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Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, 
it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable 
costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current 
therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular 
reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, 
genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing 
latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and 
lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in 
Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review 
discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
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Introduction

The HIV pandemic remains one of medicine’s greatest chal-
lenges with an estimated 38.0 million people living with 
HIV (PLWH) of which the vast majority (25.7 million) are 
in Africa [1]. While antiretroviral therapy (ART) can halt 
viral replication, reduce mortality, and improve the lifespan 
of PLWH, this treatment is lifelong, expensive, inaccessible 
to many, and cannot eradicate the latent virus [2, 3]. It is dif-
ficult to find a cure for HIV due to the persistence of latently 
infected cells that produce the virus following interruption 
of ART [4, 5], presence of long-lived HIV-infected resting 

memory CD4 + T cells [6–10], the exhaustion of HIV-spe-
cific CD8 + T cells [11, 12] and the difficulty in reaching 
anatomic sanctuary sites by HIV-specific CD8 + T cells [5, 
13]. More so, the current World Health Organization (WHO) 
eligibility criteria of treating all regardless of CD4 count has 
increased the funding gap for ART [14]. In addition, with 
the decline of global funding for HIV [15] and the nega-
tive impact of the COVID-19 pandemic on the world econ-
omy, sustaining existing HIV/AIDS treatment programs is 
becoming even more challenging making the quest for a cure 
more acute. Between 2013 and 2020, despite considerable 
increase in the number of patients on ART, HIV funding has 
been generally flat or reduced (Fig. 1).

Three categories of HIV cure approaches have been iden-
tified: eradication cure (elimination of all viral reservoirs), 
functional cure (immune control without reservoir eradica-
tion), or a hybrid cure (reservoir reduction with improved 
immune control) [16]. Approaches to HIV cure under inves-
tigation include boosting the host immune system, genetic 
approaches to disable co-receptors or the viral genome, mod-
ification of host cells to resist HIV, and engineered T cells 
to eliminate HIV-infected cells. Others include therapeutic 
vaccination, broadly neutralizing antibodies, purging cells 
harboring latent HIV with latency-reversing agents (LRAs), 
preventing replication of latent proviruses (block and lock) 
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and boosting T cell change to reduce HIV-1 reservoirs (rinse 
and replace) [2, 3, 17–24]. As HIV cure research advances, it 
is important to bear in mind that the vast majority of PLWH 
who will need these cures live in Africa where resources are 
limited. Therefore, there is a need to design cure strategies 
that will be feasible for clinical trial and implementation in 
Africa. This article reviews ongoing HIV cure approaches, 
discusses their pros and cons, and suggests how they could 
be made suitable for Africa.

Progress towards HIV cure

Tremendous successes have been chalked in the fight 
against HIV since its identification forty years ago [25]. 
Globally, ART is now available to about 70% of PLWH, 
thus increasing life span and reducing deaths due to HIV/
AIDS [1]. The hope to find a cure for HIV was high after 
initial reports of both eradication and functional cures. 
Timothy Brown, the Berlin patient, was the first reported 
case of eradication cure. He received a bone marrow 

transplant for acute myeloid leukemia from a donor who 
was negative for HIV and had a mutation in the CCR5 co-
receptor, which is required for HIV entry. He lived free 
of HIV for close to 10 years [26] and died in 2020 from 
complications of leukemia. After unsuccessful attempts to 
replicate the same procedure [27, 28], there was a success 
in another individual, the London patient, who achieved 
long-term suppression of HIV-1 [29].

The first reported case of a functional cure was the Mis-
sissippi baby who was born to an HIV-positive mother 
and given a full dose of ART 30 h after birth. Although 
the family interrupted ART for 18 months, surprisingly 
HIV remained undetected in the blood [30]. Notwithstand-
ing, there was a rebound of detectable HIV in plasma after 
27.6 months [31]. Subsequently, the VISCONTI (Virologi-
cal and Immunological Studies in Controllers after Treat-
ment Interruption) study in 2013 implied that early initiation 
of ART enables some patients to maintain a low viral load 
after ART interruption [32]. Since these initial reports, there 
has been growing interest in developing curative therapies 
for HIV.

Fig. 1  A world map indicating the regional HIV infections and breakdown of resources available for treating HIV at two-time points (2013 and 
2020). Source of data: UNAIDS Financial Dashboard, 2021
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HIV cure strategies

Stem cell transplants

Ferrebee and Thomas [33] pioneered stem cell therapy 
which has now become a platform for treating leukemias, 
lymphomas, and many other malignancies. In people liv-
ing with HIV, the procedure was first carried out in the 
1980s oblivious of the virus since there were no assays to 
detect HIV [34]. Following this report, several attempts 
were made to treat HIV using this approach but they were 
not successful [35–38]. However, the Berlin patient gave 
a glimpse of hope that achieving a virus-free state in 
the absence of ART is possible. Despite that, stem cell 
transplant for treating HIV is not practical for several 
reasons. First, stem cell transplant is a high-risk proce-
dure with a high mortality rate and thus only employed 
in the most desperate situations such as uncontrolled 
leukemia. The conditioning and bone marrow ablation 
required for the procedure put the patient at great risk of 
dying from infections. Second, even in developed coun-
tries, the procedure is performed in the most specialized 
centers where specially trained oncologists, geneticists, 

hemato-pathologists, and infectious disease specialists are 
available. These are resources that are mostly not avail-
able in Africa. Third, the relative paucity of potential 
CCR5∆32 donors (less than 1% of Caucasians) make it 
unattractive as a potential therapy. Thus, while stem cell 
transplants indicate that HIV is potentially curable, it is 
not a practical strategy for ending the AIDS pandemic.

Shock and kill

The shock and kill approach uses compounds known as 
latency-reversing agents (LRAs) to reactivate the latent 
provirus. The premise is that patients will be given agents 
that reactivate the latent virus in the resting CD4 + T cells 
whiles they are on ART (Fig. 2). Since viral replication is 
usually toxic to CD4 + T cells, it is expected that reacti-
vation will result in the death of these cells, and because 
patients will be on ART at this stage, any virus produced 
will not be able to infect bystander cells. In addition, once 
viral production begins in the resting T cells, they will be 
recognized by the immune system for clearance. With the 
clearance of the infected resting T cells, patients could stop 
taking ART and undergo occasional monitoring. The con-
cept of the shock and kill approach is hinged on reducing 

Fig. 2  Strategies under development for an HIV cure. A Shock and 
kill approach using latency-reversing agents (LRAs) to eradicate the 
latent reservoir. B Gene therapy utilizing CRISPR to target the latent 
reservoir. C Block and lock approach using latency-inducing agents 
to induce silencing of the latent reservoir. D Immune-based thera-

pies using therapeutic vaccines, CAR-T cells, and broadly neutral-
izing antibodies. HDAC Histone deacetylase, HMT histone methyl 
transferase, PKC protein kinase C, dCA didehydro-cortistatin A, ART  
antiretroviral therapy
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the size of the latent reservoir and limiting viral rebound 
[39]. In theory, any agent that can stimulate resting T cells 
enough for viral production could be an LRA. Interleukin 2 
(IL-2), anti-CD3 antibody, and TNFα were the first LRAs 
tested in HIV-infected individuals receiving ART [40, 41], 
however, the results were not promising. The T cell receptor 
agonist and PMA (phorbol 12-myristate 13-acetate) were 
used but resulted in global T cell activation. Therefore, an 
ideal LRA should be able to cause proviral latency reversal 
without global T cell activation. Latency-reversing agents 
(LRAs) have been categorized based on their mechanism 
of action as shown in Table 1 [39]. Of the six categories, 
the histone deacetylase inhibitors (HDACis) have received 
much attention with several small early clinical trials com-
pleted [39, 42–45]. Although the shock and kill approach is 
the most clinically advanced cure strategy, clinical studies 
have focused mainly on HDACis which are already approved 
for cancer therapy. In these trials, some adverse effects 
have been reported [46]. These include but not limited to 
nausea, vomiting, anorexia [47–50]; fatigue [51–53]; and 
skin changes [54]. HDACis have been the focus of many 
researchers and investigated extensively as a potential LRA 
[55–57]. However, several groups have shown that one LRA 
might not be effective in reducing the size of the reservoir 
either due to an inadequate reactivation or lack of an effec-
tive kill or both [39, 58, 59] and suggested a combination of 
two or more LRAs to achieve robust viral reactivation and 
a significant reduction in reservoir size [60–65]. Concern-
ing potential combination LRA treatment, one of the most 
favored is a combination of HDACi and PKC agonists like 
bryostatin [66, 67]. However, there are fears of severe side 
effects with bryostatin. Therefore, the idea is to use a lower 
concentration of bryostatin to synergize with HDACis to 
achieve potent reactivation while reducing the chances of 
adverse events. That said, this combination is yet to be tested 
in clinical trials. Even though, the combination increases the 
reactivation potential, several obstacles exist in the killing 
of the reactivated cells. This includes the resistance of the 
cells to apoptosis, exhaustion of CD8 + cells, and immune 
escape mutation in chronically infected individuals [68]. 
Nonetheless, Herzig and his colleagues recently proposed a 
more effective kill of reactivated cells by utilizing chimeric 
antigen receptors (CAR) coupled with broadly neutralizing 
antibodies in an ex vivo study [69].

Another scenario where the T cells could be stimulated 
is the “Rinse and Replace” approach [24]. This is a yet 
to be tested approach which proposes that under ART, T 
cell activation could be induced to produce waves of poly-
clonal T cell differentiation resulting in a situation where 
latently infected cells are replaced by new uninfected cells. 
The infected cells are continually “washed out” due to the 
continuous activation, differentiation, and cell death. This 
approach is different from the shock and kill approach in that 

it promotes physiological replacement of frequently acti-
vated cells. In addition, only a proportion of latently infected 
cells are required to express virus that provides adjuvant 
effects thus helping to induce a potent flux. Furthermore, 
this functional cure approach aims to combine other cure 
approaches such as block and lock to prevent viral rebound 
in the absence of ART. The approach also strongly recom-
mends several rounds of ART and starting ART on time 
thus raising the concern of negative side effects, adherence, 
access to ART and cost. Implementing this approach in 
Africa will be problematic because of the concerns raised 
on ART. Moreover, clinical trials regarding this approach 
are yet to commence.

The shock and kill approach could be easily deployed in 
resource limited settings like Africa, since all that is required 
is adding another agent to the current ART regimen. That 
said, an oral regimen will be more preferable to intravenous 
infusions in an African setting.

The figure was Created with BioRender.com.

Block and lock

The block and lock approach proposes the use of small inter-
fering RNAs (siRNA) [20, 112, 113] or latency-inducing 
agents [114, 115] to effect transcriptional silencing (block) 
at the HIV promoter using epigenetic mechanisms to lock 
the integrated viral genome in a permanent position thereby 
preventing transcription of new virions even when ART is 
stopped (Fig. 2). The HIV transactivator of transcription 
(Tat) protein has been an important target for this approach 
since it is essential for transcription initiation and elonga-
tion. The tat protein which is produced early during the life 
cycle of HIV promotes the transcription of HIV by binding 
to the transactivation response element (TAR) and recruit-
ing the positive transcription elongation factor B (P-TEFb) 
to promote transcriptional elongation [115]. By far the most 
advanced strategy of the block and lock has been the use of a 
Tat inhibitor didehydro-cortistatin A (dCA) to enforce HIV 
latency [21, 115–119]. This compound has shown remark-
able success in maintaining viral latency ex vivo in primary 
T cells from virologically suppressed patients and in vivo in 
mouse models. In both instances, dCA delayed viral rebound 
when ART was interrupted [21, 120, 121]. Similar results 
for dCA were reported in HIV-2 and Simian Immunodefi-
ciency Virus (SIV) [122]. With no obvious adverse effects 
and the ability to cross the blood brain barrier, dCA may be 
able to reach the brain and other sanctuary sites of the body 
where HIV resides [123]. However, induction of resistance 
to dCA in the laboratory has been reported [124] making 
it worthwhile to investigate if some strains of HIV may be 
resistant to the compound. Although there is evidence that 
dCA induces epigenetic modification of the HIV promoter, 
the mechanism is not well understood.
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Triptolide (TPL), which is predominantly used for the 
treatment of rheumatoid arthritis, inhibits the function of 
Tat, thereby promoting latency [125]. Others found that TPL 
blocks RNAPII and prevents it from initiating transcrip-
tion [126]. However, the ability of this molecule to inter-
fere with important cellular functions limits its clinical use 
[118]. Another inhibitor of Tat-mediated viral transcription 
is Levosimendan, an FDA-approved drug for the treatment 
of heart-related conditions [127]. The effects of other inhibi-
tors targeting host factors or signaling pathways required for 
the transcription of viruses, such as P-TEFb, heat shock pro-
tein 90 (HSP90), mammalian target of rapamycin (mTOR) 
complex, facilitates chromatin transactions (FACT), bromo-
domain-containing protein 4 (BRD4), and xeroderma pig-
mentosum subtype B (XPB) is reviewed elsewhere [118, 
120, 128]. The absence of cellular homologs and the limited 
off-target effects when Tat-TAR is inhibited makes it an out-
standing target for the block and lock approach [119]. The 
block and lock strategy targets long-term remission of HIV 
in a more specific manner without global T cell activation, 
compared to some non-specific shock and kill strategies. 
Even though the block and lock approach is potentially scal-
able and could be deployed in Africa if successful, it still 
awaits human trials to determine feasibility.

Gene therapy to eradicate HIV reservoirs

Innovative ways targeting the genome of HIV in a bid to 
find a cure for the infection have advanced over the past dec-
ades. The idea of gene editing therapy is to alter a selected 
gene locus to change or interrupt its normal function using 
engineered nucleases (Fig. 2). This results in deletions or 
additions at the selected gene target site [22, 129]. Two 
main repair pathways are involved: (i) non-homologous end-
joining (NHEJ) where the break ends are directly ligated 
without a homologous template and (ii) homology-directed 
repair pathway (HDR) in which homologous sequences are 
introduced to guide the repair [130]. The HDR yields lim-
ited off-target genome effects [131]. Forms of potential gene 
editing-based HIV therapies include zinc finger nuclease 
(ZFN), transcription activator-like nucleases (TALENS), 
and clustered regularly interspaced short palindromic repeats 
(CRISPR)-associated protein 9 (CRISPR/Cas9).

The most tried gene therapy approach targeting HIV 
infection is the ZFN [132]. It is made up of two domains; 
the FokI endonuclease for cleaving target sequences and the 
Cys2-His2 zinc-finger proteins (ZFPs) for specific DNA-
binding [133, 134]. The initial report utilizing ZFN target-
ing the C–X–C chemokine receptor type 4 gene (CXCR4) 
disruption displayed promising results [135, 136]. Given 
that the mutant CCR5∆32 protein confers resistance to HIV 
infection and the Berlin patient was cured using a ∆32 stem 
cell transplant, the CCR5 became an ideal target for HIV 

gene therapy. Following the initial use of the ZFN approach 
to disrupt the CCR5 in HIV-infected cells [137, 138], several 
other works have built upon this strategy [138–141]. More 
so, there is evidence that ZFN could be used to disrupt the 
CCR5 in human induced pluripotent stem cells and human 
embryonic stem cells [142]. Similarly, HIV resistance was 
achieved when mice were treated with CCR5-disrupted gene 
hematopoietic stem cells [139]. In a landmark safety study in 
humans, Tebas et al. used ZFN to edit CCR5 out of CD4 + T 
cells isolated from HIV patients, and reinfused into the same 
patients showing that the procedure was safe [143].

In contrast to ZFN, TALENs are engineered proteins that 
can cleave dsDNA sequences in a single base pair modular 
fashion [144, 145]. This presupposes that they can bind to 
wider DNA targets than ZFN. The DNA binding proteins 
are derived naturally from Xanthomonas, a plant bacterial 
pathogen [146]. Clinically, TALENS are yet to be applied 
for the treatment of HIV. However, the success of several 
experimental studies indicates that it can be scaled up for 
HIV [147–149]. In comparison to ZFNs, TALENs are cost-
effective but difficult to generate, bulkier and the delivery to 
several cell targets is challenging [150]

The CRISPR/Cas9 uses short-guide RNA (gRNA) to 
target a specific DNA sequence after cleaving the double-
stranded DNA by the Cas9 endonuclease. The double-
stranded DNA is then repaired by NHEJ or homologous 
recombination [151]. The CRISPR/Cas9 approach is being 
widely investigated as a tool to combat various diseases 
[152–155]. Ebina et al. first applied this technology to HIV 
in cell culture to target the integrated provirus [156]. Subse-
quently, several scientists have explored the potential of the 
CRISPR/Cas9 technology to target the virus in cell culture 
systems and mouse models [157–162]. The versatility of the 
CRISPR/Cas9 technology is such that it can also be used to 
target co-receptors, restriction factors, and proteins that pro-
mote or inhibit HIV latency. It has also been demonstrated 
that the CCR5 could be silenced in a human embryonic kid-
ney (HEK) 293 T cells transfected with Cas9 and sgRNAs 
[163]. Subsequently, the piggyBac technology was used to 
enhance a homozygous ∆32 mutation in induced pluripotent 
stem cells via the CRISPR/Cas9 system [158]. Wang and his 
research group also knocked out CCR5 co-receptors using 
lentivirus vectors to express CCR5-sgRNA and Cas9 [157]. 
The CXCR4 co-receptor has also been disrupted by the 
CRISPR/Cas9 technology in CD4 + T cells of humans and 
rhesus macaque [159]. In addition, this technology has been 
explored to reactivate HIV. Scientists have used deficient 
Cas9 (dCas9) coupled with transcription activator domains 
to trigger the transcription of HIV in latent reservoir cells 
[164–167].

Since host restriction factors are weakly expressed during 
HIV infection [168, 169], CRISPR/Cas9 has been utilized 
in the activation of the expression of these enzymes. For 
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instance, the technology was used in cell culture systems to 
induce the expression of APOBEC3G (A3G) and APOB-
FC3B (A3B) to inhibit HIV infection [170]. Disadvantages 
of the CRISPR/Cas9 technology include potential off-tar-
get effects that could induce gene mutations, and the lack 
of an effective delivery system [164, 166, 169, 171–173]. 
While adenoviral vectors have been effective in delivering 
CRISPR/Cas9 [174, 175], lentiviral mode of delivery could 
increase the risk of off-target effects [157, 176]. Cytotoxicity 
and immune tolerance are also limitations in the use of the 
CRISPR-based technology in the fight against HIV [173].

If successful, could gene therapy be widely deployed 
in Africa? The answer will depend on several key factors. 
Methods like taking CD4 + T cells from patients, modifying 
them in the laboratory, and reinfusing them into the same 
patient (autologous transplant) will be challenging to imple-
ment. However, if a simple mode of delivery is found for 
CRISPR/Cas9 for instance, such a method could be deployed 
widely if the cost is reasonable. The critical issue for gene 
therapy however is whether patients doing well on ART will 
accept gene modification with unknown risks for mutations, 
malignancies, and other potentially serious adverse effects.

Intensification of antiretroviral therapy as a cure

The serendipitous report of the HIV-positive Mississippi 
baby who was put on ART 30 h after birth and was able 
to maintain viral suppression off treatment for 27.6 months 
raised the hopes that early ART could lead to a possible 
functional cure, especially if started early after the initial 
infection [30, 31]. A similar report was also observed in a 
French girl who has gone into remission for over 12 years 
after starting and interrupting ART at 3 months and 6.5 years 
old respectively [177]. Recently, a report from South Africa 
indicates that a child who started treatment at 2 months and 
discontinued it after 10 months has remained in remission 
for 9.5 years [178]. Using an analytic treatment interruption 
(ATI) method, remission was also observed in some children 
in South Africa who started ART as early as 14 days after 
birth [181]. Furthermore, in adults, it has been shown that 
initiating ART earlier results in HIV remission and smaller 
reservoir size [32, 179–184].

Bearing in mind that the norm is viral rebound within 
weeks of interrupting ART in the majority of HIV-infected 
persons, these findings highlight the potential benefits of 
early ART. Nonetheless, very early ART on its own is not 
likely to achieve sustained virologic remission in the major-
ity of HIV-infected persons. A combination of early ART 
with other curative strategies such as broadly neutralizing 
antibodies, and therapeutic vaccines is likely to be the ulti-
mate approach. Initiating early ART should be based on 
improving clinical outcomes rather than achieving remis-
sion [57, 185].

The main problem with this approach is that most patients 
in Africa and elsewhere live with HIV for years before they 
recognize they have the infection, by which time the res-
ervoir is well established and ART alone will not result in 
long-term remission. Moreso, access to ART and funding 
still remains a challenge and thus its sustainability on the 
African continent is questionable.

Immune‑based interventions

HIV causes severe damage to the immune system of the 
host [186, 187], destroys CD4 T cells, and evades immune 
responses [188]. The aim here is to compensate for the 
loss of CD4 T cells [189], augment the anti-viral effects of 
CD8 + T cells (CTLs), and enhance neutralizing antibody-
mediated killing of infected cells [190–192]. In this sec-
tion, therapeutic vaccines, broadly neutralizing antibodies 
(bNab), and chimeric antigen receptors will be highlighted 
(Fig. 2). Therapeutic vaccines aim to increase the magni-
tude and function of anti-HIV immunity by facilitating long-
term viral control without ART [193]. They are administered 
after a disease or infection has already occurred using the 
patient’s immune system to fight the infection [192]. In this 
case, they would produce HIV-specific immune responses 
to better control the virus when ART is interrupted [194] 
by eliciting anti-viral CD8 T cells (CTLs), and neutralizing 
antibodies [190–192, 195]. Therapeutic vaccines may also 
produce polyfunctional T cells which will release multiple 
cytokines and perform effector functions [196, 197].

Therapeutic vaccines are used to augment CTLs to 
increase their cytotoxicity capacity [198, 199]. CTLs are a 
major component of the host response to HIV [200–203] and 
are usually exhausted due to their persistent exposure to HIV 
which impairs their killing ability [204, 205]. Even during 
HIV control using ART, there is reduced virus-specific CD8 
T cell responses [206, 207], implying that to control HIV, T 
cells need to be augmented. So far, therapeutic vaccine tri-
als have failed to achieve functional HIV cure and sustained 
viral control after ART was stopped [208–211]

Research has also shown that broadly neutralizing anti-
bodies (bNAbs) can control HIV replication [212–217]. 
All bnAbs target the HIV-1 Envelope (Env) glycoprotein 
120 (gp120) and gp41 [218]. The first-generation bNabs 
(b12, 447-52D, 2G12, 17b, 2F5, 4E10 and Z13) [219–221] 
generated little clinical effect on HIV [222]. Next, antibod-
ies targeting the CD4 binding site (VRC01, 3BNC117, 
VRC01-LS, and VRC07-523LS), the glycan-rich V3 loop 
(10–1074 and PGT121), the V2-glycan site (PGDM1400, 
CAP256-VRC26.25) and MPER epitope (10E8) were 
identified [218, 223, 224]. All these bNAbs have shown 
different levels of protection against Simian Immunodefi-
ciency Virus (SHIV) [225–228]. Research has shown that 
combining two or more bNAbs is effective in enhancing 
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a broad viral coverage [229–233]. bnAbs against HIV 
have shown significant promise for their potential use 
in the control of HIV, [218, 223], however, one setback 
is to identify combinations of bnAbs that will increase 
the breadth to cover circulating variants [218, 234]. In 
terms of HIV cure or remission, bNAbs could be given to 
patients who are virologically suppressed on ART to keep 
the virus undetected after withdrawal of ART. Issues of 
broad coverage against HIV variants and how long these 
antibodies last in vivo will be critical for success. They 
could also be deployed as part of a therapeutic vaccine 
strategy as discussed above.

Chimeric antigen receptors (CAR), following their 
breakthrough in the treatment of cancers [235–237], are 
currently being employed to enhance recognition and the 
killing of cells infected with HIV [69, 238]. They are 
produced by first removing patient T cells and inserting 
into them a CAR against a specific antigen [239] and then 
reinfusing the CAR-T cells into the patient [240], thus giv-
ing T cells a new ability to target a specific protein. This 
technology has seen the production of four generations 
so far [241–245]. The CAR T cell therapy can be used in 
conjunction with LRA to enhance the killing of reactivated 
cells, thus reducing the size of the reservoir [69].

Even though CAR-T cell therapy has proven to be ben-
eficial, it faces some challenges. The cost of treating a 
single patient as well as the technical expertise in design-
ing the therapy limits its use not only in Africa but even 
in the developed world [246].

Another important limitation is the lack of universality 
since they need to be produced from autologous T cells. 
More so, the long process in the design and treatment of 
patients makes it difficult to implement in developing 
countries [247]

These limitations notwithstanding, researchers are 
working to produce universal CAR T cells that could be 
taken off the shelf and given to any patient. It is expected 
that over time, the technology will mature, become easier 
to manage and less expensive.

Which HIV cure strategies are appropriate for Africa?

It is worth mentioning that, none of the HIV cure strategies 
discussed here has been tried on the African soil. Only a few 
targeting therapeutic vaccines and HIV treatment have been 
tried in African as shown in Table 2.

As cure strategies are developed, several factors inherent 
to the strategies themselves will determine how appropriate 
they are for Africa. These factors include the type of cure 
offered (functional versus complete), ease of deployment, 
perceived risks, and cost.

First, the type of cure offered, whether complete or 
functional could be important in determining patient 
acceptance. Ideally, a complete cure for HIV is desirable 
as it gives peace of mind to patients that the virus is gone. 
However, some form of functional cure is likely to be more 
feasible in the near future. How will PLWH in Africa per-
ceive sustained remission or functional cure? Such a cure 
will mean patients need to have periodic follow-up. More-
over, will PLWH in Africa accept that they are ‘cured’ but 
there is still virus in the body as approaches like block 
and lock are likely to provide? Will they see sustained 
remission as a major improvement over daily ART, and or 
will anxieties about potential viral rebounds keep patients 
away from such remedies? These are important ques-
tions that need to be answered now before these remedies 
become realities. Knowing patient and caregiver perspec-
tives on these issues could inform the design of clinical 
trials for remission strategies and ultimately the kind of 
cures made available to patients. Second, a cure that is 
easy to deploy is more likely to gain ground in Africa. 
Gene therapy, especially the type that requires pheresis of 
white cells from patients, modification and reintroduction 
will be expensive and logistically difficult to implement in 
Africa. When it comes to gene therapy, efforts should con-
centrate on developing delivery vehicles for methods like 
CRISPR/Cas9 for easy administration. Methods like shock 
and kill and block and lock or even therapeutic vaccines 
that require adding another agent to ART will be easier 

Table 2  Some ongoing and completed clinical trials of HIV cure in Africa

Trial Trial registry identifiers Phase Estimated end Reference

Ongoing clinical trials of HIV cure in Africa
VRC07-523LS, CAP256V2LS, vesatolimod NCT05281510 Phase IIa Feb-2024 [107]
IMPAACT P1115 v2.0: very early intensive treatment of HIV-infected infants 

to achieve HIV remission (ART + /– VRC01)
NCT02140255 Phase I/II Dec-2031 [108]

Completed clinical trials of HIV cure in Africa
VRC01 (broadly neutralizing antibody) in infants NCT03208231 Phase I/II Feb-2021 [107]
VRC01LS + 10–1074 (broadly neutralizing antibodies) in early-treated children NCT03707977 Phase I/II Oct-2021 [109, 110]
AFO-18 (peptide-based vaccine) NCT01141205 Phase I Jun-2012 [111]
VRC01 in acute HIV infection NCT02591420 Phase I Mar-2021 [107]
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to deploy. Even for these, the route of administration will 
be important. Treatments that are given orally or simple 
intramuscular injections will be easier than methods that 
require admission and intravenous infusions at a medical 
center. Therefore, all these factors should be taken into 
consideration as scientists develop these cure strategies. 
Third, the perceived risks and benefits of the cure method 
offered in Africa will be critical in determining uptake or 
even participation in clinical trials. How will methods such 
as CRISPR/Cas9-mediated gene therapy that modify part 
of the patient’s genome be viewed in Africa? With the cur-
rent COVID-19 pandemic, there is a lot of misinformation 
and resistance to mRNA vaccines in Africa even though 
they do not modify the genome. This will call for close 
collaboration and education for both providers and patients 
about trial methods prior to their availability in clinical 
trials. Such education and interactions may even help 
modify some of the methods that are eventually brought 
to patients. Finally, the cost of the intervention will also be 
crucial in ensuring wide deployment in Africa. In Africa, 
HIV treatment is heavily dependent on donor support with 
the constant threat that this support could be cut off. The 
ideal HIV cure for Africa should therefore be affordable, 
easy to administer, have short treatment time and as be low 
risk as possible. These factors should be at the forefront 
as scientists develop HIV cures. African scientists should 
be involved in the development and clinical trials of these 
strategies to engender confidence among patients. Of all 
the cure strategies discussed, the shock and kill block and 
lock, therapeutic vaccines, and perhaps CRISPR/Cas9-
based treatment with easy delivery systems will be most 
appropriate for the African continent.
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