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Background:Living at high altitude or with chronic hypoxia implies functional and

morphological changes in the right ventricle and pulmonary vasculature with a 10%

prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working

intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still

not well-defined. The aim of this study was to evaluate the right cardiac circuit status

along with potentially contributory metabolic variables and distinctive responses after

long exposure to the latter condition.

Methods: A cross-sectional study of 120 healthy miners working at an altitude

of 4,400–4,800m for over 5 years in 7-day commuting shifts was designed.

Echocardiography was performed on day 2 at sea level. Additionally, biomedical and

biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological

variables were measured at altitude and at sea level.

Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5

(range 5–29) years spent at altitude. Most subjects still suffered from mild to moderate

symptoms of acute mountain sickness (mild was an LLS of 3–5 points, including

cephalea; moderate was LLS of 6–10 points) (38.3%) at the end of day 1 of the shift.

Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg,

9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5mm),

64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good

ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18–66.39); p

< 0.05) and insulin (OR: 1.11 (1.02–1.20); p < 0.05) were associated with elevated

mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified

association patterns of several other variables (metabolic, labor, and biomedical) with

higher mPAP.

Conclusions: Working intermittently at high altitude involves a distinctive pattern. The

most relevant and novel characteristics are a greater prevalence of elevated mPAP

and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH),
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which is accompanied by subsequent morphological characteristics. These findings are

associated with cardiometabolic factors (insulin and ADMA). However, the functional

repercussions seem to be minor or negligible. This research contributes to our

understanding and surveillance of this unique model of chronic intermittent high-

altitude exposure.

Keywords: high-altitude pulmonary hypertension, chronic intermittent hypobaric hypoxia, altitude, right heart,

insulin and ADMA

INTRODUCTION

The right cardiac circuit (rather than the left) of high-
altitude populations living in chronic hypobaric hypoxia (CH)
undergoes major changes. These changes are characterized
by elevated pulmonary artery pressure (PAP), right ventricle
hypertrophy, and heart and pulmonary vessel remodeling.
Some individuals develop high-altitude pulmonary hypertension
(HAPH). Individuals who relocate to live permanently at
altitude display the same phenomena (Penaloza and Arias-
Stella, 2007). A complex series of pathophysiological and
physiological mechanisms are responsible for the responses to
hypoxia. The first described mechanism is hypoxic pulmonary
vasoconstriction (HPV) (von Euler and Liljestrand, 1946), which
is followed by several metabolic and molecular alterations,
such as an imbalance between endothelial vasoconstrictors and
vasodilators, reactive oxygen species (ROS) (Chen et al., 2012),
and some associated factors, including insulin and asymmetric
dimethylarginine (ADMA) (Richalet and Pichon, 2014; Lüneburg
et al., 2016).

Recently, a new type of exposure to altitude has been
of interest: long-term chronic intermittent hypobaric
hypoxia (CIHH), which has been acknowledged as a distinct
pathophysiological condition, including higher blood pressure
at altitude and acute mountain sickness persistence on day 1
(Richalet et al., 2002; Brito et al., 2007). This exposure implies
long-term exposure to shifts of 4 to 15 days at an altitude above
3,500m, which are followed by a resting period of the same
number of days at sea level (Richalet et al., 2002; West, 2002).
Mining, observatory, army, and frontier control personnel are
frequently exposed to these conditions, and their numbers are
dramatically increasing. In Chile alone, it has been estimated
that there are over 65,000 workers exposed to this condition
(Brito et al., 2007). Therefore, many aspects of the underlying
molecular mechanisms and clinical consequences are not well-
known. Some studies in humans have demonstrated changes
in the right heart circulation that are similar to those occurring

Abbreviations: BP, Blood pressure; SBP, Systolic blood pressure; DBP, Diastolic

blood pressure; SPAP, Systolic pulmonary artery pressure; mPAP,Mean pulmonary

artery pressure; RVWT, Right ventricle wall thickness; FCRV, Four-chamber right

ventricle; RVOT, Right ventricle outflow track; RAA, Right atrium area; PVR,

Pulmonary vascular resistance; LVEF, Left ejection fraction; AD, Aortic diameter;

TAPSE, Tricuspid annular plane systolic excursion; RV, Right ventricle; RVH, Right

ventricle hypertrophy; ADMA, Asymmetric dimethylarginine; SDMA, Symmetric

dimethylarginine; HP, Pulmonary hypertension; HAPH, High-altitude pulmonary

hypertension; CIHH, Chronic intermittent hypobaric hypoxia; HPV, Hypoxic

pulmonary vasoconstriction; WP, Waist perimeter; SL, Sea level.

in CH, such as a rise in PAP and right ventricular enlargement
and/or hypertrophy (Richalet et al., 2002; Sarybaev et al.,
2003; Brito et al., 2007). Remodeling of pulmonary vessels has
also been demonstrated in animal models (Brito et al., 2015).
Notwithstanding, there is scarce research assessing these changes
over long durations in larger groups of individuals or looking
for new potential associations with other physiological and
biochemical variables as associated factors.

The endothelium has been known to play an important role
in the regulation of systemic and pulmonary vascular tone,
which mainly occurs by secreting the potent vasodilator nitric
oxide (NO). NO is synthesized by endothelial NO synthase
(NOS), which is competitively inhibited by the endogenous
compound asymmetric dimethylarginine ADMA (Böger, 2006).
In contrast to ADMA, symmetric dimethylarginine (SDMA) does
not directly interfere with NOS activity. Elevated levels of ADMA
are a cause of vasoconstriction and high blood pressure and have
been associated with a high risk of cardiovascular events and
mortality (Zoccali et al., 2001; Böger et al., 2009a,b).

Animal research has already provided some information
about molecular or functional interactions in CIHH.
Interestingly, NO bioavailability and ROS production have
been demonstrated to play a major role in vascular adaptation
to altitude hypoxia (Siques et al., 2014b; Lüneburg et al., 2016;
Waypa et al., 2016). The morphological, physiological and
molecular changes appear to be similar to those occurring in CH,
but they may be less pronounced in CIHH (Brito et al., 2008;
Siques et al., 2014b; Lüneburg et al., 2016).

Thus, it was expected that altered right heart circuit status and
possible associated factors (metabolic, labor, and physiological)
would be found in people undergoing long intermittent
work at high altitude. Therefore, a cross-sectional study was
performed with the aim of determining the morphological and
functional status of the right cardiac circuit in miners working
intermittently at an altitude between 4,400 and 4,800m for a
period of more than 5 years. Moreover, the study assessed several
physiological and metabolic factors to determine whether they
were associated with cardiac parameters and whether some of
these featured a distinctive response in the evaluated condition.

MATERIALS AND METHODS

Subjects and Study Design
A cross-sectional study was performed in a random sample of 120
healthy native Chilean male miners working in a mine settlement
in the northern part of Chile at an altitude of 4,400 or 4,800m (53
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and 47% of the study population, respectively) in a shift regimen
(7 days at altitude followed by a resting period of 7 days at sea
level). The miners slept at 3,800m and worked a 12-h day shift
at highest altitude, with the trip from the dormitories to the pit
lasting 30min. All subjects had undergone amedical examination
and laboratory tests to determine altitude fitness. The inclusion
criteria were working in shifts (7X7) at high altitude (above
4,000m) for more than 5 years and a healthy status without
serious comorbidities. The exclusion criteria were diabetes,
hypertension, diagnosed obstructive sleep apnea, supplementary
oxygen in the dormitories and any cardiopulmonary disease.

Written informed consent was obtained from all participants
in accordance with the Declaration of Helsinki. The study was
approved by the Research Ethics Committee of Universidad
Arturo Prat, Iquique, Chile.

Measured Variables
Measures were taken (1) at altitude (at the mine’s health facility)
early in the morning 18 h after arrival (after one night’s sleep) and
(2) at sea level (SL) at an ambulatory medical facility in Iquique,
Chile during day 2 of the resting period. An exact definition of
the measurement time of each variable is provided below.

General Data
Age, weight, height, body mass index (BMI), calculated as weight
(kg) divided by height squared (m2), waist perimeter (WP),
smoking habit, years at altitude, physical activity and medical
status were assessed during the basal screening at SL.

Physiological Parameters
Systolic blood pressure (SBP), diastolic blood pressure (DBP),
heart rate (HR), and hemoglobin oxygen saturation (SaO2)
were determined at each study time point (at altitude and SL)
in the morning. SBP and DBP were measured in the right
arm of each participant while seated and after 5min of rest
using appropriately sized cuffs and calibrated standard mercury
sphygmomanometers according to international guidelines
(Chobanian et al., 2003; European Society of Hypertension-
European Society of Cardiology Guidelines Committee, 2003).
Heart rate was measured with an HR-100C Omron device
(Omron, Health Care Inc. R©, Bethesda, Maryland; USA), and
SaO2 was determined using a finger pulse oximeter (POX050,
Mediaid R©, Cerritos, CA; USA). The mean of two measurements
separated by a 5-min interval was taken as a valid determination
of BP, HR, and SaO2. Same measures were obtained at SL for
comparison.

Acute Mountain Sickness (AMS) and Sleep
Measurements
The Lake Louise Score-AMS self-assessment test (LLS; Roach
et al., 1993), validated in similar Chilean populations (Richalet
et al., 2002; Brito et al., 2007), was performed at altitude 18 h
after arrival, including the first night’s sleep. AMS was diagnosed
when headache and at least one other symptom occurred and a
LLSs of ≥3 was reached. Severity was assessed according to the
following categories: mild (3–4), moderate (5–10), and severe
(11–15) (Hackett, 2003). The modified Spiegel questionnaire,

validated in similar populations (Richalet et al., 2002; Brito et al.,
2007), was recorded to assess sleep status at the same time. Both
scores were obtained at SL for comparison.

Hematological and Biochemical
Measurements
Blood samples were taken at SL in the morning after 8 h
of fasting through venous puncture without stasis: hematocrit
(Htc), hemoglobin (Hb), lipid profile, glycemia, and insulin.
Additionally, insulin sensitivity or resistance [homeostatic model
assessment (HOMA-IR) index] was calculated by HOMA
program V.2.2 (Diabetes trial unit, University of Oxford).
The biomarkers asymmetric dimethylarginine (ADMA) and
symmetric dimethylarginine (SDMA) were measured using a
validated liquid chromatographic–tandem mass spectrometric
assay as described previously (Schwedhelm, 2005). The ADMA
reference range is≤0.732µmol/L, which was derived from a large
population-based cohort (Schwedhelm et al., 2009). An SDMA
reference range of ≤0.53 µmol/L was later established by the
same author (Schwedhelm et al., 2011).

Echocardiographic Assessment
An echocardiographic assessment was performed by two
experienced cardiologists at SL facilities, in the morning after a
1 h rest, using an echocardiograph (GE Vivid-I R©, GE Healthcare
Systems, Tirat Carmel, Israel) with a 1.5–3.6 MHz phased
array probe. Left ventricular end diastolic and end systolic
measurements and left ventricular septal and posterior wall
thicknesses were obtained from parasternal long axis view in M-
mode with the ultrasound beam aligned to tips of mitral leaflets.
Left ventricular ejection fraction (LVEF) was calculated from
the M-mode recordings using Teichholtz formula (Teichholz
et al., 1976). Right heart measurements were obtained after
aligning the tip of ultrasound beam at true left ventricular
apex. Pulmonary ejection time and pulmonary acceleration times
were obtained with pulse Doppler recordings of the pulmonary
valve from a parasternal short axis view at aortic valve level.
Mean pulmonary artery pressure (mPAP) was calculated from
pulmonary acceleration time according to Mahan formulas
(Dabestani et al., 1987). Tricuspid annular systolic excursion was
measured in M-mode from an apical four-chamber view with
the ultrasound beam aligned to the lateral aspect of the tricuspid
annulus. Right ventricular free wall thickness (RVWT) was
obtained from a subcostal four-chamber view. Tricuspid annular
plane systolic excursion (TAPSE index) was used for right
ventricle (RV) performance (Kaul et al., 1984; López et al., 2012).
Pulmonary vascular resistance (PVR) was calculated according
to the formula described by Abbas et al. (2003). Similarly,
other authors have noted that echocardiography for right heart
assessment, including pulmonary hypertension, has shown a
high correlation (r2) with invasive right heart catheterization
(Kojonazarov et al., 2007; Taleb et al., 2013). All measurements
and reference values were acquired according to American
Society of Echocardiography Guidelines (Rudski et al., 2010).
Two separate cut-off criteria were studied to define pulmonary
hypertension (PH): (a) HAPH’s consensus (León-Velarde et al.,
2005), which is defined at mPAP ≥30 mmHg, and (b) SL PH’s
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criteria (Rubin and American College of Chest Physicians, 2004),
which is defined at mPAP ≥25 mmHg. The reason for including
the SL cut-off was two-fold: (1) because the echocardiogram was
performed at SL and (2) to have a comparative panorama since
the current condition under examination entailed a substantial
period of both high-altitude and SL exposure.

Data Analysis
All data were entered into a database and analyzed using
IBM SPSS, V21.0 R© statistical package (Armonk, NY, USA).
For qualitative variables, absolute and relative frequencies
were calculated. For quantitative variables, proportions, means,
standard deviations, and standard errors were calculated.
Normality of the distribution was checked using Kolmogorov–
Smirnov test. All variables, except for LLS, were normally
distributed. Therefore, a non-parametric Wilcoxon Test was
used for LLS. Student’s t-test for related or independent
samples was used as appropriate. Pearson’s chi-square test was
used for proportional differences for independent variables.
Additionally, Pearson’s correlation was performed between
quantitative variables. Binary logistic regression models were
used to assess the association of all variables measured with
the mPAP using two different cut-offs (<30 vs. ≥30 mmHg
and <25 vs. ≥25 mmHg). After univariate analyses of all
variables, the statistically significant variables were introduced
into a multivariable logistic regression model using the forward
stepwise method. The results were presented as crude (mutually
adjusted) odds ratios (OR) and 95% confidence intervals (CI).
The significance level was established at p < 0.05.

To look for association patterns, a multiple correspondence
analysis was performed between categorical variables, which
might display a more comprehensive panorama. Biomedical,
occupational and metabolic variables were chosen and
dichotomized at their normal values. The graph and variances
of each dimension are provided. Angles <60◦ are considered
as association and the longer distance of the variable from its
origin the better represented. A Cronbach’s alpha of >0.50 was
considered appropriate.

RESULTS

General Characteristics
The study group was 120 miners with a mean age of 41.8 ± 0.7
years and a mean exposure to CIHH of 14 ± 0.5 years. Most
study participants were overweight (BMI: 26.3 ± 0.3 kg/m2)
and sedentary (<3 weekly <30min moderate exercise sessions,
according to Chilean criteria) (MINSAL Ministerio de Salud,
2006), and a third of them were current smokers. Table 1 gives
a complete overview of the demographic and anthropometric
characteristics of the study group.

Physiological Parameters
As expected, both SBP and DBP were higher at altitude than at
SL, along with a slight increase in HR. Approximately 40% of the
subjects had elevated SBP at altitude (≥130 mmHg, p < 0.01),
and 18% had elevated DBP (≥90 mmHg, p< 0.05). SaO2 differed
between SL and altitude in proportion to the level of altitude.

TABLE 1 | General characteristics of chronic intermittent hypoxia group.

Variables X ± SE; (range) %

Age (years old) 41.8 ± 0.7 (20–58)

<40 40.8

≥40 59.2

Years at altitude 13.9 ± 0.5 (05–29)

5–<10 20.8

≥10 79.2

Altitude of work (m) 4.600 ± 0.2 (4.400–4.800)

4,400 53.3

4,800 46.7

BMI (kg/m2) 26.3 ± 0.3 (16.6–34.9)

<25 36.7

≥25–<29.9 52.5

≥30 10.8

Waist Perimeter (cm) 97.1 ± 09 (61–121)

≤100 67.5

>100 32.5

Smoking Status

Yes 34.2

No 65.8

Sedentary

Yes 80.2

No 19.2

Values for quantitative variables are means (X) ± standard error (SE) and ranges; values

for qualitative variables are proportions (%).

TABLE 2 | Physiological parameters.

Variables X +SE X +SE p

SL Altitude

SBP 109.4 ± 1.0 126.2 ± 1.0 <0.001

DBP 69.9 ± 0.9 81.0 ± 0.7 <0.001

HR 71.5 ± 1.1 82.0 ± 1.0 <0.001

SaO2 97.7 ± 0.1 89.6 ± 0.3 <0.001

LL 0.61 ± 0.1 2.7 ± 0.2 <0.001

Spiegel test 10.6 ± 0.3 14.5 ± 0.4 <0.001

Systolic blood pressure (SBP; mmHg), diastolic blood pressure (DBP; mmHg), heart rate

(HR; b/m), hemoglobin oxygen saturation (SaO2; %), Lake Louise (score) and Spiegel test

(score), at sea level (SL) and at altitude. Values are means (X)±SE (standard error), and p

was obtained from t-test of related samples.

However, 30% of the study population had SaO2 levels ≤88% at
altitude (Table 2).

AMS and Sleep Disturbances
Despite long exposure to high altitude, a rather high proportion
of individuals showed AMS (38.4%) on the first day, which
was mainly moderate, and remarkably many study participants
had cephalea (47.5%). Most individuals declared that they had
mainly regular non-satisfactory sleep (75%), whereas the sleep
disturbances and AMS measured at SL were minimal (20% and
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TABLE 3 | Hematological and biochemical measurements at sea level.

Variables X± SE Reference range

Hematocrit (%) 47.6 ± 0.3 41–49

Hemoglobin (mg/dL) 16.2 ± 0.1 13.0–17.5

Total cholesterol (mg/dL) 193.1 ± 3.3 50–200

HDL-cholesterol (mg/dL) 43.3 ± 0.8 40–60

LDL-cholesterol (mg/dL) 114.5 ± 2.8 80–125

VLDL-cholesterol (mg/dL) 35.3 ± 1.8 10–35

Triglycerides (mg/dL) 175.9 ± 8.9 30–150

Total cholesterol/ HDL-cholesterol 4.5 ± 0.1 3

LDL-cholesterol/HDL-cholesterol 2.8 ± 0.9 3

Glycemia (mg/dL) 89.4 ± 1.3 90–110

Insulinemia (IU) 11.4 ± 0.6 10–20

Homeostatic model assessment (HOMA-IR) 1.4 ± 0.8 2.6

Asymmetric dimethylarginine (ADMA; µmol/L) 0.83 ± 0.2 0.73

Symmetric dimethylarginine (SDMA; µmol/L) 0.54 ± 0.2 0.53

Values are means (X) ±standard error (SE) and reference range.

12.5%, respectively). The presence of AMS was significantly
associated with mPAP ≥25 and mPAP ≥30 mmHg (p < 0.05).

Hematocrit and Hemoglobin
Mean Htc and Hb were almost within the normal range (70%
below 17 mg/dL). Only two individuals had Hb values of 19
mg/dL, and none had Hb above 21 mg/dL (Table 3).

Lipid Profile
In 48% of the individuals, triglycerides were elevated above 150
mg/dL, and mean triglycerides and VLDL-cholesterol was also
elevated. Although mean total cholesterol was within the normal
range, 42% of the study participants had values over 200 mg/dL.
Mean HDL-cholesterol and LDL-cholesterol were within the
respective normal ranges. The Castelli index (total cholesterol
and HDL-cholesterol) was within its upper limit, and HDL/LDL
index was normal (Table 3), although 20% of subjects had low
HDL, and 30% had elevated LDL.

Glycemia, Insulin, and HOMA-IR
Mean glycemia and insulin values were within normal ranges.
The mean HOMA-IR index was also normal (Table 3). However,
for subjects with insulin above 20 IU (11%), the HOMA-IR index
was 3.3 ± 0.2. Insulin was found to significantly correlate (p <

0.01) with BMI (r = 0.34); WP (r = 0.39), SBP at altitude (r =
0.25), VLDL and triglycerides (TG) (both r = 0.25) and mPAP (r
= 0.22; p < 0.05).

Upon further analysis of the association of mean insulin
levels with mPAP values, a distinctive difference in insulin
concentrations at each cut-off point of mPAP was found.
At mPAP ≥30 mmHg, mean insulin was 16.9 ± 2.14 IU,
whereas at mPAP <30 mmHg, a lower mean insulin value was
observed (10.6 ± 0.32 IU; p <0.01, Figure 1A). Those with high
insulin levels had a higher HOMA-IR (Figure 1B). Moreover,
this association was further corroborated by the correlation of
HOMA-IR with higher mPAP (r = 0.24, p <0.001).

ADMA
Mean ADMA concentration was slightly elevated (0.83 ± 0.2
µmol/L) compared to the reference range (Table 3). Half of the
subjects had ADMA concentrations ≥0.80 µmol/L. ADMA was
positively correlated (p< 0.05) withWP (r= 0.21), Hb (r= 0.20),
and SDMA (r = 0.82; p < 0.001). Most importantly, ADMA was
correlated withmPAP (r= 0.21; p< 0.05) and RVWT (r= 0.30; p
<0.001). Distinctly, mean ADMA concentration was 1.01± 0.15
µmol/L in subjects with mPAP ≥30 mmHg, as opposed to 0.81
± 0.18 µmol/L in subjects with mPAP <30 mmHg (p < 0.001;
Figure 2).

Echocardiographic Findings (mPAP and
Morphological Status)
Most individuals had mPAP within normal ranges (73.9%) with
wide variability. Nevertheless, 26.1% of the subjects had elevated
values at a cut-off point of 25 mmHg, but only 9.2% could be
categorized as truly HAPH (≥30 mmHg), and none exceeded an
mPAP of 36 mmHg (Table 4).

Regarding morphological status, it was noted that 85% of the
individuals hadmild right ventricle hypertrophy (RVH), and over
half showed a grade of right ventricular (RV) dilation supported
by an increase in FCVR and right ventricle outflow track (RVOT)
values. However, a minimal percentage (15%) of right atrium
enlargement is seen (Table 4). A representative figure of RVH
is shown in Figure 3A, and pulmonary acceleration curve at
outflow tract in Figure 3B.

Most subjects display PVRwithin the normal range, except for
4.8% of the individuals, who have slightly increased PVR. Despite
the latter finding, the subjects with mPAP ≥30 mmHg had a
value of 1.33 Wood units vs. 1.04 Wood units with mPAP <30
mmHg (p <0.001). The RV performance index (TAPSE) shows
no impairment and good performance in this group. For the left
ventricle, the left ventricle ejection fraction is within the normal
range and the aortic diameter is only mildly enlarged in 22.6% of
the individuals (Table 4).

Some significantly positive correlations (p < 0.01) were
found in all correlations performed between echocardiographic
variables: (a) mPAP vs. RVWT r = 0.39, RVOT r = 0.35, and
PVR r = 0.40; (b) RVWT vs. RVOT r = 0.30 and PVR r = 0.22;
and (c) right atrium area (RAA) vs. four-chamber right ventricle
(FCRV) r = 0.44 and PVR r = 0.21.

However, only two associations were shown when both cut-
off values for mPAP (25 and 30 mmHg) were used in the
univariate logistic regression and in the forward stepwise logistic
multivariate regression final model. At the cut-off value of 25
mmHg, ADMA (OR 8.84; CI 1.18–66.39, p < 0.05) and insulin
(OR: 1.07, CI 1.01–1.13, p < 0.05) showed an association. At the
cut-off value of 30 mmHg, the same associations were observed:
ADMA (OR: 10.74, CI 1.16–99.9, p< 0.05) and insulin (OR: 1.11,
CI 1.02–1.20, p < 0.05). All OR were adjusted by smoking status,
age, and BMI.

Multiple Correspondence Analysis
Because only two associations were found, a multiple
correspondence analysis was performed. This statistical
tool allows visualize association patterns or profiles between
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FIGURE 1 | Comparison between insulin, mPAP, and HOMA-IR (A) insulin (INS; IU) according to mean pulmonary artery pressure values (mPAP; mmHg); cut-off point

< ≥30 mmHg; and (B) homeostatic model assessment (HOMA-IR; Index) according to insulin values: cut-off point < ≥20 IU. Values are means (X )±SE (standard

error); *p < 0.01.

FIGURE 2 | Comparison of ADMA and mPAP (cut-off point < ≥30 mmHg).

Asymmetric dimethylarginine (ADMA; µmol/L); mean pulmonary artery

pressures (mPAP; mmHg). Values are means (X )±SE (standard error); *p <

0.01.

different dichotomized variables to be determined: occupational
and biomedical (years old and years at altitude), metabolic
(ADMA, insulin, triglycerides, BMI, and waist perimeter) and
echocardiographic (right ventricle wall thickness and mPAP)
were introduced. To interpret the graphical representation,
category associations can be detected by their proximity whose
reference is the angle formed with the coordinates origin (small

angles between two categories indicates greater association) and
the relative distance to the origin.

Therefore, on one hand, two different profiles are shown. In
one profile, metabolic variables were within normal values, and
age < 40 and years at altitude <15 were associated with mPAP <

25. In the other profile, altered metabolic values, higher age, and
over 15 years at altitude were found to be associated with mPAP
≥ 25. On the other hand, that mPAP > 25 and > 15HAyears
are strongly associated (small angle), mPAP >25 and insulin >

20 are moderately associated (medium angle) and mPAP > 25
and age < 40 (180 degree angle) suggest opposite directions (no
association) are depicted (Figure 4). Interestingly, when the same
procedure was performed with mPAP ≥ 30, the results were
similar.

DISCUSSION

This cross-sectional study, in long-term CIHH working shifts at
high altitude, has the following main findings: (1) a distinctive
and unique pattern of physiological responses was determined,
wherein a third of subjects showed moderate AMS persistence;
(2) high proportions of elevated mPAP (26.1%) and HAPH
(9.2%) were found by echocardiography; and (3) specific
cardiometabolic variables (high triglycerides, insulin resistance,
high ADMA, increased waist perimeter and BMI) appeared to
be associated factors, with insulin and ADMA clearly associated
with elevated mPAP.

General Aspects
This cross-sectional study with a large number of subjects
working intermittently in a long-term CIHH at high altitude
contributes three important concepts (mentioned above), which
will be individually discussed for methodological reasons;
however, these concepts appear to be related and intertwined as a
whole.
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TABLE 4 | Echocardiographic findings at sea level.

Variables X+ SE Range SL reference value Out of reference value (%)

SPAP (mmHg) 27.6 ± 0.5 13.0–38.0 30 36

mPAP (mmHg) Mahan 20.2 ± 0.6 10.2–35.8 <25 73.9

≥25 overall – – 26.1

≥25–<30 – – 16.9

≥30 – – 9.2

RVWT (mm) 6.3 ± 0.1 4.0–10.0 <5 85

<5mm 15

≥5mm 85

FCRV (mm) 30.8 ± 0.4 23.0–43.0 <28 64

RVOT short axis (mm) 29.6 ± 0.4 23.0–39.0 27-30 45

<30mm 55

≥30mm 45

RAA (cm2) 15.1 ± 0.2 10.0–24.0 <18 15

PVR (Wood units; 240 din/cm*s2) 1.08 ± 0.02 0.59–1.76 <1.5 4.8

LVEF (%) 70.1 ± 0.7 50.0–87.0 ≥56 4.2

AD (mm) 30.5 ± 0.3 21.0–41.0 <34 22.6

TAPSE index (cm) 2.3 ± 0.3 1.25–2.90 ≥1.6 0.9

Systolic pulmonary artery pressure (SPAP), mean pulmonary artery pressure by Mahan (mPAP, right ventricle wall thickness (RVWT, four-chamber right ventricle (FCRV), right ventricle

outflow track (RVOT), right atrium area (RAA), pulmonary vascular resistance (PVR), left ventricle ejection fraction (LVEF), aortic diameter (AD) and tricuspid annular plane systolic excursion

(TAPSE). Values are means (X) ± standard error (SE), range, sea level (SL) cut-off values (reference: American Society of Echocardiography; Rudski et al., 2010) and proportions out of

reference value (%).

The first concept is that this population seems to share
distinctive and unique features. In fact, there is a remarkable
proportion of overweight and sedentarism, as has been
previously reported (Esenamanova et al., 2014). Smoking habit
proportion is similar to Chilean prevalence. Physiological
responses are also coincident with previous reports in that BP
rises at altitude but reaches normal values at SL. Moreover, it
has been described that BP decreases after day 2 during the shift
at high altitude, but it does not reach SL values (Richalet et al.,
2002; Brito et al., 2007); nonetheless, a certain proportion of
individuals maintain an SBP and DBP within a rather elevated
range at altitude according to previous reports (Siques et al.,
2009). Conversely, SaO2 drops at altitude and is fully recovered
at SL, and the mean SaO2 reached at altitude is similar to
acclimatized subjects; however, almost one-third of the subjects
have lower SaO2 values, which could be explained by individual
variability or a poor response to altitude (day 1’s impact) (Brito
et al., 2007). Additionally, coincident with previous reports in
humans, Htc andHb do not show pathological values or excessive
erythrocytosis (Richalet et al., 2002; Brito et al., 2007; Siques
et al., 2007). The latter adds support to the suggestion that
under this regimen, high or excessive erythrocytosis is rare.
Likewise, consistently high AMS presence (mostly moderate),
cephalea and sleep disturbances despite the extensive elapsed
time are additional distinctive features. These findings are also
coincident with previous studies in which AMS was present
during the first 1 or 2 days of a shift at high altitude (Richalet
et al., 2002; Brito et al., 2007). However, some cohort studies
have described a decline during following exposures (Richalet
et al., 2002; Wu et al., 2009). The reasons are beyond the scope
of this study, but may be due to an inability to acclimatize

properly, the loss of acclimatization during the shift at SL or rapid
ascent.

Metabolic Responses
Lipid Profile: TG and Total Cholesterol (T-Chol)

Another relevant result of this study are the changes in lipid
profiles. It has been assumed by several authors that under
CH or CIHH, individuals are prone to good metabolic features
(Anderson and Honigman, 2011; Ezzati et al., 2012). However,
recent evidence has shown that there is an increasing proportion
of individuals with marked metabolic alteration (Mohanna et al.,
2006), which would be related to chronic mountain sickness
(Miele et al., 2016) and other altitude diseases (San Martin
et al., 2017). In fact, our results support this observation; in
this model of exposure, a rather high proportion (almost half of
the subjects) displayed an altered lipid profile. Previous studies
have consistently reported an increase in TG and contradictory
results for T-Chol (Li et al., 2007; Siques et al., 2007). The most
remarkable changes seen in this study are an increase in TG,
VLDL and T-Chol, but the mean Castelli index remains at its
upper limit.

Hypoxemia may disturb lipid metabolism by upregulating
hepatic SCD-1, leading to de novo TG synthesis, an increase
of adipose tissue lipolysis, lipoprotein secretion and decrease of
lipoprotein clearance (Li et al., 2007; Drager et al., 2012; Siques
et al., 2014a). Thus, it could be surmised that TG alteration
could be another distinctive feature of exposure to CIHH and
may be a matter of concern. Recognition of TG alteration as
a cardiovascular risk factor is a growing issue (Assmann et al.,
1996).
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FIGURE 3 | Representative echocardiographic images (A) right ventricular hypertrophy and (B) Acceleration curve of pulmonary flow at pulmonary artery outflow tract.

Insulin, Insulin Resistance (IR)
Complementary to the above metabolic findings, insulin and IR
have been noted as tightly related to the development of PH and
could be considered associated factors (Zamanian et al., 2009).
Their relation to HAPH is still to be demonstrated. However,
the finding that the insulin level correlated to anthropometric
variables (BMI and WP) and to mPAP—and this population
is mostly overweight—might suggest a similar role in HAPH
as has been reported either for IR (McLaughlin and Rich,
2004) and/or PH (Taraseviciute and Voelkel, 2006) at SL. The
findings of a cut-off point of different insulin values according
to mPAP and that higher insulin values are also associated
with higher mPAP further support insulin’s role. IR may also
share other pathophysiological conditions that are present under
hypoxia, such as elevation of cytokines (interleukin-6, monocyte
chemotactic protein) and ADMA (Zamanian et al., 2009).
Recently, an inverse relationship between oxygen hemoglobin
saturation and IR has been described in chronic hypoxia. There
are many physiopathological explanations (Miele et al., 2016),
including the disruption of leptin pathways (Polotsky et al.,
2003).

ADMA as a Marker of Cardiometabolic Risk
ADMA is a competitive NOS inhibitor that has been identified
as a regulator of NO production (Böger, 2006). ADMA
is endogenously present in the human body and inhibits
NO-dependent vasodilation in vitro (Vallance et al., 1992)
and in vivo (Böger et al., 1998). ADMA is degraded by
dimethylarginine dimethylaminohydrolase (DDAH). Disruption
of the ADMA/DDAH pathway causes endothelial dysfunction
and elevated blood pressure in the systemic and pulmonary
circulation (Leiper et al., 2007). Therefore, the possible role of
ADMA in HAPH is a focus of current research. The current
results show a significant elevation of ADMA at altitude, and

for the first time, they show a correlation of ADMA with both
mPAP and right ventricle wall thickness, suggesting a pivotal
pathophysiological role of this pathway in the development of
pulmonary vascular dysfunction at high altitude. Moreover, a
clear cut-off value of ADMA was observed according to mPAP.

Recently published data support the current findings. In
rats subjected to long-term CIHH, an impaired NO pathway
secondary to elevated ADMA and increased ROS were found
(Siques et al., 2014b; Lüneburg et al., 2016). Furthermore,
young healthy adults first exposed to CIHH develop elevated
ADMA concentrations over the time (Lüneburg et al., 2017).
Therefore, ADMA may be a useful biomarker for subjects
with HAPH.

PAP and Right Heart Status
An increase in PAP is a well-known physiological response
to hypoxia (von Euler and Liljestrand, 1946). Additionally,
permanent residents have changes in their pulmonary vascular
circuit that might account for a prevalence up to 10% of
HAPH (León-Velarde et al., 2005; Penaloza and Arias-Stella,
2007). Unfortunately, most information comes from acute or
chronic exposure and rarely from long-term CIHH; therefore,
the described changes might not be entirely applicable to
CIHH. Research conducted under different commuting exposure
regimes in humans (2-year cohort, 30× 30 shift; 2-year cohort, 7
× 7 shift) and in a 12-year cross-sectional study (5 × 2 shift) at
altitudes between 3,550 and 4,400m) also described an increase
in mPAP, right ventricle enlargement or ventricle hypertrophy,
although a small number of subjects was included (Richalet et al.,
2002; Sarybaev et al., 2003; Brito et al., 2007). The latter author
determined a 4% prevalence of HAPH in CIHH at 3,550m.
Interestingly, experimental studies in rats led to the suggestion
that RV changes were achieved to a lesser extent in CIHH than in
CH (Corno et al., 2004; Brito et al., 2008).
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FIGURE 4 | Association patterns between variables by multiple correspondence analysis. Variables and cut-off points: asymmetric dimethylarginine (ADMA; µmol/L;

< ≥0.8), age (years old; < ≥40), body mass index (BMI; kg/ m2; < ≥25), high-altitude years (HAy; < ≥15 years), insulin (INS; IU; < ≥20), mean pulmonary artery

pressure (PAPm, mmHg; < ≥25), waist perimeter (WP; cm; < ≥100), right ventricle wall thickness (RVT; mm; < ≥5) and triglycerides (TG; mg/dL; < ≥150). Explained

proportion of total variance of dimension 1 = 57.3% and dimension 2 = 42%. Cronbach’s alpha: 0.594.

Despite several limitations (cross-sectional study,
echocardiogram performed at SL, only clinical functional
capacity assessment and previously selected subjects for high-
altitude work) of the current study, the results showed a strikingly
high proportion of mPAP over 25 mmHg with a proportion
of HAPH greater than previously reported that is similar to
the prevalence in CH. Likewise, it could well be inferred that
subsequent pulmonary vasculature remodeling triggered by HPV
was present, as reported in CH (Penaloza and Arias-Stella, 2007;
Sylvester et al., 2012) and reproduced in rats under long-term
CIHH (Brito et al., 2015). Similarly, in light of the results and
despite the concept of “turn on-turn off” biological responses
in this condition (Powell and Garcia, 2000), it seems reasonable
to infer that in the current model, individuals undertake a more
prolonged pulmonary hypertensive state than expected in this
condition at high altitude.

Moreover, the HAPH levels found in this study could be
considered mild, which is supported by the fact that no subjects
had mPAP values over 36 mmHg and that the subjects had
a current healthy status without claims of functional capacity

impairment. The lack of functional repercussions (Penaloza et al.,
1963) and a mild or moderate HAPH have been described for
CH and acute hypoxia (Naeije and Dedobbeleer, 2013); this
phenomenon has been noted as the paradox of HAPH (Grover,
2014). Nevertheless, some disputes still exist regarding exercise
capacity at high altitude and HAPH. In fact, a recent study
of Kyrgyz highlanders with HAPH found a mild reduction in
exercise performance and reduced quality of life (Latshang et al.,
2017). Accordingly, these rather contradictory findings have led
to introduction of the concept of “pulmonary vascular reserve”
as a complex mechanism that determines good or poor exercise
capacity (Groepenhoff et al., 2012; Naeije and Dedobbeleer, 2013;
Pavelescu et al., 2013).

Likewise, this study also shows a striking proportion of
RVWT enlargement, suggesting that in the long term, almost
all subjects experience RV remodeling and that an mPAP value
of 25 mmHg would be sufficient to generate significant changes
in the right heart. Whether this is merely an acclimatization
response in this model of exposure that causes the RV to
increase its performance as a consequence of its homeometric
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adaptation to afterload increase (Kolár and Ostádal, 1991; Naeije
and Dedobbeleer, 2013; Richalet and Pichon, 2014) and/or ROS
activation by hypoxia of AMP kinase proteins (Chen et al.,
2012; Waypa et al., 2016) or other mechanisms remains to be
elucidated. Additionally, a vascular hyperdynamic state triggered
by adrenergic activation and autonomic system imbalance must
be considered for exerting its influence on the above variables and
possibly in RV dilation (Richalet and Pichon, 2014). Conversely,
right atrium morphological changes account for a very low
proportion. Complementary, several weak correlations between
RVmorphological parameters showed linearity with RV afterload
(mPAP value). These findings support the consistency of the
measurements, and they are in line with the PH evolving process
(ACCF/AHA, 2009).

Further analysis of the PVR results is limited since the indirect
method of measurement could bias their interpretation and is
also controversial. In fact, although some studies mentioned
above support a high correlation with right heart catheterization,
some others have described this method as accurate but with
only moderate precision (Naeije, 2003; Rudski et al., 2010; Naeije
and Dedobbeleer, 2013). If these results were accurate, it would
support amore hyperdynamic state andmilder surmised vascular
remodeling, most likely as the result of greater NO bioavailability,
as shown in CIHH rats (Siques et al., 2014b; Brito et al.,
2015).

Hence, the above considerations would better explain the
mild HAPH with apparently almost no functional capacity
repercussion. In fact, the TAPSE index of ventricle performance
is good. The left ventricle does not seem to be affected,
except for a low proportion of aortic dilation, which could
also be explained by the hyperdynamic state of this model.
The latter findings agree with a previous report regarding
left ventricle changes under hypoxia (Richalet and Pichon,
2014).

Moreover, as mentioned, the correspondence analysis
using both mPAP values depicted two distinctive patterns
of associations with metabolic, biomedical and occupational
factors. This tool, albeit is a descriptive method, has allowed
to demonstrate the association of elevated mPAP with others
variables not found in the regression model. In fact, >15
years of working in this model is strongly associated to
elevated mPAP, and additionally, the association of insulin
>20 with elevated mPAP further and consistently support
what was previously found. The findings obtained with this
correspondence analysis are of utmost interest, plausible and
depict a sort of signature of this exposure model; however,
its role in understanding the pathophysiological process of
HAPH remains to be determined. Because this analysis only
allows association patterns to be determined, its potential
usefulness for screening or prediction will require further
studies.

Therefore, the current study highlights a rather novel
finding, as discussed previously, in which an association of
insulin and ADMA with high mPAP and HAPH was found.
Also, the years spent at altitude in this CIHH model might
be considered. It is worth noting that some of the above-
mentioned associated variables to elevated mPAP, have been

previously found to individually contribute to PH and HAPH
(Parameswaran et al., 2006; Wu et al., 2009; Zamanian et al.,
2009; Kane et al., 2016; San Martin et al., 2017). Until now, their
contribution as a whole to right cardiac circuit parameter values
in subjects working in long-term CIHH had not been clearly
determined.

Although this study design has some limitations, its use was
considered necessary to evaluate right cardiac status during
long-term intermittent work at high altitude. First, a cross-
sectional design allows the determination of only association,
status and the absence of changes, but no predictive factors or
cause and effect. Moreover, a prospective study might be very
difficult.

However, a cross-sectional study has the advantages of
the ability to measure several variables, lower cost, and the
identification of important points to be studied in a future
longitudinal study. Second, the echocardiogram was performed
at SL on day 2 of the resting period for logistic reasons,
which could produce pulmonary pressures lower than at high
altitude. Nevertheless, this study allowed important findings
in this condition to be determined. As a whole, while
the characteristics found in these subjects could eventually
be assumed to result from the study design, the rigorous
methodology used, the strict selection and exclusion criteria,
the use of more accurate technology and the literature
provided support the reasonable validity of the findings of
this study in this population. Additionally, altitude differences
may explain the elevated proportions of altered morphological
and functional right cardiac parameters found in this study
compared with those in a previous cross-sectional study (Brito
et al., 2007). In fact, the latter study was conducted at
3,550m, while the subjects in the current study worked at over
4,400m.

CONCLUSIONS

In summary, this study contributes to the knowledge of long-
term CIHH working conditions at altitude, a rather unique
biological situation of hypoxia exposure. Thus, it corroborates
the persistence of AMS and lack of excessive erythrocytosis.
However, this study highlights some novel findings: a high
prevalence of HAPH, which is similar to that reported in
CH, and with higher numbers of subjects with elevated
mPAP and RVWT. In addition to determining the right
circuit morphological and functional status, this study is the
first, to our knowledge, to identify an association between
increased cardiometabolic variables and others with elevated
mPAP in CIHH. Therefore, these findings are likely to have
important implications for defining the epidemiological and
biological features of this model or prompting actions for public
health.
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