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☯ These authors contributed equally to this work.

* gregory.west@umontreal.ca

Abstract

Maintaining grey matter within the hippocampus is important for healthy cognition. Playing

3D-platform video games has previously been shown to promote grey matter in the hippo-

campus in younger adults. In the current study, we tested the impact of 3D-platform video

game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the

dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years

of age were randomized into three groups. The video game experimental group (VID; n = 8)

engaged in a 3D-platform video game training over a period of 6 months. Additionally, an

active control group took a series of self-directed, computerized music (piano) lessons

(MUS; n = 12), while a no-contact control group did not engage in any intervention (CON;

n = 13). After training, a within-subject increase in grey matter within the hippocampus was

significant only in the VID training group, replicating results observed in younger adults.

Active control MUS training did, however, lead to a within-subject increase in the DLPFC,

while both the VID and MUS training produced growth in the cerebellum. In contrast, the

CON group displayed significant grey matter loss in the hippocampus, cerebellum and the

DLPFC.

1. Introduction

Lower grey matter in the hippocampus is a significant biomarker for numerous neurological

and psychiatric disorders across people’s lifespan including disorders that specifically impact

older adults such as Mild Cognitive Impairment and Alzheimer’s disease [1–3]. The impact of

learning on the hippocampal system is only beginning to be better understood. The neuroplas-

tic nature of the hippocampus was first reported in humans by researchers who examined Lon-

don Taxi drivers who underwent rigorous spatial memory training to learn the city’s layout

and routes (commonly referred to as “the knowledge”). It was shown that London Taxi drivers

displayed more grey matter in the posterior hippocampus compared to a matched control
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group [4]. In a subsequent study, this relationship was shown to be causal by using a longitudi-

nal design that followed a sample of potential London taxi drivers who underwent the multi-

year training program to acquire “the knowledge”. It was found that people who successfully

completed the training program displayed increased grey matter in the hippocampus at post-

training while people who were not successful, displayed no significant increase within this

neural structure [5]. It is hypothesized that the type of learning that successful trainees under-

went involves building relationships between environmental landmarks to create a detailed

internal representation of the environment or a cognitive map [6], a process that relies centrally

on the hippocampus [7–12]. For example, learning the relationship between landmarks (e.g.,

buildings, trees, boulders, rivers etc.) allows for a flexible use of this information to navigate to

a destination point that is independent of the position of the observer. Further, post-training

grey matter changes positively correlate with functional neural activity recorded during a

training task’s execution [13]. This confirms that observed increases in grey matter is linked to

task-specific neural processing.

This evidence has encouraged research into using cognitive training techniques that would

target the hippocampal system with the aim to prevent cognitive decline associated with

decreased hippocampal grey matter [1, 2]. One technique that has shown promise in promot-

ing targeted hippocampal growth in young adults has been with the use of 3D-platform video

game training. Findings from a correlational analysis found that time spent playing platform

video games, such as Super Mario 64 and puzzle/logic games such as Tetris, was associated

with more grey matter in the entorhinal cortex [14], a structure that is both structurally and

functionally connected to the hippocampus. A follow-up longitudinal training study con-

ducted by the same research team showed that young adults who trained on Super Mario 64

for two months displayed a significantly different amount of grey matter in the hippocampus

when contrasted with a passive no-contact control group [15]. Corroborating evidence sup-

porting the positive impact of 3D-platform video game training on memory which was previ-

ously shown to be dependent on the hippocampus, in young adults, was obtained using a

longitudinal training design with behavioral measures. It was demonstrated that young adults

who trained on Super Mario 3D world showed increased spatial and episodic memory perfor-

mance compared to people who trained on a 2D-control game [16]. Together, these results

suggest that 3D-platform video game training can be beneficial to hippocampus dependent

grey matter and memory.

The relationship between the hippocampus and 3D-platform games is thought to be driven

by the fact that 3D-platform games require the use of spatial memory processes to build a cog-

nitive map of in-game environments and therefore requires learning that depends on the hip-

pocampus [6, 7, 9, 12]. Because of this, 3D-platform video game training holds promise to be

applied to populations that are at increased risk for developing neurodegenerative disorders

associated with decreased hippocampal integrity, such as older adults. No study to date has

shown that video game training can directly increase grey matter in the hippocampus of older

adults. The aim of the present study was therefore to directly test if 3D-platform video game

training can increase grey matter in neural structures know to become dysfunctional during

ageing.

Specifically, we hypothesized that older adults who trained on the 3D-platform game Super

Mario 64 for 6 months would benefit from its prominent spatial navigation components [15,

17]. We therefore predicted that older adults who trained on platform games such as Super

Mario 64 would display increased grey matter in the hippocampus.

Furthermore, because of Super Mario 64’s requirement for fine motor coordination, we

also expected 3D-platform training to increase grey matter in the cerebellum. Indeed, both

Kühn et al., 2014 [15] and West et al., 2017 [18] observed increased grey matter in the
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cerebellum of younger adults after Super Mario 64 training. In addition to the cerebellum’s

involvement in motor control, this structure has been linked to short-term memory, proce-

dural learning and episodic memory performance [19]. As a result, the learning required of

participants in the virtual environment, which is both procedural and spatial in nature, was

predicted to increase grey matter in the cerebellum.

Finally, Super Mario 64 requires ample planning and the internal storage and manipulation

of in-game information. We therefore predicted that training would increase grey matter in

the dorsolateral prefrontal cortex (DLPFC) [15]. We also predicted that Super Mario 64 train-

ing would have a positive effect on cognitive performance in older adults, namely in short-

term memory performance and in an estimate of overall cognitive health as measured by the

Montreal Cognitive Assessment (MoCA).

To isolate the specific impact of video game training (VID group) on cognitive performance

and grey matter within our defined regions of interest, two control groups were included in

the study’s design: an active music control group who trained on the piano for 6 months

(MUS group) and a passive no-contact control group (CON group). Previous evidence has

clearly demonstrated that different training demands will differentially impact neural net-

works and structures [20]. We therefore predicted that music training would have little impact

on the hippocampal system due to its limited spatial memory training component; however,

cognitive function associated with planning and reasoning should be involved in music train-

ing, resulting in increased DLPFC grey matter. The CON group was expected to not show any

increase in grey matter in any of the identified regions of interest and display no notable

change in cognitive performance at the end of the 6 month training period.

2. Materials and methods

2.1 Participants & Randomization procedure

Participants were recruited into the study from the CRIUGM participant pool. The study

received ethical approval from the Comite conjoint d’evaluation scientifique–Regroupment

Neuroimagerie/Quebec (CES-RNQ). Participants gave informed consent in writing. Partici-

pants were pre-screened to ensure that they did not have any present or past major illness,

were not taking any psychiatric medications or medication known to have an impact on cogni-

tion, they were MRI compatible and that they were a non-video game player and a non-musi-

cian. Participants also were screened for MCI using the Montreal Cognitive Assessment

(MoCA) (all participants scored� 25 [21]). To be considered a non-video game player, partic-

ipants had little to no experience with commercial video games (e.g., games played on a com-

puter or game console) during their lifetime. Casual games such as computerized card or

puzzle games were not considered to be video games.

All participants were randomized into one of three groups. Randomization was done by an

independent research assistant, using a predefined randomization table prior to contacting

participants to ensure that they were blind to the existence of the other two conditions. Ran-

domization was stratified using a covariate-adaptive randomization. Each factor was stratified

into two categories. For the factor of age there were “younger” (55–64 yrs) and “older” (65–75

yrs); for the factor of education there was low (< 16 yrs) and high (> 16 yrs); and for the factor

of gender there was female and male. Because participants were recruited from a database, age,

education level, and gender of each participant were known before they were contacted and it

was thus possible to stratify randomization on the basis of these three factors.

To reduce the impact of expectancy on test-retest effects, all participants were told that they

were expected to improve in performance. Participants in the VID group were told that there

was evidence that video game training enhances cognitive abilities, and that video game
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training in older adults was expected to improve those abilities. Participants in the MUS group

were told that there was evidence that musicians have enhanced cognitive abilities, and that we

expected musical training to improve those abilities. Finally, the CON group was told that we

were investigating test-retest effects, and that they were expected to improve on all tasks. All

participants were debriefed about the other groups at the end of the final testing session.

Fourty-eight participants in total were recruited into the study. Using the stratified ran-

domization procedure, 15 participants were assigned to the VID group, 14 participants were

assigned to the MUS group and 15 participants were assigned to the CON group. During the

study, 2 participants withdrew from the MUS group, 2 withdrew from the control group, while

11 withdrew from the VID group. To account for the higher attrition rate within the VID

group, an additional four participants were assigned who were matched for the age, gender

and education of the other two groups, however, the stratified randomization procedure was

not used. This resulted in a total of 8 participants completing the training within the VID

group. The demographics of the participants within each group are presented in Table 1.

2.2 Training procedure

Video game and music training lasted 6 months. In all cases, participants kept a record of their

daily training progress and were asked to complete a minimum of 30 minutes of training at

least five days a week, although some completed more than this amount.

Video game training: Video game training was done at home using the Nintendo Wii con-

sole system equipped with a Wii Classic Controller. All participants in this group trained on

Super Mario 64. Two participants completed all task within Super Mario 64 before the comple-

tion of the 6 month training period. In these cases, they continued to train on a very similar

game, Super Mario Galaxy, until the end of the training period. Super Mario 64 and Super

Mario Galaxy are three-dimensional platform games where the player is tasked with exploring

a virtual environment to search for stars (tokens). When enough stars are collected through

completing in-game goals, the player can then progress further into the game and will encoun-

ter new environments to explore.

After the participant completed the pre-tests, a research assistant installed the Nintendo

Wii to the participant’s home television. The research assistant then gave an initial orientation

to the participant to teach them how to turn on the Nintendo Wii and access the Super Mario

64 game. This was followed by a custom in-game orientation which taught the participant to

move the character around the virtual environment. At this point, some participants encoun-

tered certain challenges associated with maneuvering the character. Some had issues with

understanding the game’s mechanics or spatial memory or motor coordination. Further,

Super Mario 64 was not designed to be played by someone with little or no video game or com-

puter experience and has a very steep learning curve. For this reason, the research assistant

returned to the participant’s home for up to three additional supervised 2 hour training ses-

sions to teach the participant how to properly maneuver the character and progress through

the game. After this, participants were given a custom made instruction booklet which out-

lined how and where to collect all the stars for the first four levels. This allowed participants to

Table 1. Demographic information for each experimental group.

Age (+/- S.D.) Education (+/-S.D.) Gender (% of females)

VID Group 69.3 (5.7) 15.2 (3.2) 50%

MUS Group 67.7 (4.3) 14.7 (2.3) 83.3%

CON Group 66.9 (3.9) 17.5 (2.3) 76.9%

https://doi.org/10.1371/journal.pone.0187779.t001
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learn the game’s mechanics in further detail and practice the basic motor coordination that

was required. After this point, participants had to search for and obtain the stars within each

remaining level without any assistance from the research team.

Music training (Active control): Piano training was done at home using Synthesia soft-

ware, and an 88-key M-Audio MIDI piano. First, the research assistant installed and calibrated

the piano to work on the participant’s home computer. Next, they completed an introductory

lesson that included introductory information about music, detailed instructions on how to

use Synthesia, and directions on how to record their progress. Introductory music information

included lessons about note names, how to place hands on the piano, and how to synchronize

performance with the information on the screen and the metronome. A set of introductory les-

sons, and beginner piano music was installed on the computer. Participants were told to start

with the lessons, and once they were comfortable with the lessons, to try out some of the intro-

ductory songs. Participants were encouraged to move at their own pace, but to try to master a

given lesson or song before moving on. Sometimes participants would work on a lesson and

song simultaneously.

Passive control group: The passive control group had no contact with the research team

during the 6 month period other than to complete the pre- and post-testing sessions.

2.3 Outcome measures

All participants underwent a pre- and post-training testing session which included cognitive

tests and a structural MRI scan.

The Montreal cognitive assessment: The Montreal Cognitive Assessment (MoCA) [21] is

commonly administered to assess general cognitive function. Lower scores on the MoCA indi-

cate lower cognition and a greater risk for developing Mild Cognitive Impairment (MCI) and

Alzheimer’s disease.

Short-term memory performance: A short-term memory test using speech sounds [22]

was administered at pre- and post-training. Two non-sense monosyllabic syllables (‘‘ran-bij”)

were selected to create the verbal material. The syllables were chosen so that they did not share

letters and they did not form real words in isolation or when combined. The sequences were

binary, meaning that they were composed of the two items repeated in random order (eg. ran–

bij–bij–ran). A male voice was used to record the syllables which were read at a rhythm of one

item per second. These two speech sounds were randomly combined into 28 sequences of

increasing length starting at two syllables and going up to eight syllables. For each sequence par-

ticipants were asked to listen to and memorize the sequence. After the sequence finished there

was a 1 second delay, and a second sequence was played. The test sequence was identical to the

learned sequence for half the trials, and on the other half of the trials the sequence differed by a

single syllable. Participants were asked to determine if the test sequence was the same or differ-

ent than the learned sequence. Sequences were presented with the shortest one first, and the

length increased as the experiment progressed. Four different trials were presented at each

sequence length. A higher score represents a higher level of short-term memory performance.

Voxel-based morphometry. Participants were scanned on a Siemens TIM Trio 3T MRI

system (Siemens Medical Solutions, Erlangen, Germany), using the Siemens 12-channel

receive-only head coil at L’Unité de Neuroimagerie Fonctionnelle (UNF) of the Centre de

recherche de l’Institut universitaire de gériatrie de Montréal. An MPRAGE anatomical scan

of approximately nine minutes was performed. A three-dimensional gradient echo acquisi-

tion was used to collect 160 contiguous 1 mm T1-weighted images in the sagittal plane

(TR = 2300 ms, TE = 2.91 ms, flip angle = 9˚, FOV = 256 mm2, voxel size = 1 mm x 1 mm x

1 mm resolution).
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Changes in grey matter were measured using voxel-based morphometry (VBM). VBM is a

computational approach to neuroanatomy that measures differences in the local density of

brain tissue through a voxel-wise comparison of multiple brain images [23]. MRI images were

run through a bioinformatics pipeline (bpipe). The images were first corrected for intensity

non-uniformity (shading artifacts) using the N4 software package [24] and then spatially nor-

malized by linear transformation using ICBM 152 atlases [25]. The neck was then removed

from the scans using a head mask of the brain with open-source MINC tools (http://www.bic.

mni.mcgill.ca/ServicesSoftware/MINC). The BEAST algorithm was used to linearly normalize

the intensity of scans, masked individually using a brain mask generated in model space [26].

INSECT (Intensity Normalized Stereotaxic Environment for the Classification of Tissues) [27]

was used to automatically label voxels as white matter, grey matter, cerebrospinal fluid, or

background. White matter, grey matter, and cerebrospinal fluid were extracted from the brain

and blurred using a 4mm FWHM (full-width at half-max) Gaussian kernel. Analyses were run

using RMINC (http://launchpad.net/rminc), which operates using the R statistical package

(http://www.r-project.org).

We chose our regions of interest (ROIs) based on our a priori hypotheses was set[7, 9, 10],

namely the hippocampus, DLPFC and the cerebellum [15]. Regions of interest (ROIs) were

structurally defined in advance of data collection, based on our a priori hypotheses. Because of

this, an uncorrected threshold of p< 0.001 for the peak voxel within ROIs was set. We also

report effects that pass small volume correction, which is based on an even more conservative

statistical threshold. In these cases, the resultant p-value accounted for the number of voxels in

the hippocampus [4, 8]. In both cases, the voxels within our ROIs needed to pass a more con-

servative threshold compared to voxels outside these regions.

As recommended by Lövdén et al., 2013[28], we first conducted group (VID; MUS; CON)

by time (pre-training; post-training) interaction analyses. Interaction analyses were corrected

for multiple comparisons using the small volume correction (SVC) procedure with a signifi-

cance threshold of p< 0.05. To qualify observed interaction effects that pass small volume cor-

rection, we conducted planned ROI analyses using paired sample t-test within each training

group to investigate changes in grey matter at an uncorrected threshold of p< 0.0001.

Note. There were a number of additional measurements taken to examine the impact of

music training on auditory cognition. The purpose of this paper is to report the benefits of

video-game playing on tasks where video-game training was hypothesized to have a positive

impact on the brain. Results related to the benefits of music training on audition will be

reported elsewhere.

3. Results

3.1 Equivalency of groups at pre-test

Because of the higher attrition rate in the VID group, there was increased concern regarding the

equivalency of groups at pre-test. We therefore tested if there were any group differences in

grey matter at pre-test within our identified ROIs and found no differences even at a more lib-

eral uncorrected threshold of p< 0.05. This confirmed that there were no significant group dif-

ferences at pre-test in any ROI. Group equivalency was further confirmed when examining pre-

test MoCA scores using a one-way ANOVA (CON: 26.61; MUS: 28.16; VID 26.93; F(2,30) =

2.18, p> 0.1). Planned contrasts also revealed no significant differences (ts<1).

3.2 Training performance

On average, participants in the VID group trained for an average of 72 h (S.D. = 11.3) and par-

ticipants in the MUS group trained for an average of 83 h (S.D. = 34.3).
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3.3 Cognitive tests

When examining the MoCA scores, planned pairwise t-tests were used to contrast the MoCA

scores before and after training within each group. A one-tailed test was employed due to a pri-

ori direction of our hypothesis. This revealed a significant increase at post training in the VID

group (t(7) = 2.1, p<0.05; See Table 2 & S1 Fig), while the MUS and CON group did not dis-

play a significant increase (t s< 1). Planned pairwise t-tests were again used to examine data

from the short-term memory task. This revealed a significant increase in the VID group at

post-training (t(7) = 3.3, p<0.05; See S1 Fig) while no significant difference was observed in

the MUS or CON group (ts< 1).

3.4 Voxel-based morphometry

We next tested for changes in grey matter within the three identified regions of interests: the

hippocampus, cerebellum, and DLFPC (see Table 3). We conducted three Time x Group anal-

yses to contrast the VID and CON group, the MUS and CON group and the VID and MUS

Table 2. Summary of behavioural results.

Pre-training Post-training t value p value

CON Group

MoCA 26.6 ± 2.14 27.1 ± 1.85 0.98 p = 0.35

Short-term memory 23.7 ± 2.9 23.2 ± 3.3 0.58 p = 0.58

MUS Group

MoCA 28.2 ± 1.9 28.2 ± 2.1 0.19 p = 0.85

Short-term memory 24.3 ± 2.7 24.8 ± 1.8 1.0 p = 0.32

VID Group

MoCA 26.9 ± 1.3 28.3 ± 1.4 2.1 p < 0.05 (one-tailed)

Short-term memory 23.0 ± 2.6 25.0 ± 2.9 3.3 p < 0.05

https://doi.org/10.1371/journal.pone.0187779.t002

Table 3. Summary of VBM results.

Area Peak coordinates (MNI) t value

VID / CON Interaction left hippocampus x = -36, y = -16, z = -24 5.69 SVC

left cerebellum x = -19, y = -83, z = -33 7.57 SVC

MUS / CON Interaction right hippocampus x = 35, y = -24, z = -17 6.21 SVC

left DLPFC x = -26, y = 19, z = 49 5.79 SVC

right DLPFC x = 27, y = 45, z = 35 5.67 SVC

right cerebellum x = 9, y = -55, z = -48 6.79 SVC

VID Pre-post contrast left hippocampus x = -33, y = -13, z = -20 7.09

right hippocampus x = 32, y = -29, z = -12 6.19

left cerebellum x = -40, y = -67, z = -51 9.38

MUS Pre-post contrast right DLPFC x = 49, y = 29, z = 6 8.11

right cerebellum x = 14, y = -68, z = -59 7.08

CON Pre-post contrast left hippocampus x = -29, y = -18, z = -24 -6.34

right hippocampus x = 31, y = -7.9, z = -27 -6.25

left cerebellum x = -5, y = -64, z = -26 -8.81

right cerebellum x = 4, y = -67, z = -26 -8.10

right DLPFC x = 34, y = 39, z = 9 -5.37

MNI = Montreal Neurological Institute; SVC = t value passes small volume correction

https://doi.org/10.1371/journal.pone.0187779.t003
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group. Results of the Time X VID/CON group analysis (Fig 1) revealed a significant interac-

tion in the left hippocampus (x = -36, y = -16, z = -24; t = 5.69; p< 0.05 SVC) and in the left

cerebellum (x = -19, y = -83, z = -33 t = 7.57; p< 0.05 SVC). The Time X MUS/CON group

analysis (Fig 2) revealed a significant interaction in the right hippocampus (x = 35, y = -24, z =

-17; t = 6.21; p< 0.05, SVC), left DLPFC (x = -26, y = 19, z = 49; t = 5.79; p< 0.05, SVC), right

DLPFC (x = 27, y = 45, z = 35; t = 5.67; p< 0.05, SVC) and right cerebellum (x = 9, y = -55, z =

-48; t = 6.79; p< 0.05, SVC). The VID/MUS group analysis did not reveal any significant inter-

action that passed small volume correction.

To further qualify the observed interaction effects and investigate if growth or atrophy

within a single group were driving these effects, we conducted planned ROI analyses using

paired sample t-test within each training group at an uncorrected threshold of p< 0.0001. In

the VID group, a significant increase in grey matter was observed bilaterally in the hippocam-

pus (left: x = -33, y = -13, z = -20; t = 7.09, p< 0.0001; right: (x = 32, y = -29, z = -12; t = 6.19,

p< 0.0005; Fig 3) and in the left cerebellum (x = -40, y = -67, z = -51; t = 9.38, p< 0.00005; Fig

3). In the MUS group, a significant increase in grey matter was observed in the right DLPFC

(x = 49, y = 29, z = 6; t = 8.11, p< 0.000005) and the right cerebellum (x = 14, y = -68, z = -59;

t = 7.08; p< 0.0001; Fig 4). No other significant increases were observed in any other region of

interest or group. We then examined if any of the experimental groups experienced decreased

grey matter over the study’s 6 month period. This revealed a significant decrease in grey matter

in the passive control group within the hippocampus bilaterally (left: x = -29, y = -18, z = -24;

t = -6.34, p< 0.00005; right: x = 31, y = -7.9, z = -27; t = -6.25, p< 0.00005), the cerebellum

bilaterally (left: x = -5, y = -64, z = -26; t = -8.81, p< 0.00005; right: x = 4, y = -67, z = -26; t =

-8.10, p< 0.00005) and the right DLPFC (x = 34, y = 39, z = 9; t = -5.37, p< 0.0001; See S2

Fig). No significant atrophy was observed in any of the ROIs in either the MUS or VID train-

ing groups, even at a more liberal threshold of p< 0.05.

Fig 1. Group (VID; CON) x Time (pre-test; post-test) interaction. A significant effect was observed in the

(a) left hippocampus (HPC; (x = -36, y = -16, z = -24; t = 5.69; p < 0.05, corrected) and (b) left cerebellum (C;

cerebellum (x = -19, y = -83, z = -33 t = 7.57; p < 0.05 corrected).

https://doi.org/10.1371/journal.pone.0187779.g001
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Together, these results support the hypothesis that VID training specifically resulted in

increased hippocampal grey matter, while MUS training appeared to have preserved tissue in

this structure, but no within-subject growth was observed. MUS training, however, directly

contributed to growth in the DLPFC and both VID and MUS groups displayed increased grey

matter in the cerebellum after training.

No other significant results were found when performing whole brain comparisons.

4. Discussion

We investigated the impact of 3D-platform video game training on hippocampal grey matter

and memory performance in older adults. Analyses revealed a significant Group x Time inter-

action within the hippocampus in both the VID and MUS groups when each contrasted with

the CON group. Planned comparisons revealed that these interactions were driven by both

post-training growth in the VID group and post-training atrophy in the CON group. No direct

within-subject growth in the hippocampus was observed in the MUS group, thereby suggest-

ing that the significant MUS/CON Group x Time interaction observed in the hippocampus

was driven by the observed reduction in grey matter within the CON group.

Interaction effects were also observed in the DLPFC and cerebellum. Participants in both

the VID and MUS group displayed a significant interaction in the cerebellum when con-

trasted with the CON group and both the VID and MUS group displayed a direct within-

subject increase in this structure when planned comparisons were conducted. The MUS

group uniquely displayed a Group x Time interaction in the DLPFC when contrasted with

the CON group and planned within-subject comparisons confirmed that this was at least

partly driven by growth in the MUS group.

Participants in the CON group uniquely displayed reduced grey matter in the hippocam-

pus, cerebellum, and the DLPFC at the end of the 6 month period. This observation replicated

results reported by Lövdén et al., 2012 [29] who observed that healthy older adults in a passive

control group of a longitudinal study displayed atrophy in the hippocampus over a period of

four months. Importantly, participants in the VID and MUS group showed no significant

decrease in grey matter in any of the identified regions of interest, even at a more liberal uncor-

rected threshold of p< 0.05. Together, our current results provide support for the hypothesis

that new cognitive activities can prevent the negative effect of age on hippocampal grey matter,

and that casual video game training can directly increase grey matter in the hippocampus and

improve memory abilities.

Training had a differential impact on certain measures of cognitive performance. The VID

group uniquely showed an increase in short-term memory performance and the MoCA at

post-training. Further, increases in short-term memory performance observed correlated with

change in hippocampal grey matter across all participants. However, it is likely that this corre-

lation was driven in part by significant grey matter loss in the control group (See S3 Fig) More

research is needed to directly link gains in short term memory performance with increased

hippocampal grey matter integrity after video game training.

How does 3D-platform training promote increased hippocampal grey matter in older

adults? We hypothesize that the design of 3D-platform video games bias people towards hip-

pocampus-dependent spatial learning. This is achieved through the building of relationships

between landmarks in the virtual environment to create a cognitive map [6, 17]. For example,

learning the relationships between landmarks (e.g., buildings, trees, rivers etc.) results in the

flexible use of environmental information to navigate to a given destination point from any

position in the environment. The encoding and retrieval of spatial memory from an internal

cognitive map relies centrally on the hippocampus [30–33]. This direct relationship between
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hippocampus-dependent learning that relies on the use of external landmarks and grey matter

in the hippocampus has been shown to be causal. For example, in a rodent study, mice were

trained to find a platform through using either the surrounding landmarks in the testing room

(hippocampus-dependent training) or a single ‘beacon’ stimulus which directly identified the

platform’s location (non-hippocampus-dependent training). It was found that mice in the hip-

pocampus-dependent training showed increased grey matter in the hippocampus after train-

ing while mice in the non-hippocampus-dependent training group instead showed increased

grey matter in the striatum [12]. In humans, it was found that right hippocampal grey matter

predicted ability to identify the relative locations of buildings on a university campus while

blindfolded (i.e., relying on an internal cognitive map) [34]. Further, navigation performance

using landmarks was positively correlated with hippocampal grey matter in older adults [35].

Related to this, both young and older adults who use hippocampus-dependent navigation

strategies show greater fMRI activity [9, 11] and grey matter [7, 10] in the hippocampus.

Fig 2. Group (MUS; CON) x Time (pre-test; post-test) interaction. A significant effect was observed in the

(a) right hippocampus (HPC; (x = 35, y = -24, z = -17; t = 6.21; p < 0.05, corrected), (b & c) left DLPFC (x =

-26, y = 19, z = 49; t = 5.79; p < 0.05, corrected) and right DLPFC (x = 27, y = 45, z = 35; t = 5.67; p < 0.05,

corrected) and (d) the right cerebellum (C; x = 9, y = -55, z = -48; t = 6.79; p < 0.05, corrected).

https://doi.org/10.1371/journal.pone.0187779.g002
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Therefore, increased hippocampus-dependent learning during 3D-platform training is likely

the cause of the observed increased grey matter in the hippocampus.

Video game training and music training was also shown to increase grey matter in the

cerebellum in older adults. The cerebellum is involved in balance and motor learning and

control [36]. Further, grey matter loss in the cerebellum is related to decreased sensorimotor

Fig 3. Planned within-subject contrast for the VID group. Increased grey matter in the (a) left hippocampus (x = -33, y = -13, z = -20;

t = 7.09, p < 0.0001), (b) right hippocampus (x = 32, y = -29, z = -12; t = 6.19, p < 0.0005) and (c) left cerebellum (x = -40, y = -67, z = -51;

t = 9.38, p < 0.00005) after older adults completed 6 months of video game training. Significant peaks in hippocampus = HPC; significant

peak in cerebellum = C.

https://doi.org/10.1371/journal.pone.0187779.g003

Fig 4. Planned within-subject contrast for the MUS group. Increased grey matter in (a) the right DLPFC (x = 49, y = 29, z = 6; t = 8.11,

p < 0.000005) and (b) cerebellum (x = 14, y = -68, z = -59; t = 7.08; p < 0.0001) after older adults completed 6 months of music training. Significant

peak in dorsolateral prefrontal cortex = DLPFC; significant peak in cerebellum = C.

https://doi.org/10.1371/journal.pone.0187779.g004
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performance [37] and balance [38] in older adults. Our results therefore suggest that learning

and efficiently executing new motor commands during 3D-platform video game training and

music training has the potential to improve balance controlled by the cerebellum. Future

research should examine the direct impact of 3D-platform video game and music training on

measures of balance and gait in older adults to further explore this relationship.

In addition to the grey matter effects observed in the VID group at post-training, the MUS

group uniquely displayed significant growth in the DLPFC. The DLPFC is involved in execu-

tive function, cognitive flexibility, planning, and inhibition, which are all functions that music

training is thought to enhance [39]. We did not observe a significant increase in the DLPFC

in the VID group, which was unexpected. It is possible that 3D-platform training does posi-

tively impact frontal structures of older adults, however, this effect could be weaker than the

observed impact on the hippocampus and/or could require a larger training exposure. Further,

no atrophy was observed in the DLPFC after 3D-platform training, whereas the CON group

did display atrophy in this region. These findings suggest that 3D-platform training likely

engaged the DLPFC more so than the passive control condition. Related to this, our current

results also suggest that in addition to promoting grey matter growth, learning to play a new

instrument or a 3D-platform video game may counteract age-related atrophy in the hippocam-

pus, cerebellum, and DLPFC. Only the CON group showed significant grey matter decreases

in the hippocampus, cerebellum, and DLPFC. In contrast to the passive CON group, both

training groups did not display any significant reduction in grey matter in any of our defined

regions of interest. In other words, learning new tasks could be related to preserving brain tis-

sue within our identified ROIs in addition to targeted, task-dependent growth specific to the

training task.

How can music and video game training cause specific changes in neural structures? With

respect to changes in grey matter, as measured by VBM, it has been established that cognitive

training can target specific neural structures that support the performance of the cognitive task

in question. This can include effects based on both sensorimotor recruitment and the use of

cognitive processes such as spatial or working memory. It, however, can be difficult to pin-

point exactly which aspect of training produces specific changes in neural structures. This

underscores the need for future follow up research to establish which specific aspects of music

and video game training caused the observed effects in the current paper. Another aspect to

consider is the fact that structural changes observed by way of VBM are not necessarily caused

by one sole process. A recent review by Zatorre, Fields & Johansen-Berg (2012) [40] explains

that observed changes in grey and white matter likely involves many interconnected structural

changes involving various cell types. More specifically changes in gray matter could indicate a

change in neurogenesis, synaptogenesis or neuronal morphology. Specifically linking one of

these processes to observed changes in grey matter using VBM based on T1-weighted images

is, however, difficult to establish in human samples. Nonetheless, mouse work using both MRI

and histological techniques has established that training related grey matter changes involving

the hippocampus were directly linked to axonal growth cones [12]. Future research is needed

to establish this relationship in humans. Another factor could be related to molecular changes

as a result of training. For example, it has been found that exercise’s impact of hippocampal

grey matter is mediated by an increase in Brain Derived Neurotropic Factor (BDNF) [41]. Fur-

ther, it is also know that the BDNF valine (val) to methionine (met) polymorphism at codon

66 (val66met) is associated with less efficient secretion of BDNF leading to smaller hippocam-

pal volumes [42] and dysfunction of the hippocampus [43]. Conversely, the val homozygous

genotype is associated with increased hippocampal volumes [42]. It is possible that cognitive

training could have an impact on BDNF, which interacts with gene polymorphism to produce

changes in grey matter. These factors should be measured in future research.
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The 3D-platform video game training produced positive grey matter increases in brain

regions known to decline with age and are related to aging-related cognitive decline. The final

sample size was, however, smaller in the VID training group. This was primarily associated

with the steep learning curve within the design of Super Mario 64 and issues with learning the

proper motor coordination needed to progress successfully through the game independently.

Given this fact, we have decided to include a discussion about what can be learned from the

attrition in the video-game group.

One the one hand, the final sample size in the VID group is lower; however, the attrition

from the video game group provides some interesting insights into the usefulness of using

video-games as a form of cognitive rehabilitation. In the current study, the active control

group learned to play piano through a video-game interface, and attrition in this group was

comparable to the control group. At the same time, learning a musical instrument has long

been considered a useful skill, and worthwhile activity. The comparable rates of attrition in the

music and control group suggest that the current cohort of older adults have positive associa-

tions with piano playing. The greater attrition in the video-game group suggests that this

cohort has more negative associations with video-game playing. However, it can be argued

that people who completed the video-game training had similar levels of motivation compared

to people who completed the music training. Further, recent research has discovered many

positive associations with video game playing. These benefits include enhanced cognitive abili-

ties in younger adults [14, 15, 44–46] and as we demonstrate here, in older adults as well.

Thus, as the current cohort of middle-aged and young adults ages, future cohorts of older

adults will likely be more comfortable with using video-games as a form of cognitive interven-

tion. This would reduce attrition rates because future cohorts of older adults would be moti-

vated to complete the video-game training replicating the current video-game and music–

training groups.

Along these lines, the current sample provides an insight into the specific effectiveness of

video-game training that may not be testable in the next generation. Recruiting non-video

game players over the age of 55 was relatively easy in the current study, while finding non-

musicians was much harder. In fact, most participants in this study had completed some

music education in primary school, while none of the participants had any experience with

video-games. In the future it will be harder to find non video game players. Market research

from the ESA claims that from 2014–2016 the average age of a video game player increased

from 31–35 years of age. In the same research the ESA reports that in 2014 34% of regular

video-game players were over 36. In 2016 the percentage of regular video-game players over 36

increased, to 39% [47, 48]. These patterns suggests that in the coming years video-game

playing will become more common in older adults and finding non-video game players to

run controlled experiments will become increasingly difficult. In the current study, findings

from the participants that remained in the video game group strongly support the hypothe-

sis that motivated older adults can benefit from video-game playing. The current findings

are particularly important because in the future it will become increasingly difficult to find

people interested in playing video-games that have not already done so on their own accord.

It is likely to be even more difficult to find motivated non-video-game players in the future

compared to non-musicians because learning to play video games is low cost, and can be

done independently.

Future research should address how individual differences can contribute to the successful

completion of 3D-platform training in older adults. The present results nonetheless represent

a proof of concept that can support video game development that is more specifically tailored

for older adults with the aim to achieve a higher rate of training compliance. The development

of such a training tool could have a positive impact on healthy aging as decreased grey matter
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in the hippocampus is associated with increased risk for cognitive impairment and Alzheimer’s

disease [1, 2], and decreased grey matter in the cerebellum is associated with decreased senso-

rimotor performance [37] and balance [38] in older adults.

This is the first study to show that video game training can have a positive effect on the hip-

pocampal memory system of older adults. Further, we show that increased grey matter in the

hippocampus is specific to 3D-platform video game training compared to an active control

task that consists of music lessons. Future research should focus on the longevity of these

observed effects, transfer to cognitive performance related to balance and spatial memory abil-

ity, and the development of a video game training tool tailored for older adults.
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S2 Fig. Decreased grey matter in the (a) left hippocampus (x = -29, y = -18, z = -24; t =

-6.34, p < 0.00005), (b) right hippocampus (x = 31, y = -7.9, z = -27; t = -6.25, p < 0.00005),

(c) left cerebellum (x = -5, y = -64, z = -26; t = -8.81, p < 0.00005), (d) right cerebellum

(x = 4, y = -67, z = -26; t = -8.10, p < 0.00005) and (e) right DLPCF (x = 34, y = 39, z = 9;

t = -5.37, p < 0.0001) in the passive CON group was observed. Significant peaks of atrophy

in hippocampus = HPC; significant peaks of atrophy in cerebellum = C; significant peak of

atrophy in dorsolateral prefrontal cortex = DLPFC.
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S3 Fig. We also examined the relationship between training related changes in short-term
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