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Abstract: Oil palm wood is the primary biomass waste produced from plantations, comprising up to
70% of the volume of trunks. It has been used in non-structural materials, such as plywood, lumber,
and particleboard. However, one aspect has not been disclosed, namely, its use in thermal insulation
materials. In this study, we investigated the thermal conductivity and the mechanical and physical
properties of bio-insulation materials based on oil palm wood. The effects of hybridization and
particle size on the properties of the panels were also evaluated. Oil palm wood and ramie were
applied as reinforcements, and tapioca starch was applied as a bio-binder. Panels were prepared
using a hot press at a temperature of 150 ◦C and constant pressure of 9.8 MPa. Thermal conductivity,
bending strength, water absorption, dimensional stability, and thermogravimetric tests were per-
formed to evaluate the properties of the panels. The results show that hybridization and particle
size significantly affected the properties of the panels. The density and thermal conductivity of
the panels were in the ranges of 0.66–0.79 g/cm3 and 0.067–0.154 W/mK, respectively. The least
thermal conductivity, i.e., 0.067 W/mK, was obtained for the hybrid panels with coarse particles at
density 0.66 g/cm3. The lowest water absorption (54.75%) and thickness swelling (18.18%) were
found in the hybrid panels with fine particles. The observed mechanical properties were a bending
strength of 11.49–18.15 MPa and a modulus of elasticity of 1864–3093 MPa. Thermogravimetric
analysis showed that hybrid panels had better thermal stability than pure panels. Overall, the hybrid
panels manufactured with a coarse particle size exhibited better thermal resistance and mechanical
properties than did other panels. Our results show that oil palm wood wastes are a promising
candidate for thermal insulation materials.

Keywords: bio-insulation; hybrid panel; oil palm wood; bio-based adhesive; tapioca starch; thermal
conductivity; physical and mechanical properties

1. Introduction

Oil palm (Elaeis guineensis) is well known as one of the most significant agricultural
plantation types in Indonesia, and it has a critical role in the Indonesian economy. Indonesia
is one of the largest palm-oil-producing countries globally, with 48.42 million tons of crude
palm oil produced from a plantation area of 14.60 Ha [1]. Each hectare can be planted with
135–145 trunks, of which each trunk generates around 10% oil palm, and the remaining 90%
is solid waste [2]. The palm oil industry produces various types of waste during milling
processes and plantation activities. The primary wastes generated during the milling
process are palm kernel shells, mesocarp fibers, and empty fruit bunches, while the main
wastes from plantations during logging are fronds (around 20–27%), trunks (70%), leaves
(6.5%), and others (3%) [3]. Rejuvenation produces around 74.48 tons of trunks per hectare;
with an area of 14.6 hectares, around 44 million tons of trunks will be produced [4]. Usually,
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a large number of these felled trunks are left to rot in the field. The volume of trunk waste
is expected to increase rapidly with increasing plantation rates every year, posing a serious
problem in the future. Therefore, attention and effective waste management are required to
convert this waste into a value-added product.

The abundant amount of waste oil palm trunks has the potential for use in non-
structural wood-based industries [5]. Several studies concerning oil palm wood have been
conducted, such as the use of trunks in plywood [5], sawn timber [6], laminated wood [7],
particleboard [8], and bio-composites [9,10]. However, one interesting aspect has not been
touched on, namely, the properties of oil palm wood as a thermal insulation material in
buildings. Determining these properties is essential to producing bio-insulation materials
with good thermal resistance and applying them to conventional buildings.

Thermal insulation materials play an important role in energy conservation by slowing
the heat transfer rate [11]. Various innovations in natural-fiber-based thermal insulation
materials have been developed. Binici et al. [12] developed a thermal insulation material
from corn cobs with epoxy resin. The findings of this study have the potential to achieve
two industrial aims: Creating new functional construction materials and reducing the envi-
ronmental impact of agricultural waste. Furthermore, insulating materials from vegetable
farm waste, such as rye straw, barley straw, wheat straw, oat straw, rice straw, flax boon,
and rice husk, have been reported [13]. Manohar [14] measured the thermal conductivity of
palm, coconut, and sugarcane fibers as building insulation materials. The results showed
that the coefficient of thermal conductivity ranged from 0.055 to 0.091 W/mK. Another
study reported the thermal properties of structural materials made of 40% palm bunch
fibers and phenol-formaldehyde [15]. The thermal conductivity value of the developed
sample was 0.293 W/mK. In addition, some researchers have reported the valorization of
tree bark fiber for thermal insulation panels, such as spruce, black locust, larch, and poplar
bark [16–21]. These investigations showed that bark residue is a potential alternative raw
material for efficient bio-based thermal insulation.

Generally, thermosetting polymers such as urea-formaldehyde (UF), phenol-formaldehyde
(PF), and epoxy are used as a binder to form thermal insulation panels. This resin type is
known to have good mechanical properties but is not environmentally friendly because of
its poor biodegradability [22]. Besides that, the effect of harmful exposure to formaldehyde
in the air can cause skin irritation, watery eyes, nausea, and coughing. If prolonged expo-
sure occurs, it can cause cancer, such as nasopharyngeal cancer in humans [23]. Therefore, it
is important to promote biopolymers from natural resins to replace synthetic resins in order
to conserve the environment. Previous researchers have studied natural-fiber-reinforced
insulating materials and bio-binders from cassava starch, bone glue, and corn starch, in-
cluding sugar palm fiber [24], bamboo powder [23], and date palm tree surface fibers [25].
Tapioca starch is one candidate for binders to make completely natural wood-based panels,
such as insulating materials. In addition, many research groups have studied bio-insulating
materials based on natural fibers and bio-adhesive agents from tannins [26], soybean pro-
tein [27], starch [28], and lignin [29]. Manfred et al. [30] and Antov et al. [31] reviewed
bio-based adhesives for wood composites. They reported that bio-based adhesives of
lignin, starch, and tannins can potentially be used to produce eco-friendly wood composite
materials. Furthermore, some researchers have extensively studied the potential utiliza-
tion of lignosulfonates to produce eco-friendly particleboard [32–34]. Several research
groups have used tapioca starch as a bio-binder in bio-insulation materials, including ramie
fiber [35], sugarcane bagasse [36], water hyacinth [37], bamboo [25,38], and oil palm empty
fruit bunches (OPEFB) [39].

Thermal insulation materials require thermal resistance and good mechanical and
physical properties. Previous studies verified the hybridization process as one technique
that can be used to improve the mechanical properties and durability of materials. Board
made from mixed OPEFB and oil palm wood showed improved mechanical properties [40].
Other findings showed that OPEFB hybridization with sugarcane increased the tensile
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strength of the bio-composite by up to 18.8% [41]. Furthermore, a jute hybrid composite
showed less water absorption than pure OPEFB oil palm composite [42].

The objective of this study was to manufacture thermal bio-insulation materials based
on oil palm wood and investigate the effect of hybridization and particle size on the
properties of the panels. We produced hybrid oil palm wood/ramie fiber bio-insulation
materials with tapioca starch as the bio-binder.

2. Materials and Methods
2.1. Material Preparation

Oil palm trunks (Elaeis guineensis) aged about 25 years were cut and collected from
plantations in Aceh. Herein, we used the inner oil palm trunk as oil palm wood. Meanwhile,
ramie fibers (Boehmeria nivea) were obtained from plantations in Yogyakarta, Indonesia.
Tapioca starch was used as a bio-binder resin and purchased at the local market. Tapioca
starch is composed of amylose and amylopectin, both of which play a role in binding.
Amylopectin acts as an adhesive, while amylose acts as a hardener [43]. Table 1 shows the
chemical composition and the mechanical and physical properties of OPW, ramie fiber, and
tapioca starch.

Table 1. Chemical composition and mechanical and physical properties of the hybrid bio-panel
forming materials [36,40,44].

Description OPW Ramie Fiber Tapioca Starch

Chemical constituents (%) 29–37 68.6–76.2
Cellulose 12–17 13.1–16.7

Hemi cellulose 18–23 0.60–0.80 -
Lignin - - -

Amylose - - -
Amylopectin - - -

Physical and mechanical properties - - 17
Density (g/cm3) 0.15–0.4 1.50 83

Tensile strength (MPa) 300–600 290–1060
Young’s modulus (GPa) 15–32 5–128

The OPW was cut to dimensions 200 mm × 50 mm × 50 mm, dried, crushed, and
pulverized into particles using a ball mill (Planetary Mill, Fritsch, Germany). Particles
were grouped into three fineness levels, namely, coarse (passed 0.84 mm), medium (passed
0.42 mm), and fine (passed 0.07 mm). Meanwhile, ramie fibers were cut into short fibers
of length 1–5 mm. Figure 1 shows the transformation of the raw OPW material and
ramie fibers.
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2.2. Treatment of Fiber

OPW particles were boiled in water at 100 ◦C for 30 min. According to Jumhuri
et al. [45], pre-treatment of oil palm wood particles by soaking in hot water for 30 min
improved the mechanical properties of the resulting particleboard. The ramie fibers were
immersed in 5% NaOH solution for 1 h before being washed to a neutral pH. Both materials
were then dried in an oven at 80 ◦C for 24 h to 10–15% moisture content.

2.3. Manufacturing of Bio-Panels

The panels were manufactured according to the formulations exhibited in Table 2.
The mats were manufactured using a laboratory-type hydraulic hot press (Hot-Pressing
HM100, Hikmah Machine, Indonesia) with a pressure capacity of 100 MPa. Fibers as
reinforcement were mixed with tapioca starch, then 100 mL of hot water was sprayed
using a spray gun. Then, the mats were stirred using a mixer (model HM-620, Miyako,
Jakarta Barat, Indonesia) for 5 min until thoroughly mixed. Then, the mats were spread
into a mold with a size of 150 mm × 150 mm × 30 mm. The mats were pressed at a
temperature of 150 ◦C and pressure of 9.8 MPa for 15 min, to a thickness of 10 mm, with a
target density of 0.7 g/cm3. In this work, the panels were formed with two-stage pressing,
pre-pressed at a pressure of 9.8 MPa for 5 min before being hot pressed for 10 min at 150 ◦C
under 9.8 MPa. This condition followed a previous study that used a hot full press for
10 min [45,46]. The elevated long-pressing time activates the starch so that the binder forms
and makes it possible to evaporate the water present in the adhesive composition [33,47,48].
The manufactured panels were conditioned in a conditioning room maintained at 25 ◦C
and 65% relative humidity for seven days. Figure 2 shows the physical condition of
the bio-panels.

Table 2. Formulations of bio-panels.

Type Code Particle Classification OPW
(%)

Ramie
Fiber (%)

Tapioca
Starch (%)

Pure bio-panels
P1 coarse 70 0 30
P2 medium 70 0 30
P3 fine 70 0 30

Hybrid bio-panels
H1 coarse 50 20 30
H2 medium 50 20 30
H3 fine 50 20 30
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2.4. Physical Measurements

This study included three physical tests: Density, water absorption, and dimensional
stability. Three samples from each bio-panel of dimensions 50 mm × 50 mm × 10 mm
were made for the density, water absorption, and thickness swelling measurements. The
physical properties of the panels were determined and evaluated according to the SNI
03-2105-2006 standard [49].

2.5. Mechanical Measurements

Five bending strength samples were prepared from each bio-panel. In the present
work, an MTS EXCEED Model E43 universal testing machine with a crosshead speed of
2 mm/min was used for the bending tests. The bending tests were carried out according
to ASTM D790-30 [50], and the specimen dimensions were 130 mm × 20 mm × 10 mm.

2.6. Thermal Measurements

Thermogravimetric analysis (TGA) was used to determine the thermal degradation
characteristics of the bio-panels. For the tests, we used a SHIMADZU DTG 60 Thermal
Analyzer following the ASTM E1131-08 standard. A sample weighing about 5 mg was
heated from 30 ◦C to 600 ◦C under a nitrogen atmosphere at a 20 mL/min flow rate and
a temperature rate of 40 ◦C/min. In addition, the thermal conductivity of samples was
measured using an insulated box (PHYWE SYSTEME GMBH 37070 Göttingen, Germany).
For the test method, we referred to ASTM C177-97 [51] under steady-state temperature
conditions. Temperature measurements were carried out using thermocouples located
inside and outside the box and the walls of the specimen. The measurement data were
tabulated and calculated using the Fourier Equation (1) to obtain the thermal conductivity
value [52]:

Qcon. = −kA
dt
dx

(W) (1)

where k is the thermal conductivity, A is the wall area, and (dt/dx) is constant.

3. Results and Discussion
3.1. Physical Properties of the Bio-Panels

The physical properties are important parameters in determining the quality of wood-
based panels. Table 3 shows that the moisture content of the bio-panels ranged from 13%
to 14%, and the density was between 0.66 and 0.79 g/cm3. The moisture contents of all
samples with different particle sizes were comparable, while the densities were different.

Table 3. Properties of the bio-panels.

Kode Density
(g/cm3)

MC
(%)

WA
(%)

DS
(%)

BS
(MPa)

MOE
(MPa)

k
(W/mK)

Pure bio-panels

P1 0.69 13 65.48 30.28 13.88 3093 0.071
P2 0.72 13 58.72 29.70 13.73 2604 0.110
P3 0.75 13 56.69 24.49 11.49 1864 0.154

Hybrid bio-panels

H1 0.66 14 65.12 29.63 18.15 2605 0.067
H2 0.75 13 55.59 25.00 17.83 2546 0.089
H3 0.79 13 54.75 18.18 16.26 1984 0.148

MC: Moisture Content; WA: Water Absorption; DS: Dimensional Stability; BS: Bending Strength; MOE: Modulus
of Elasticity; k: Thermal Conductivity.

The results showed that panels made from fine particles had a higher density than
did those made from coarse particles. Sample H3 had the highest density, followed by H2
and H1, while the density of the pure bio-panels was ordered as follows: P1 < P2 < P3.
The use of smaller particles in the panels results in better compaction of the mat, whereas
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larger particles may result in more and larger pores [53]. Previous studies have reported
that boards from Washingtonia with particles of size 0.25 to 1 mm have a higher density
than do those with particles of size 2 to 4 mm [54]. In addition, hybrid panels composed of
oil palm wood and ramie fiber showed a higher density than did panels made solely using
oil palm wood. This effect may be due to the raw material density affecting the density
of the panels. The density of oil palm wood is 0.15–0.4 g/cm3, and that of ramie fiber is
1.5 g/cm3. Previous studies showed similar results for OPEFB hybrid panels and oil palm
trunks [40].

The water resistance of a panel is an important parameter, especially when natural
fiber is used in its construction. The water absorption obtained for all samples was in
the range from 54.76% to 65.48% (Table 3). Sample P1 absorbed the greatest amount of
water (65.48%) among the pure panels, while H1 showed the same tendency (65.12%). Both
samples were made of coarse particles and of low density. Lamaming et al. [55] reported
that particleboard made from old palm oil wood with a particle size of 500–1000 µm had
higher water absorption capacity (211.03%) compared to that with a particle size range
of 100–500 µm (90.70%). Oil palm wood panels have a high water uptake capacity due to
the presence of more hydroxyl groups in the parenchyma tissue, which allows for more
hydrogen bonding.

Furthermore, the parenchyma acts like a sponge, allowing the oil palm wood particles
to absorb water more easily [6]. However, hybridization with ramie fiber slightly reduces
water absorption. This study proved a 3–5% reduction when hybridizing ramie fiber and
oil palm wood. This result is supported by [56], which stated that the addition of alkaline-
treated ramie fiber can improve the water-resistance performance. According to [41], the
addition of co-fiber has the potential to reduce water absorption due to the compatible
characteristics of the mixed material, which reduces the voids and porosity of the exposed
surface area on composites, thereby reducing water absorption.

The dimensional stability of panels followed a similar trend to the water absorption
properties (Table 3). The value of the dimensional stability of the samples ranged from
18.18% to 30.28%. The bio-panel P1 showed the poorest rate of dimensional stability
(30.28%) among all the panels. In contrast, the hybrid panel H3 was the best, with a value
of 18.18%. In other words, the panel showed less thickness swelling. According to [42],
a panel structure with higher density and mixed co-reinforcement leads to an increased
dimensional stability rate. This finding is better than those for eucalyptus particleboard
with methane diphenyl diisocyanate polymer adhesive and UF as an adhesive [57] and
sago particleboards reinforced with PF and UF binder [58].

Table 3 summarizes all the properties that were evaluated, where hybrid panels were
found to be better than pure panels. The density variation of 20% of the hybrid panel (0.66
to 0.79 g/cm3) affected all the panel properties, even for those of the same composition.
This is due to the effect of the particle size difference: Improved particle size tends to
increase the panels’ thermal resistance and mechanical performance.

3.2. Correlation of Density with the Thermal Conductivity of Bio-Panels

Thermal conductivity is an important property of thermal insulation materials, and
the effectiveness is different for each material. Figure 3 depicts the thermal conductivity
of the bio-panels specified in Table 2. The produced panels exhibited medium density
that ranged from 0.66 g/cm3 to 0.79 g/cm3, and their thermal conductivity was between
0.067 W/mK and 0.154 W/mK. Samples H1 and P3 exhibited the lowest and highest
thermal conductivity (0.067 W/mK and 0.154 W/mK), respectively, whereas samples H1
and H3 showed the lowest and highest density (0.66 g/cm3 and 0.79 g/cm3), respectively.
For all conditions, both types of bio-panels had nearly the same density. Nevertheless, the
thermal conductivity of the hybrid was slightly lower than that of the pure panel. These
results show that the ramie fiber hybridization provides better thermal conductivity when
used with oil palm wood particles. A similar tendency was also reported in a previous
study [59,60].
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The thermal conductivity of panels is related to their density. A higher panel density
is correlated with higher thermal conductivity. As the panel density increases, the solids
are increased, and voids are decreased. According to [61], voids act as scattering centers for
phonons and absorb a small portion of the heat conduction volume of the material, resulting
in lower thermal conductivity. The correlation between density and thermal conductivity
of the produced bio-panels and a comparison with various insulation materials is given in
Figure 3. Overall, there is a direct correlation between the density and thermal conductivity
of all boards. The thermal conductivity decreases as the sample density decreases. Some
authors found such a relationship in previous studies, while others did not fully achieve a
relationship between these properties [23,62].

The thermal conductivity of the produced panels is comparable with that of sun-
flower (0.06 W/mK) [63], date palm (0.07 W/mK) [25], wheat straw (0.56 W/mK) [13],
wood fiber/Ecovio (0.11 W/mK) [64], banana/PP (0.157 W/mK) [65], and bamboo/bone
(0.118 W/mK) [23]. Therefore, some samples (P1, H1, and H2) could be deemed potential
thermal insulation materials because their thermal conductivity is less than 0.1 W/mK [63].

3.3. Bending Strength and Thermal Conductivity

In addition to thermal performance, evaluation of the mechanical parameters is very
important to measure the performance of bio-panels under various types of stress during
their application. The bending strength of bio-panels ranged from 11.49 MPa to 18.15 MPa,
and the modulus of elasticity ranged between 1864 MPa and 3093 MPa (given in Table 3).
Bio-panels H1 and P3 showed the highest and lowest bending strength, respectively, while
panels P1 and P3 exhibited the highest and lowest modulus of elasticity, respectively.

Overall, the hybrid panels had higher bending strength than the pure panels (Figure 4).
The hybridization of pure oil palm wood with ramie fiber improved the bending strength
of the panels. The average bending strength of the pure bio-panels was 25% lower than that
of the hybrids. This was probably influenced by the single fiber and the low mechanical
properties of the OPW raw material. This result was confirmed by [40], who stated that the
structure of a bio-panel with a single fiber and the deterioration of the compact structure is
responsible for a decrease in mechanical properties.
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In addition, the bending strength also depends on the particle size. As the size of
the particles increased, the bending strength increased. Previous research on the particle
geometry and bending strength of panels concluded that larger particle contact areas
resulted in higher strength properties [66,67]. The viscoelastic nature of carbohydrate-rich
oil palm trunk particles is one of the main reasons for the acceptable mechanical properties
of the samples [68]. According to [55,69], the particle size in bio-panels affects board
characteristics such as mechanical strength, water absorption, thickness expansion, surface
roughness, and linear stability.

Figure 4 depicts how the thermal conductivity is related to the bending strength of
the bio-panels. Panel H1 and P3 showed the lowest and highest thermal conductivity and
highest and lowest bending strength, respectively. Overall, hybrid samples have better
thermal resistance and bending strength than pure panels. This is also related to particle
size and density. As the particle size increases, it is accompanied by a decrease in the
density and a decrease in the thermal conductivity coefficient of the panels.

Several previous researchers have reported a similar conclusion. Alabdulkarem
et al. [59] reported that hybrid bio-panels made with agave and apple of Sodom fibers
produce better thermal resistance than panels with single fibers. The thermal conductivity
of jute-fiber-reinforced epoxy composites was 12% more than that of EFB/jute hybrid
composites [70].

3.4. TGA and DTGA Spectra

Figure 5 shows the results of thermogravimetric and derivative analysis of the bio-
panels. Both showed a similar degradation pattern, where the filler decomposed in three
steps during the heating process. Initial degradation in the range 35–93 ◦C caused weight
loss of 7.1% and 5.4% for pure and hybrid bio-panels, respectively. This was due to water
evaporation from the samples [25,71,72].

Furthermore, major degradation happened between 306 ◦C and 411 ◦C with a weight
loss of about 63.91% for pure bio-panels (Figure 5a) and between 310 ◦C and 408 ◦C
with a weight loss of 56.88% for hybrid bio-panels (Figure 5b). This weight loss was
associated with the degradation of fiber, carbon dioxide, water, and decomposition of
tapioca starch [37,73]. In the last stage, above 408 ◦C, the weight loss for the hybrid bio-
panels (3.91%) was lower than that for the pure bio-panels (7.06%). This phenomenon was
found in other studies [72,74]. Table 4 shows the temperatures associated with weight loss
of 25%, 50%, and 75% from the bio-panels. This result is almost identical to the results
obtained by [25], which showed a 50% loss of date fiber mass at 364 ◦C.
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Figure 5. TGA and DTGA spectra of bio-panels: (a) Pure; (b) hybrid.

Table 4. Temperatures of weight loss and residual mass.

Bio-Panel
Weight Loss at Temp. Decomposition (◦C) Weight Residue

at 600 ◦C25% 50% 75%

Pure 321 349 394 12
Hybrid 327 358 421 19

Figure 5 also shows the derivative thermogravimetric analysis (DTGA) curve, which
indicated the occurrence of major degradation. In this curve, the main degradation occurred
at 306 ◦C and 339 ◦C for pure bio-panels and at 310 ◦C and 341 ◦C for hybrid bio-panels.
This finding is better than the DTGA findings for a bio-panel made from oil palm trunk
with ammonium dihydrogen phosphate at 200 ◦C and 330 ◦C [75]. Different fiber types,
fiber treatment processes, and matrices all affect the thermal stability behavior of natural-
fiber-reinforced panels [76].

4. Conclusions

Thermal bio-insulation panels based on oil palm wood hybridized with tapioca starch
binders were successfully produced using a hot press. In general, the results show that
ramie fiber hybridization improved the physical, mechanical, and thermal properties of
the bio-panels. Furthermore, the particle size also affected the properties of the bio-panels.
The density, water resistance, and dimension stability of the bio-panels increased with
increasing particle size. However, this was contrary to the results regarding bending
strength and thermal conductivity. The bending properties of the hybrid panels were better
than those of pure oil palm wood. The thermal conductivity of oil palm wood panels
ranged from 0.067 to 0.154 W/mK, following their density. The thermal conductivity
of the panels with larger particles was within a lower range than that of panels with
the highest compactness. The panels P1, H1, and H2 produced thermal conductivity
values less than 0.1 W/mK. Hence, they can be used as thermal insulation materials.
Thermogravimetric analysis revealed that the hybrids’ thermal stability was better than
that of pure bio-panels. Major degradation occurred at temperatures of 306–411 ◦C for
pure and 310–408 ◦C for hybrid bio-panels. Finally, this study shows that waste oil palm
wood, which causes environmental pollution, can be utilized to manufacture commercially
viable and satisfactory thermal insulation materials.
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