 Poly-PG 0.61

FMR1 (Sense) [10, 38] GTG 11 Poly-G 0.70

ACG 35 Poly-G 0.80

ACG 60 Poly-G 0.71

DM1 (Antisense)� [37] ATC 7 Poly-A 0.61

ATG 17 Poly-S 0.66

ATT 23 Poly-S 0.74

HDL2 (Antisense) [37] ATC 6 Poly-Q 0.74

� The DM1 antisense strand had a slightly modified sequence [37].

https://doi.org/10.1371/journal.pone.0256411.t001
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bases upstream, and ACG located 60 bases upstream have been confirmed experimentally

[38]. The antisense upstream region has a total of sixteen codons predicted to initiate transla-

tion of poly-P, three for poly-R, and one for poly-A.

For the DM1 sense strand upstream from the repeat, the software predicts three codons

that initiate translation of poly-C, and two that initiate translation of poly-A. Interestingly,

every CTG within the CTG repeat expansion is predicted to initiate translation of poly-L; how-

ever, only the first has a relatively high KSS (0.67). Predictions for the DM1 antisense strand

are different from those produced for the experimentally modified DM1 antisense strand

(Table 1). Namely, there is no predicted ATG located 17 bases upstream of the repeat expan-

sion, nor a predicted ATT located 23 bases upstream of the repeat expansion because

sequences that border the predicted codons in the modified strand differ from those bordering

the same codons in the unmodified version. In the unmodified antisense strand, there are

seven codons predicted to initiate poly-A translation, and one to initiate translation of poly-S.

Also, there are no predicted translation initiation codons in the reading frame of poly-Q which

suggests that this polypeptide might be initiated from the repeat expansion, possibly by repeat

length-dependent folding.

With respect to the HDL2 sense strand upstream from the repeat, the software predicts

seven codons to initiate translation of poly-L, one to initiate translation of poly-C, and two to

initiate translation of poly-A. Furthermore, the software suggests that every CTG of the CTG

repeat expansion, aside from the first one in the sense strand, can initiate translation of poly-L,

presumably because of the flanking nucleotides. In the antisense strand, there are seventeen

codons predicted to initiate translation of poly-Q, three for poly-S, and two for poly-A. The

predicted ATC located 6 bases upstream of the repeat expansion in the antisense strand has

been confirmed [37].

Predictions for translation initiation codons from the HTT sense strand upstream from the

repeat identify seventeen codons that initiate translation of poly-Q, and four for poly-A. From

the antisense upstream region, sixteen codons are predicted to initiate translation of poly-L,

and nine for poly-A. The software also suggests that every CTG of the CTG repeat expansion,

aside from the first one in the antisense strand can initiate translation of poly-L.

Predictions for the DM2 sense strand upstream from the repeat identify five codons used

for translation initiation of poly-PACL, two for poly-CLPA, and three for poly-LPAC. More-

over, the software predicts the first two CTGs of the CCTG repeat expansion to initiate transla-

tion of poly-LPAC. In the antisense strand, there are three codons predicted to initiate poly-

RQAG translation, five to initiate translation of poly-GRQA, and one to initiate translation of

poly-QAGR.

Identifying best predicted initiation codons

To choose the best predictions for initiating codons, we constructed a reference table that

places predicted codons into five categories (Fig 14). The categories are sorted in accordance

with the amount of data used for each codon in model training, the model’s accuracy, and

trends noted with KSS. We take into consideration ATG’s greater tendency to initiate transla-

tion relative to other codons. Codons other than ATG, CTG, GTG, or TTG are placed in a

lower category because they are extrapolations (were not used in model training). We suggest

Fig 11. Predicted translation initiation codons for C9orf72 and FMR1. Best predictions per reading frame are

highlighted in yellow. Predicted codons that the models were trained on show up with bold formatting. The numbers in

this Table and subsequent ones indicate the position of the bases upstream of the repeat. � A predicted translation

initiation codon is located 1 base upstream of the repeat, and overlaps with an AGG which is partly in the repeat.

https://doi.org/10.1371/journal.pone.0256411.g011
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sorting predictions based on a ‘Prediction Categories’ reference table, with 1 most preferred

and 5 least preferred. Predictions in the same category are to be sorted by their KSS or RFC

probability. One advantage of the KSS is that it is an entirely separate scoring system from the

RFCs.

Materials and methods

Data acquisition

Examples of translation initiation were primarily obtained from ribosome profiling, mass

spectroscopy, and CRISPR-based techniques across different human cell types and under dif-

ferent conditions [39]. These data include sequences of 12,094 examples of translation initiated

from ATG, as well as 2,180 examples of translation initiated from near-cognate codons. Trans-

lation initiation sites were also captured by quantitative translation initiation sequencing of

genes in cultured human kidney cells [40]. Their annotated sequences were collected from the

Ensembl gene annotation system (version 84) [41]. These methods procured 509 and 203

more examples of ATG and near-cognate initiation codons, respectively. In all, we collected

12,603 instances of translation initiation from ATG, and 2,413 instances of translation initia-

tion from near-cognate codons to use in this study.

To obtain examples in which translation does not initiate from ATG (negatives), we used

the same transcripts from which positives were derived and recorded nucleotides that flanked

ATG codons. Then, we eliminated all instances in which flanking sequences matched any of

the 12,603 sequences bordering the known ATG translation initiation sites, leaving 34,097 neg-

atives. We repeated the same procedure to identify negatives for near-cognate codons that do

not initiate translation. We found examples of CTG, GTG, and TTG codons in which flanking

sequences did not match any of that of the known near-cognate initiation codons, leaving

141,071 negatives.

Random sampling

All random sampling was conducted without replacement. This method is preferred for KSS

evaluations of ATG and near-cognate codons, as the precision of population estimates is

higher than that produced by sampling with replacement [42]. Furthermore, sampling without

replacement to generate training datasets introduces greater variation for model training.

Random forest classifiers

Using the open-source package, imbalanced-learn, in Python, we created the RFC models

[33]. The ATG RFC was trained on an imbalanced set of 12,432 ATG codons known to initiate

translation (positives), and 3,261 ATG codons that are believed not to initiate translation (neg-

atives). The set of 3,261 negatives consisted of 1,716 sequences that were not missing nucleo-

tides, and 1,545 (ten percent fewer) randomly sampled negatives of the remaining 31,697 that

were missing nucleotides. To clarify, missing nucleotides are registered in the case that a

recorded codon is located exceedingly close to the 5’ or 3’ end of an mRNA construct. In such

a circumstance, there may not be a full ten bases both preceding and following the codon. The

sampling technique was performed to slightly offset the proportion of negatives with and

Fig 12. Predicted translation initiation codons for DM1 and HDL2. Predicted codons that the models were trained on show up with bold formatting. Best

predictions per reading frame are highlighted in yellow. � Every CTG within the repeat could initiate translation of poly-L. The CTG at position 0 may be the

best predicted initiation codon as its flanking sequence is closest to the KCS. † Every CTG within the repeat, aside from the first one, is predicted to initiate

translation, presumably because of the flanking nucleotides.

https://doi.org/10.1371/journal.pone.0256411.g012
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without missing bases in the opposite direction. In this way, more negatives without missing

bases would be used for model training. Using the original imbalanced set of negatives, with

the majority missing bases, would cause the model to inaccurately assess the effect of missing

nucleotides on a codon’s ability to initiate translation. Furthermore, using a slightly larger pro-

portion of negatives that had a complete sequence profile resulted in improved accuracy for

distinguishing codons that were not missing nucleotides. This method is useful since

sequences are less often encountered with missing nucleotides in real-world applications.

To account for the imbalance of positives and negatives, the RFC had decision trees gener-

ated from 3,576 negatives, and the same number of randomly sampled positives. One thousand

such trees were used, since this number is generally recommended as a starting point for the

generation of an RFC [43]. Of the total number of features, n, a total of
ffiffiffi
n
p

features were con-

sidered at each branch of the trees to best classify data. Using too many or too few features

could have prevented the model from recognizing the best indicators for classification [43].

Each decision tree also had the requirement of grouping at least two codon instances to a cer-

tain classification. This constraint reduced the risk of overfitting, yet still allowed tree capacity

to differentiate between subtly differing codons. Thus, the trees could better identify precise

feature patterns to associate with a particular classification, and remain reliable in face of new,

unencountered data.

We evaluated the accuracy of the RFC model with the above configurations. Parameters

such as the minimum number of codons to group for classification could then be adjusted to

improve predictive power, as necessary. However, parameters were best left unchanged for

optimal predictions. To create a separate classifier for near-cognate codons, we repeated the

same procedures to create an RFC for near-cognate codons as we had carried out for ATG

codons, this time using data available for all near-cognate codons. RFC design is depicted in

Fig 15.

Convolutional neural networks

Convolutional neural networks were developed in Python using TensorFlow and Keras [44,

45] using the same datasets as the RFCs to which they were compared. For the ATG model, we

reduced 115 features into a 70-dimensional space via convolution layers and max pooling.

Three additional hidden layers were used containing 16, 8, and 4 nodes respectively. To

account for the data imbalance, the minority class was upsampled to match the majority class.

For a near-cognate neural network, we optimized performance using the same model structure

as used for the ATG model, with the addition of batch normalization.

Discussion

As shown here, RFCs were able to successfully predict most translation initiation codons asso-

ciated with neurologic repeat expansion diseases that have been experimentally identified. The

same models also predicted other translation initiation codons of repeat expansions for neuro-

logic diseases that have not been experimentally identified. Of note, the software predicted

translation initiation sites with more than 18% accuracy than the TITER neural network.

Regardless of the quality of a model, its predictions should not be interpreted as evidence.

Instead, predictions should be recognized as likely possibilities that warrant further

Fig 13. Predicted translation initiation codons for HTT and DM2. Predicted codons that the models were trained on show up with bold formatting.

Best predictions per reading frame are highlighted in yellow. � Every CTG within the repeat, aside from the first one, is predicted to initiate translation,

presumably because of the flanking nucleotides. † Two predicted translation initiation codons are within the repeat. A CTG within the repeat at

position 1 could be the best predicted initiation codon in the poly-LPAC reading frame based on rules suggested in Fig 14.

https://doi.org/10.1371/journal.pone.0256411.g013
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Table 2. Translation initiation codons with high Kozak similarity scores�.

Gene Codon Number of Bases Upstream of Repeat RFC Probability Kozak Similarity Score Translated Polypeptide Repeat

C9orf72 (Sense) CTG† 24 0.69 0.66 Poly-GA

AGG 1 0.55 0.69 Poly-GR

C9orf72 (Antisense) ATG‡ 113 0.82 0.75 Poly-PG

AAG 350 0.64 0.84 Poly-PG

ACG 3 0.6 0.79 Poly-PR

AAG 288 0.63 0.73 Poly-PR

AAG 384 0.69 0.77 Poly-PR

FMR1 (Sense) AGG 18 0.7 0.83 Poly-R

ACG 60 0.66 0.71 Poly-R

ACG 35 0.8 0.79 Poly-G

GTG 38 0.77 0.76 Poly-G

AAG 332 0.57 0.83 Poly-G

FMR1 (Antisense) AGG 28 0.62 0.71 Poly-A

GTG 26 0.59 0.73 Poly-R

CTG 56 0.54 0.7 Poly-R

ATT 105 0.66 0.81 Poly-P

AAG 156 0.58 0.78 Poly-P

AAG 177 0.64 0.85 Poly-P

CTG 195 0.73 0.74 Poly-P

AGG 207 0.68 0.84 Poly-P

ATC 252 0.55 0.8 Poly-P

AGG 285 0.54 0.77 Poly-P

AGG 318 0.71 0.74 Poly-P

DM1 (Sense) AAG 23 0.52 0.62 Poly-C

AGG 61 0.61 0.77 Poly-A

CTG 0 0.67 0.67 Poly-L

DM1 (Antisense) CTG 34 0.74 0.87 Poly-A

AGG 169 0.54 0.85 Poly-A

ATC 193 0.69 0.81 Poly-A

ACG 98 0.67 0.86 Poly-S

HDL2 (Sense) ATC 72 0.58 0.71 Poly-L

ATC 68 0.56 0.52 Poly-C

AGG 10 0.72 0.84 Poly-A

HDL2 (Antisense) ATC 6 0.51 0.74 Poly-Q

AAG 27 0.63 0.8 Poly-Q

ATT 261 0.62 0.81 Poly-Q

GTG 372 0.71 0.83 Poly-Q

GTG 378 0.6 0.71 Poly-Q

CTG 122 0.7 0.68 Poly-S

ATC 67 0.59 0.69 Poly-A

HTT (Sense) AAG 27 0.63 0.76 Poly-Q

CTG 33 0.63 0.72 Poly-Q

CTG 42 0.85 0.87 Poly-Q

ATG 51 0.94 0.89 Poly-Q

AAG 210 0.58 0.72 Poly-Q

CTG 348 0.65 0.74 Poly-Q

ACG 187 0.59 0.75 Poly-A

GTG 202 0.74 0.85 Poly-A

(Continued)
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investigation. However, the significance of the algorithm’s identification of translation initia-

tion codons should not be understated. For example, these data may be important to use to

guide treatment of these repeat diseases.

Although the machine learning models show promise in understanding of the pathogenesis

of repeat expansion neurologic disorders, their use may be extended to other applications as

well. For example, they may be used to predict the translation initiation codons (including

alternative initiation codons) for genes that are not involved in repeat expansion disorders.

One benefit of this implementation includes the ability to speculate protein products from a

nucleotide sequence quickly and easily and without laboratory procedures. In order to acceler-

ate the use of the RFCs, a version of the machine learning software that can predict translation

initiation codons in any provided sequence is available at www.tispredictor.com/tis.

Limitations

Unaccounted factors may limit the accuracy of our predictions in real-world applications.

Whereas we examine consensus sequences from the NCBI database, there exist variations in

the regions within repeats and bordering repeats. For example, there exist at least three tran-

script variants of C9orf72 with repeats that range from the tens to thousands in afflicted indi-

viduals [46]. It is important to note that: a) these repeats may contain intervening nucleotides

that could introduce additional initiation codons and reading frames, b) these intervening

Table 2. (Continued)

Gene Codon Number of Bases Upstream of Repeat RFC Probability Kozak Similarity Score Translated Polypeptide Repeat

HTT (Antisense) ATC 213 0.66 0.76 Poly-L

AGG 225 0.54 0.7 Poly-L

AAG 330 0.69 0.73 Poly-L

CTG 342 0.72 0.7 Poly-L

AGG 369 0.64 0.76 Poly-L

GTG 13 0.83 0.84 Poly-A

GTG 118 0.64 0.72 Poly-A

CTG 199 0.73 0.81 Poly-A

CTG 229 0.71 0.71 Poly-A

CTG 271 0.69 0.71 Poly-A

GTG 337 0.61 0.73 Poly-A

DM2 (Sense) CTG 7 0.56 0.5 Poly-CLPA

CTG -5 0.61 0.61 Poly-LPAC

ATT 87 0.55 0.66 Poly-PACL

DM2 (Antisense) AGG 7 0.53 0.72 Poly-GRQA

GTG 58 0.56 0.7 Poly-GRQA

ATA 88 0.59 0.75 Poly-GRQA

AGG 47 0.53 0.71 Poly-RQAG

AGG 113 0.61 0.74 Poly-RQAG

AGG 15 0.52 0.72 Poly-QAGR

� All codons that do not encounter a stop codon before the repeats are assessed. Predicted codons with a KSS above 0.70 are displayed. If no KSS within a reading frame

is above 0.70, then the codon with the highest KSS is displayed–as in the case of the C9orf72 sense strand.

† Highlighted codons represent most likely predictions per reading frame based on rules suggested in Fig 14. These codons are also highlighted in Figs 10–12. If no

codons are highlighted in a reading frame, then the KSS of the best predicted codon is below 0.70.

‡ Bolded codons represent codons that the RFCs were trained on.

https://doi.org/10.1371/journal.pone.0256411.t002
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nucleotides may vary in different neural cells within the same patient. The exact impact of

these segments is unclear, but may be significant [47]. Furthermore, post-transcriptional mod-

ifications and sequences themselves may vary with age across different cell types and individu-

als [48]. The variable expression of RNA-binding proteins may also have an important effect

on translation initiation [49–51].

While primary structure close to a putative translation initiation codon remains a strong

determinant of translation, the position of a codon within a transcript as well as the secondary

structure of the transcript may also have significant impact [52–56]. However, the structure of

mRNA(s) associated with repeat expansion disorders is unclear since the exact sequence and

varying size of the transcripts are unknown. Moreover, accurate secondary structure requires

analysis of a number of nucleotides that far exceeds our incorporated range, and so successful

identification of feature patterns may require exceptionally large amounts of training data that

are currently unavailable, especially because the number of training samples required to differ-

entiate data increases exponentially as the number of attributes in a model increases [32].

Enhancing performance

Like other machine learning models, RFC performance is determined by the amount of avail-

able balanced training data [57]. Because of this constraint, collecting more examples to train

the machine learning models could prove especially useful. In the case of the near-cognate

RFC, obtaining sufficient data to account for all near-cognate types could lessen uncertainty in

predictions involving these codons. Training the two RFCs discussed here with more data of

the codon types that have been used would also be beneficial since feeding a model with more

Fig 14. Proposed order of best predictions. We suggest categorizing predictions based on the above table, and then ordering them by

category (1–5, with 1 most preferred). Predictions in the same category are to be sorted by either KSS or RFC probability. We show the

ranking of C9orf72 antisense predictions as an example.

https://doi.org/10.1371/journal.pone.0256411.g014
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data will verify existing trends and introduce variations that the algorithm can recognize and

link to a particular classification, thereby improving accuracy.

Conclusions

Our machine learning algorithms provide insight into translation initiation associated with

neurologic repeat diseases. Of note, predictions with high supplementary scores may be associ-

ated with significant levels of pathogenic protein production.
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S1 File. All repeat expansion disorder predictions, with RFC probabilities and KSSs.
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