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Bipolar disorder is a common, complex, and severe psychiatric disorder with cyclical distur-
bances of mood and a high suicide rate. Here, we describe a family with four siblings, three
affected females and one unaffected male.The disease course was characterized by early-
onset bipolar disorder and co-morbid anxiety spectrum disorders that followed the onset of
bipolar disorder. Genetic risk factors were suggested by the early onset of the disease, the
severe disease course, including multiple suicide attempts, and lack of adverse prenatal
or early life events. In particular, drug and alcohol abuse did not contribute to the disease
onset. Exome sequencing identified very rare, heterozygous, and likely protein-damaging
variants in eight brain-expressed genes: IQUB, JMJD1C, GADD45A, GOLGB1, PLSCR5,
VRK2, MESDC2, and FGGY.The variants were shared among all three affected family mem-
bers but absent in the unaffected sibling and in more than 200 controls.The genes encode
proteins with significant regulatory roles in the ERK/MAPK and CREB-regulated intracel-
lular signaling pathways. These pathways are central to neuronal and synaptic plasticity,
cognition, affect regulation and response to chronic stress. In addition, proteins in these
pathways are the target of commonly used mood-stabilizing drugs, such as tricyclic antide-
pressants, lithium, and valproic acid.The combination of multiple rare, damaging mutations
in these central pathways could lead to reduced resilience and increased vulnerability to
stressful life events. Our results support a new model for psychiatric disorders, in which
multiple rare, damaging mutations in genes functionally related to a common signaling
pathway contribute to the manifestation of bipolar disorder.

Keywords: bipolar disorder, exome sequencing, genetic risk factors, rare-variant common-disease model,
ERK/MAPK and CREB-regulated intracellular signaling pathway, stress response, neuronal plasticity, threshold
disease model

INTRODUCTION
Bipolar disorder is a common, severe psychiatric disorder with
onset in adolescence and early adulthood. Broadly defined, the
disease affects about 2% of the world’s adult population (1). At
the core of the disorder are recurrent and severe disturbances
of mood, which cycle between mania and depression. In addi-
tion, severely affected individuals often develop co-morbid psy-
chiatric disorders, including eating disorders, anxiety disorders,
and addictions (2). Stressful life events could trigger the disease
onset (3, 4). However, familial aggregation has indicated a genetic
predisposition and twin studies have supported this hypothesis
(5). Nevertheless, no major disease-causing genetic variant has
been identified despite enormous efforts involving linkage analy-
sis in multi-generation families and association analysis in large
population samples. Therefore, most of the genetic risk remains
unexplained. So far, the data neither support a disease model which
favors a single rare mutation with large effect, nor a disease model

based on common variants with small effects. As a consequence,
the patho-mechanisms of this common complex disorder remain
elusive (6–9).

The question remains how genetic risk factors contribute to the
manifestation of bipolar disorder. If we could answer this question,
early intervention and effective treatment could become a reality.
Here, we propose a disease model in which multiple very rare,
damaging variants increase the vulnerability to adverse life events.
Variants could contribute jointly to a disease phenotype, if they
affect a common pathway. According to our current knowledge,
most disease-causing mutations are rare. Disease-causing muta-
tions are often found in protein coding regions and they have
deleterious consequences for the structure and function of the
encoded proteins. Rare disease-causing mutations in families with
Mendelian disorders have been identified through exome sequenc-
ing (10). But also in common complex disorders, researchers
have begun to apply this method (11). In epilepsy, investigators
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discovered rare and potentially deleterious missense mutations in
known disease-causing genes. While these mutations were present
in cases as well as in controls, the combination of multiple deleteri-
ous mutations was unique to the cases (12, 13). Exome sequencing
in schizophrenia revealed a large number of very rare and de
novo mutations that were present in cases only and absent in
controls supporting a contribution to disease risk (14). Exome
sequencing in families offers an advantage over case-control stud-
ies for the identification of rare variants. Because disease alleles
are shared identity-by-descent among multiple affected family
members, segregation analysis could limit the number of alleles
to be considered. While the results of exome sequencing in com-
mon complex disorders support a “rare-variant common-disease”
model, they also indicate a high degree of pathophysiological het-
erogeneity. Pathophysiological heterogeneity implies that genetic
risk factors should be shared among all affected individuals within
one family, but genetic risk variants might differ between families.
Rare variants could then be further evaluated with well pow-
ered case/control studies and functionally assessed to confirm the
identified candidate genes.

To perform exome sequencing in bipolar disorder patients,
we selected a family with three affected sisters and an unaffected
brother (Figure 1). Both parents were healthy and the family his-
tory had been unremarkable for psychiatric disorders over four
generations. This mode of disease transmission initially appeared
to be autosomal recessive Mendelian inheritance. We sequenced
the four siblings exome-wide to identify rare coding, protein-
damaging, and potentially causal mutations that were shared by
the affected siblings. In addition, we used two sets of healthy

FIGURE 1 | Pedigree of a family with three siblings diagnosed with
bipolar disorder and co-morbid anxiety spectrum disorders. The
three-generation pedigree did not indicate additional psychiatric disorders
on the father’s side or the mother’s side of the family. In this pedigree, a
circle indicates a female, a square indicates a male. A filled symbol
indicates a person affected with bipolar disorder and co-morbid anxiety
spectrum disorders. An unfilled symbol indicates a healthy individual.
Family relationships are indicated by lines.

controls to distinguish non-pathogenic variants from potentially
disease-causing variants. The first control data set consisted of a
smaller number of individuals from the same ethnic background;
the second set was a large and ethnically diverse control sam-
ple. All control DNAs were processed under identical capture and
sequencing conditions.

MATERIALS AND METHODS
SAMPLE
The Caucasian family was recruited as part of the National Insti-
tute of Mental Health (NIMH) Human Genetics Initiative (15).
Information about the disease course and disease symptoms of
the family members had been ascertained with the Diagnostic
Instrument for Genetic Studies (DIGS, Version 4). The disease
history had been evaluated with the Family Interview for Genetic
Studies (FIGS) (16). To protect the privacy of the family mem-
bers, only summary information about disease symptoms and
disease course will be given here. Further details can be obtained
from the investigators upon request. The phenotype of the three
affected family members was consistent with the diagnosis of
bipolar disorder. Both parents were reportedly healthy, and the
family history was unremarkable in terms of psychiatric disorders
over at least three generations. At the time of the interview, the
affected family members had been ill for more than 20 years. The
age of onset, the symptoms, the number of episodes, and even
the co-morbidity conditions were remarkably similar in all three
affected females. Symptoms of depression manifested between
the ages of 14 and 17 as the first reported sign of a psychi-
atric disorder. Stressful life events appeared to have triggered the
onset of depression in two of the patients. There was no his-
tory of alcohol or illegal substance abuse at that time. During
the entire disease course, severe depression was the predominant
symptom, leading to several suicide attempts with hospitalization.
Symptoms of depression were first treated with tricyclic antide-
pressants and then with selective serotonin reuptake inhibitors
(SSRIs). Several years after the onset of depression, during late
adolescence and early adulthood, all three sisters manifested symp-
toms of mania accompanied by brief psychotic episodes with
auditory hallucinations, visual hallucinations, and delusions. Psy-
chotic symptoms were treated with chlorpromazine. Lithium was
added to prevent recurrence of mania. One individual was also
treated with the anticonvulsant Lamotrigine. Mood symptoms
were triggered by hormonal changes, especially during pregnancy
and during the postpartum period. All three affected individu-
als developed social phobia and panic disorder. In addition, one
of the three siblings developed rapid-cycling and mixed-cycling
bipolar disorder. She was also diagnosed with learning disabil-
ity, attention-deficit hyperactivity disorder (ADHD), obsessive
compulsive disorder (OCD), and eating disorder (anorexia ner-
vosa), but symptoms of these disorders were not present in the
other siblings. Despite several hospitalizations for severe depres-
sion, none of the siblings achieved complete remission. Nev-
ertheless, all three patients lived in stable social relationships.
Two of the sisters finished college, married, and had children.
The male sibling was healthy and did not have any psychiatric
symptoms.
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EXOME CAPTURE AND RE-SEQUENCING
Exome capture and DNA sequencing followed a standardized pro-
tocol. We sequenced the exomes of all three affected females and
the unaffected male. DNA of the parents was not available. We iso-
lated genomic DNA from immortalized lymphoblastoid cell lines
following standard protocols. After DNA quality control using
the Qubit Fluorimeter (Invitrogen) and the Bioanalyzer (Agilent),
exome capture was performed with the Illumina TruSeq™ Exome
Enrichment Kit according to the manufacturer’s protocol. This
assay is designed to target 201,121 exons in 20,794 genes (based
on the NCBI37/hg19 reference genome) covering about 97% of
the CCDS coding exons and 96% of the RefSeq coding exons
with uniform coverage across 62 Mb. We constructed the Illumina
paired-end sequencing libraries with the TruSeq DNA sample
preparation kit according to Illumina protocols (Illumina Inc., San
Diego, CA, USA). Samples were sequenced on the Illumina HiSeq
2000, to generate a total of 52.3 million 100 bp paired-end reads
per sample. Base-calling was performed with real-time analysis
(RTA) software from Illumina. We also processed 53 Caucasian
control exomes under the same capture and sequencing condi-
tions, and these exomes were included in the base-calling and
variant-calling process. In addition, we used an internal exome
data set of more than 200 individuals sequenced for other medical
conditions as further controls. This second set of controls reflected
California’s ethnically diverse population and was used to guard
against selecting ethnic-specific variants.

SEQUENCE ALIGNMENT, VARIANT CALLING, AND QUALITY CONTROL
Sequencing reads were aligned to the reference genome
(human_g1k_v37.fasta) using the Novoalign software package.
The software SAM Tools (Version 0.1.15) was used to sort the
aligned BAM files. Variants were called simultaneously for cases
and controls using the Genome Analysis Toolkit (GATK) Unified
Genotyper tool, which was run in multiple-sample mode accord-
ing to published best practice recommendations. Potential PCR
duplicates were removed with Picard. On average, 90.0% reads
aligned uniquely to the reference genome. The PCR duplication
rate varied between 6.9 and 24.0%, and there was an average esti-
mated library size of 222 million unique fragments. The on-target
rate, or capture specificity, varied from 89.2 to 89.9%. The mean
coverage across the captured regions was 52.84, and approximately
87.5% of the targeted bases were covered by ≥10 reads for each
exome. We inspected all regions of interest manually for correct
alignment.

We confirmed relationships by running PLINK to calculate a
matrix of genome-wide average identity-by-state (IBS) pair-wise
identities. After removing synonymous variants and low qual-
ity calls, we focused on those variants that were shared by the
affected family members. The prediction tools Sorting Intoler-
ant From Tolerant (SIFT), Polymorphism Phenotyping Version 2
(PolyPhen-2), MutationTaster, and MutationAssessor were used to
evaluate potentially damaging consequences of the variants (17–
21). While all these functional predictors use similar information
to predict the potential disease-causing effects of genomic variants,
there are significant differences in the weighting of the different
pieces of information, which could lead to discrepancies in the
conclusions. GERP++ RS and PhyloP were used to determine the

strength of past purifying selection and the conservation scores
of the mutated gene regions (22). The functional prediction algo-
rithms were available through the SVS interface from Golden Helix
and dbNSFP as the intermediate source (23).

The genes with filtered variants were examined for evidence
of expression in brain using BioGPS and the Illumina Human
Body Map. The Ensembl database, online Mendelian inheritance
in man (OMIM), the Mouse Genome Informatics (MGI) website,
Human Mutation Data Base (HMDB), and PubMed were used
to further characterize the selected variants. We manually deter-
mined the location of the variants in relation to functional regions
in the gene sequence or protein structure. Potential associations
with a behavioral phenotype in animal models, as well as in vitro
or in vivo studies in humans, were examined by searching the
published literature. The list of selected genes was then examined
for the presence of equally or more damaging mutations in the
controls.

COPY NUMBER VARIATION ANALYSIS
We examined the presence or absence of copy number variations
(CNVs) that were shared among the affected family members
using the CNV-calling algorithm for exome sequencing eXome-
Hidden Markov Model (XHMM) (24). We ran XHMM on the four
family members together with 15 additional bipolar disorder sam-
ples and 55 healthy controls using default settings. Next, we filtered
CNVs by quality score as previously described, and eliminated
CNVs in which the probability of a CNV existing in the region
was <0.60. We also excluded deletions or duplications for which
the affected family members were discordant. Finally, we searched
DECIPHER to determine the population frequency and previously
known disease associations of the remaining CNVs. DECIPHER is
a CNV database for clinically significant structural variants, which
incorporates also a series of normal CNV datasets, including the
1000 Genomes Project and other published sources (25).

CONFIRMATION OF VARIANTS
We confirmed the presence of the selected variants with SNPtype™
Assays from Fluidigm, or with Taqman 3 according to the com-
pany’s protocols, if the genomic regions did not exceed the
maximum level of GC content allowed.

RESULTS
Our analysis revealed a total of 432,621 variants present in cases
and controls combined. Only 33,569 variants were present in at
least one of the four exomes, and no more than 17,116 variants
were considered non-synonymous changes. There was no evidence
for shared CNVs in this family. First, we searched for shared
homozygous protein-damaging mutations, because the inheri-
tance pattern indicated genetic risk factors that follow a recessive
mode of inheritance. We identified 46 homozygous variants that
were shared by all three affected family members and absent in
the unaffected brother. All these variants were also present in the
homozygous state in multiple controls. Only 37 of these variants
were considered to be potentially damaging by at least one of the
variant effect predictors, but none of these polymorphisms were
predicted to be damaging by at least three predictors. Therefore,
a pathogenic role in bipolar disorder was highly unlikely. In addi-
tion, no gene carried two damaging mutations that were shared
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by the affected siblings. This excluded compound heterozygous
mutations. Thus, we concluded that our data did not support a
classic recessive mode of inheritance for bipolar disorder in this
family.

Next, we focused on heterozygous variants that were present in
affected individuals only and not present in the unaffected brother
or the controls. We found 326 variants in which the minor allele
was shared by all affected family members. Only 20 variants were
predicted to be potentially damaging by at least one of the four
predictors. Not more than eight mutations were strongly predicted
to be damaging by at least three predictors or not predicted to be
tolerated by more than one predictor (Table 1). These variants
consisted of three previously known but extremely rare variants.
The other five mutations were novel compared to dbSNP (last
accessed on 7/31/2013). All mutated genes were expressed in brain.
The variant-carrying genes were IQUB (IQ motif and ubiquitin
domain containing), JMJD1C (jumonji domain containing 1C),
GADD45A (growth arrest and DNA-damage-inducible, alpha),
GOLGB1 (golgin B1), PLSCR5 (phospholipid scramblase family,
member 5), VRK2 (vaccinia related kinase 2), MESDC2 (meso-
derm development candidate 2), and FGGY (FGGY carbohydrate
kinase domain containing). All genes are expressed in brain and
highly conserved, according to the Ensembl data base, GERP++
RS, and PhyloP scores (26, 27).

IQUB is essential for the recycling of at least two membrane-
bound receptors, HTR6 (5-hydroxytryptamine [serotonin] recep-
tor 6) and melanin-concentrating hormone receptor 1 (MCHR1)
(28). Both receptors are coupled to G-proteins and they transmit
their signal through MAP kinases. IQUB is located on chromo-
some 7q31.32. The novel mutation in Exon 9 leads to an amino
acid change from valine to glutamine (c.1577T > A, p.Val526Glu).
Mutations in this codon result in nonsense-mediated decay. All
four functional predictors consider the variant deleterious for the
protein structure and function. We did not find equally damag-
ing mutations, even in other regions of the gene, in more than 200
healthy controls. While the sequencing results received high quality
scores, it was challenging to confirm the variant with genotyping,
possibly due to the high GC content of the gene region.

The histone demethylase JMJD1C, also known as TRIP8 (thy-
roid hormone receptor beta [TR beta]-binding protein 8) is
involved in hormone-dependent transcriptional regulation. The
protein is a co-factor of several DNA-binding hormone receptors,
including androgen receptor (AR), thyroid hormone receptor beta
(THRB), and retinoid X receptor, alpha (RXRA) (29–32). JMJD1C
is involved in ERK/MAPK and CREB-regulated intracellular sig-
naling pathways, where it directly interacts with GADD45A
(growth arrest and DNA-damage-inducible, alpha) (33). The gene
has been mapped to chromosome 10q21.3. The identified novel
variant causes an amino acid change from histidine to arginine
in Exon 10 of the gene (c.3641A > G, p.His1214Arg). While three
predictors consider the variant deleterious, MutationAssessor pre-
dicts only low functionality. We did not find any equally damaging
mutation in this gene in the controls.

GADD45A is another protein in the ERK/MAPK and CREB-
regulated intracellular signaling pathways. It directly stimulates
MEKK4 (mitogen-activated protein kinase kinase kinase 4) activ-
ity. It is also an antagonist of GSK3beta (glycogen synthase kinase 3

beta), which inhibits MEKK4 kinase (34, 35). GADD45A is located
on chromosome 1p31.2. The novel mutation in Exon 2 (c.85G > C
[p.Glu29Gln]) affects the protein kinase-regulating region of the
protein. While three predictors consider the variant damaging,
MutationTaster labels it a polymorphism. We did not find any
deleterious or novel mutation in this gene in the controls.

GOLGB1, also known as Giantin, is a brain-expressed gene and
an integral part of the ERK/MAPK and CREB-regulated intra-
cellular signaling pathways (36). The protein is associated with
the Golgi apparatus and participates in G-protein coupled recep-
tor recycling. One of these receptors is the adrenoceptor alpha
2B (ADRA2B), a key player in the regulation of neurotransmitter
release in the central nervous system (37). The gene is located on
chromosome 3q13. The known variant (rs140932474) is found
in Exon 9 and results in an amino acid change from valine to
alanine. The variant affects a glutamine-rich functional region of
the protein, but only the MutationAssessor considers the change
to be functional. All other predictors do not provide any infor-
mation about functional consequences of the variant. The same
variant segregated with symptoms of depression in a second family
with bipolar disorder in our data set. The Minor Allele Frequency
(MAF) of this variant in the general population is unknown.

PLSCR5 belongs to the scramblase protein family. Scramblase
proteins are membrane-associated proteins with transcription fac-
tor activity. They play a prominent role in G-protein coupled
receptor signaling and gene expression regulation. It is likely that
they interact with Phospholipase C (PLC), a central protein in the
ERK/MAPK and CREB-regulated intracellular signaling pathways
(38–40). PLSCR5 is located on chromosome 3q24 (3:146311810).
We identified the known variant rs199965523 in this gene. Three
predictors consider the variant damaging. The base change results
in a stop-gain through a transversion from G to A in Exon 4 of
the gene (c.350G > A [p.Arg117Gln]). The mutated gene region
encodes a tubby C-terminal-like domain, which is predicted to
be a binding site for Phospholipase C. Rs199965523 has been
observed only twice before, once in the 1000 Genomes Project in a
Japanese patient and again in the NHLBI GO Exome Sequencing
Project. We don’t know if individuals carrying this mutation were
healthy. The identified mutation was absent in our controls, but
we found a potentially equally damaging mutation in the vicinity
of rs199965523 in five healthy individuals.

PLSCR4 and PLSCR5 are the only brain-expressed genes in
the scramblase protein family and their expression pattern sug-
gests an important role in prenatal brain development and brain
function throughout the life span (41, 42). Therefore, it might be
important that we found another known variant (rs139054640)
in the gene PLSCR4 (phospholipid scramblase family, member
4). The gene is located in close proximity to PLSCR5 on chro-
mosome 3q24. The variant is in Exon 6 of the gene and it has
been described before, twice in the ESP6500:European_American
project and once in the NHLBI-ESP:ESP_Cohort_Populations.
The mutation is located in the characteristic scramblase region
shared with PLSCR5, but the protein does not appear to have
the tubby-like function. Only PolyPhen-2 considers the variant
to be potentially damaging. Therefore, the variant rs139054640
did not pass our filtering criteria. In addition, the controls had
equally damaging mutations in other gene regions. However, only
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Table 1 | In this table, we have summarized information on shared genomic variants in a family, in which three siblings were affected with

bipolar disorder and anxiety spectrum disorders.

(A) Potentially damaging variants in nine brain-expressed genes were shared by the affected family members.

Location Gene Transcript Exon Coding Protein Zygosity

7:123109272 IQUB NM_178827 9 c.1577T >A p.Val526Glu het

10:64967788 JMJD1C NM_032776 10 c.3641A > G p.His1214Arg het

1:68152073 GADD45A NM_001199741 2 c.85G > C p.Glu29Gln het

3:121435874 GOLGB1 NM_004487 9 c.983T > C p.Val328Ala het

3:146311810 PLSCR5 NM_001085420 4 c.350G >A p.Arg117Gln het

3:145917659 PLSCR4 NM_020353 6 c.565A > G p.Met189Val het

2:58315517 VRK2 NM_001130480 6 c.386A > G p.Gln129Arg het

15:81274319 MESDC2 NM_015154 2 c.418C >T p.Leu140Phe het

1:60019796 FGGY NM_001113411 8 c.800G >T p.Gly267Val het

(B) Quality control measures for the rare variants indicated high quality reads and good coverage.

Location Gene Identifier Quality score Filter result Average depth

7:123109272 IQUB novel 1148.24 Pass 68.1677

10:64967788 JMJD1C novel 3935.47 Pass 141.0839

1:68152073 GADD45A novel 747.91 Pass 27.9346

3:121435874 GOLGB1 rs140932474 4257.63 Pass 125.7677

3:146311810 PLSCR5 rs199965523 4061.42 Pass 137.5935

3:145917659 PLSCR4 rs139054640 1708.17 Pass 68.9742

2:58315517 VRK2 novel 3801.98 Pass 126.9355

15:81274319 MESDC2 novel 1624.88 Pass 68.271

1:60019796 FGGY rs142088608 2029.22 Pass 83.0387

(C) Functional prediction algorithms indicate deleterious effects of the shared variants on protein structure and function.

Location Gene SIFT SIFT prediction PolyPhen-2 PolyPhen-2 Prediction MutationTaster MutationTaster prediction

7:123109272 IQUB 0 Damaging 0.998 Probably damaging 0.641624 Disease-causing

10:64967788 JMJD1C 0.04 Damaging 0.504 Possibly damaging 0.614459 Disease-causing

1:68152073 GADD45A 0.03 Damaging 0.817 Possibly damaging 0.384507 Polymorphism

3:121435874 GOLGB1 2 ? −1 ? −1 ?

3:146311810 PLSCR5 0 Damaging 0.999 Probably damaging −1 ?

3:145917659 PLSCR4 0.25 Tolerated 0.542 Possibly damaging 0.283731 Polymorphism

2:58315517 VRK2 0.04 Damaging 0.631 Possibly damaging 0.916062 Disease-causing

15:81274319 MESDC2 0 Damaging 1 Probably damaging 0.999964 Disease-causing

1:60019796 FGGY 2 ? 0.999 Probably damaging 0.999565 Disease-causing

Location Gene MutationAssessor MutationAssessor prediction GERP++ RS PhyloP

7:123109272 IQUB 3.16 Predicted functional (medium) 5.51 2.105

10:64967788 JMJD1C 1.79 Predicted non-functional (low) 5.58 2.114

1:68152073 GADD45A 2.265 Predicted functional (medium) 4.58 1.324

3:121435874 GOLGB1 2.015 Predicted functional (medium) 4.54 2.33

3:146311810 PLSCR5 3.82 Predicted functional (high) 5.69 2.679

3:145917659 PLSCR4 0.58 Predicted non-functional (neutral) 3.69 0.971

2:58315517 VRK2 2.32 Predicted functional (medium) 5.63 2.281

(Continued)
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Table 1 | Continued

Location Gene MutationAssessor MutationAssessor prediction GERP++ RS PhyloP

15:81274319 MESDC2 2.555 Predicted functional (medium) 5.32 2.487

1:60019796 FGGY 3.425 Predicted functional (medium) 5.28 2.736

(A) describes the exact chromosomal location of the identified variant for each gene, followed by the identification number of the major gene transcript. For each

variant, we identified the exon, in which the mutation was found, as well as the resulting change in the coding sequence of the gene and the amino acid change in

the protein. We also indicate if the change occurred on either both alleles (homozygous) or only on one of the alleles (heterozygous).

(B) indicates if the genomic variant in the specific gene is a novel occurrence or has been described before in genomic data bases, as indicated by the rs identification

number.The quality score indicates the overall quality of the sequencing reaction according to GATK. Filter results indicate if a variant met pre-specified quality control

thresholds. The table also indicates the average read depth of the sequencing reaction for a particular base pair.

(C) summarizes the results of the functional prediction algorithms SIFT, PolyPhen-2, MutationTaster, and MutationAssessor. Both the scores and the interpretation

are given. It also indicates the degree of evolutionary constraint at the base pair location predicted by the GERP++ RS and PhyloP scoring systems (26, 27). While

not all functional predictors agree with the deleterious consequences of the base pair change, a clear trend is obvious. Functional experiments are recommended to

confirm the predictions.

A ? indicates that the prediction is unknown.

The variants were found in the genes IQUB, IQ motif and ubiquitin domain containing; JMJD1C, jumonji domain containing 1C; GADD45A, growth arrest and DNA-

damage-inducible, alpha; GOLGB1, golgin B1; PLSCR5, phospholipid scramblase family, member 5; PLSCR4, phospholipid scramblase family, member 4; VRK2,

vaccinia related kinase 2; MESDC2, mesoderm development candidate 2; FGGY, carbohydrate kinase domain containing.

the cases carried the unique combination of the two variants in
the scramblase genes. Even though rs139054640 is less likely to be
pathogenic, we cannot exclude potentially damaging consequences
of the combined effect of the two mutations.

VRK2 is a serine/threonine protein kinase and a modulator of
the ERK/MAPK and CREB-regulated intracellular signaling path-
ways (43). Activation of VRK2 results in reduced phosphorylation
of key proteins in this pathway and reduced MEK-induced gene
transcription (44, 45). The novel gene variant leads to an amino
acid change in the serine/threonine double-specific kinase domain
of the protein. All four predictors consider the variant damag-
ing. While this variant was present only in the affected family
members, a previously known variant (rs144870539) was present
in the serine/threonine protein kinase domain in two controls.
Rs144870539 has a MAF of 0.003 in European populations.

MESDC2 is a chaperone in the Wnt/β-catenin-signaling path-
way, which contributes to neuronal plasticity jointly with the
ERK/MAPK and CREB-regulated intracellular signaling pathways
(46–48). The protein is also essential for establishing polarity dur-
ing embryonic development and for mesoderm induction (49).
The novel mutation is in Exon 2 of the gene and affects the func-
tional domain of the protein. While the mutation was present only
in cases, another known and potentially damaging variant was also
present in the same functional region in the controls.

FGGY is a phosphotransferase and a member of the FGGY
kinase family (50). The gene is expressed in brain. The shared
variant is a known polymorphism (rs142088608), which has been
described only once before in the European sample of the 1000
Genomes Project. However, several potentially damaging muta-
tions in the vicinity of this variant were present in the controls.

In summary, we identified eight rare, protein-damaging muta-
tions in eight brain-expressed genes that were shared by three
siblings affected with bipolar disorder. These mutations consisted
of five novel sequence changes and three previously reported
very rare variants. The genes encode proteins that modulate
ERK/MAPK and CREB-regulated intracellular signaling pathways

at several levels, from membrane-bound receptor recycling to
gene expression regulation (Figure 2). While equally damaging
mutations were also present in some of these genes in the controls,
the combination of the variants was unique to the cases.

DISCUSSION
Strong heritability of bipolar disorder has been supported by
many studies, but the identification of causal variants has been
challenging. Common genomic variants have been explored with
genome-wide association studies in large population samples.
These studies might have identified some common markers indi-
cating slightly increased risk, but so far they have not revealed
a specific disease-causing mutation that could provide insight
into disease mechanisms. Recently, exome-wide sequencing stud-
ies have suggested rare causal variants and even combinations of
multiple rare, damaging variants with small to moderate effect
as risk factors for psychiatric disorders. To find further support
for this “Multiple-Rare-Variants Common-Disease Model,” we
sequenced the exomes of affected and unaffected family mem-
bers in a small pedigree with bipolar disorder and examined all
potentially damaging mutations that were shared by the affected
family members.

The pedigree suggested an autosomal recessive mode of inher-
itance in this family. The parents had been healthy, but multiple
children had been diagnosed with bipolar disorder in the absence
of adverse life events or substance abuse. Nevertheless, exome-
wide sequencing failed to identify a rare, homozygous, damaging
mutation, or compound heterozygous mutations in the same gene
that could explain this pattern of disease aggregation. Therefore,
we did not find support for a recessive disease model in the
sequence data. Alternatively, one of the parents could have car-
ried a de novo germ-line mutation with large and highly penetrant
effect. In this case, the mutation would not be present in the par-
ent’s DNA and the parent would be unaffected. But the mutation
could be transmitted through the germ cells to the children, who
would manifest the disease. To support this hypothesis, further
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FIGURE 2 | Mutations in the ERK/MAPK signaling pathway and
related second messenger systems. The ERK/MAPK signaling pathway
and related second messenger systems play a central role in neuronal and
synaptic plasticity, affect regulation, and response to chronic stress.
Mutations in genes related to these pathways could lead to reduced
resilience and increased vulnerability. In a family with bipolar disorder and
co-morbid anxiety spectrum disorders, we have identified potentially
damaging mutations in genes related to these pathways. The genes
encode proteins that are key regulators at several levels, from the cell

membrane to the nucleus. IQUB and GOLGB1 are involved in G-protein
coupled receptor recycling. FGGY, VRK2, GADD45A, and PLSCR proteins
influence signal transduction through the ERK/MAPK messenger cascade.
MESDC2 and JMJD1C influence CREB-regulated gene expression in the
nucleus. Direct physical interaction has been reported between GADD45A
and JMJD1C. These second messenger systems are also the target of
lithium and valproic acid, which are commonly used to treat bipolar
disorder. Green arrows indicate activating influences and red arrows
indicate inhibiting influences.

studies would have to demonstrate the absence of the mutation
in the DNA of both parents and a damaging effect in functional
assays. Unfortunately, parental DNA was not available to confirm
this hypothesis. Alternatively, the disease could be caused by a
combination of multiple rare, damaging mutations in multiple
genes that function in the same intracellular signaling pathway.
Under this disease model, each parent would share only a fraction
of the mutations with the affected siblings, but a normal phe-
notype could result, because compensatory mechanisms would
prevent the disease manifestation indicating robustness of the
intracellular signaling cascades. This disease model resembles the
threshold disease model well known in cancer genetics. Under
this model, multiple mutations lead up to a threshold, beyond
which disease manifestations become likely. The combination
of mutations could weaken central intracellular signaling path-
ways resulting in reduced resilience and increased vulnerability to
disease.

Our results support the idea that very rare mutations play a
potentially pathogenic role in bipolar disorder. In our exploratory
study, we identified eight very rare, damaging mutations shared by
three siblings affected with bipolar disorder and anxiety spectrum
disorders. Further evidence supported a potential causal relation-
ship to these disorders. First, all identified mutations were very
rare in healthy individuals. In fact, five of these mutations were

novel, and three had been described before in only one or two
individuals worldwide. Second, most functional predictors agreed
on the damaging consequences of the mutations. Third, the four
genes did not carry equally or more damaging mutations in the
controls. This fact confirmed the highly conserved nature of the
genes. Still, we were able to confirm the segregation of one of these
variants (rs140932474 in the gene GOLGB1) with symptoms of
depression in a second bipolar family sequenced in our labora-
tory. Last but not least, the shared mutations were in genes that
are functionally related to the ERK/MAPK and CREB-regulated
intracellular signaling pathways.

The ERK/MAPK and CREB-regulated intracellular signal-
ing pathway is central to neuronal plasticity, affect regulation
and response to chronic stress (51, 52). In mouse models, a
close relationship has been demonstrated between exposure to
chronic stress and hyper-phosphorylation in the extracellular
signal-regulated kinase (ERK) pathway leading to depression (53).
Hyper-activation in the ERK/MAPK signaling pathways resulted
in long-term changes in multiple neurotransmitter systems and
neuronal atrophy (54, 55). Animal models have substantiated the
hypothesis that abnormalities in these pathways are responsible
for affect dysregulations, such as anxiety and depression (56–
59). If hyper-phosphorylation could lead to behavioral inhibition,
as seen in depression, hypo-phosphorylation could result in the
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opposite behavior, as seen in mania. Therefore, it is easily per-
ceivable that functional impairment in activating and inhibiting
proteins in these pathways may result in imbalances that could lead
to the cycling pattern of mood stages observed in bipolar disorder.
Acute and chronic stress could overload an already vulnerable sys-
tem that might have been balanced by compensatory mechanism.
Commonly used mood-stabilizing medications, including lithium,
valproic acid, and tricyclic antidepressants act on proteins in the
ERK/MAPK signaling cascades and also regulate gene expression
(60–63). For example, valproic acid up-regulates GADD45A, a
gene identified in our study (64).

Further evidence is accumulating that genes identified in this
study are involved in physiological processes that have been related
to psychiatric disorders. GADD45A directly influenced neurite
complexity during brain development and reduced neurite out-
growth in response to environmental stress (65–67). The expres-
sion of GADD45A is regulated by Period2, a key regulator of
circadian rhythms (68). JMJD1C has been implicated in the patho-
physiology of autism (69). In the mouse, the protein regulates the
transition from prepubertal stages to puberty by replacing WHIS-
TLE as regulator of steroid hormone synthesis (70). The protein
could also be a link between serotonin and thyroid hormones,
which might be relevant for the pathophysiology of mood dis-
orders (71). In addition, mutations in this gene could lead to
abnormal methylation (72). PLSCR4 was among a small num-
ber of genes with significantly reduced expression in the brain
of suicide victims with bipolar disorder and schizophrenia com-
pared to controls (73). These findings suggest a close connection
between scramblase genes and the phenotype of depression, sui-
cide attempts, and psychosis. Wnt/β-catenin signaling is essential
for cellular resilience and neural plasticity (74). This signaling
pathway is also a target of valproic acid. Therefore, it is likely
that mutations in these genes could contribute to the patho-
physiology of bipolar disorder and explain drug resistance in
certain patients. Our report provides the first indication for spe-
cific, potentially disease-causing mutations in the ERK/MAPK and
CREB-regulated intracellular signaling pathways.

While exome sequencing has identified many disease-causing
mutations in Mendelian disorders, this approach has obvious
limitations. First, exome sequencing is limited to the coding
regions of the genome. This method does not capture variants
in regulatory regions of genes, such as the promoter regions, the
3′region or intron regions with regulatory functions. Second, we
did not address differences in expression levels of non-coding reg-
ulatory RNAs or the effect of methylation differences between
affected and unaffected family members. These studies would be
a valuable addition to the field. Third, our study explores only
genomic variants in a single family, in which multiple members
had been diagnosed with bipolar disorder. These families are very
rare. While our results could provide insight into disease patho-
mechanisms, it remains to be determined how the disease model
can be generalized and translated to the far more common spo-
radic cases of bipolar disorder or anxiety spectrum disorders.
Also, single-family studies have the potential to be vulnerable
to confounding factors. The affected family shared a number of
symptoms, including depression, suicide attempts, panic disor-
der, mania, and psychosis. It is unclear whether these symptoms

characterize specific expressions of bipolar disorder or whether
they are caused by independent genetic or environmental risk fac-
tors. Studies in larger samples ascertained for these co-morbid
disorders will be necessary to exclude potential confounding
factors.

In summary, we consider our contribution to be an exploratory
evaluation of all coding variants shared by three siblings with bipo-
lar disorder and anxiety spectrum disorders. Our results provide
evidence for a “multiple-rare-variant common-disease model.”
While the data are clearly insufficient to conclude causality of any
single variant that we identified in this family or provide any sta-
tistical evidence for disease association, they provide preliminary
data for larger studies designed to test the hypotheses that arose
out of this exploration. In order to generalize our results, repli-
cation studies would need to confirm the disease association and
functional studies would need to test causality. Nevertheless, we
are convinced that it is highly valuable to share our results on the
background of other larger ongoing sequencing efforts in bipolar
disorder and other psychiatric disorders.
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