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Abstract

Background: Secondary structure prediction is a useful first step toward 3D structure prediction.
A number of successful secondary structure prediction methods use neural networks, but
unfortunately, neural networks are not intuitively interpretable. On the contrary, hidden Markov
models are graphical interpretable models. Moreover, they have been successfully used in many
bioinformatic applications. Because they offer a strong statistical background and allow model
interpretation, we propose a method based on hidden Markov models.

Results: Our HMM is designed without prior knowledge. It is chosen within a collection of models
of increasing size, using statistical and accuracy criteria. The resulting model has 36 hidden states:
I5 that model a-helices, 12 that model coil and 9 that model f-strands. Connections between
hidden states and state emission probabilities reflect the organization of protein structures into
secondary structure segments. We start by analyzing the model features and see how it offers a
new vision of local structures. We then use it for secondary structure prediction. Our model
appears to be very efficient on single sequences, with a Q3 score of 68.8%, more than one point
above PSIPRED prediction on single sequences. A straightforward extension of the method allows
the use of multiple sequence alignments, rising the Q3 score to 75.5%.

Conclusion: The hidden Markov model presented here achieves valuable prediction results using
only a limited number of parameters. It provides an interpretable framework for protein secondary
structure architecture. Furthermore, it can be used as a tool for generating protein sequences with
a given secondary structure content.

Background

Predicting the secondary structure of a protein is often a
first step toward 3D structure prediction of a particular
protein. In comparative modeling, secondary structure
prediction is used to refine sequence alignments, or to
improve the detection of distant homologs [1]. Moreover,
it is of prime importance when prediction is made with-

out a template [2]. For all these reasons protein secondary
structure prediction has remained an active field for years.
Virtually all statistical and learning methods have been
applied to this task. Nowadays, the best methods achieve
prediction rate of about 80% using homologous sequence
information. A survey of the Eva on-line evaluation [3]
shows that the top performing methods include several
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approaches based on neural networks, e.g. PSIPRED by
Jones et al [4], PROFsec and PHDpsi by Rost et al [5].
Recently several publications reported secondary structure
prediction using SVM [6-8]. A number of attempts using
Hidden Markov Models (HMM) have also been reported.
A particularity of these models is their ability to allow an
explicit modeling of the data. The first attempt to predict
secondary structure with HMMs was due to Asai et al [9].
Asai et al presented four sub-models, trained separately on
pre-clustered sequences belonging to particular local
structures: alpha, beta, coil and turns. The sub-models,
each of them made of four or five hidden states, were then
merged into a single model, achieving a Q; score of
54.7%. At the same period, Stultz et al [10,11] proposed a
collection of HMMs representing specific classes of pro-
teins. The models were "constructed as generalization of
the study-set example structures in terms of allowed con-
nectivities and surface loop/turn sizes" [10]. This involved
the distinction of N-cap and C-cap positions in helices, an
explicit model of amphipatic helices and fturns. Each
model being specific of a protein class, the method
required first that the appropriate hidden Markov model
be selected and then used to perform the secondary struc-
ture prediction. The Q, scores, reported for only two pro-
teins, were respectively 66 and 77%. Goldman et al [12-
15] proposed an approach unifying secondary structure
prediction and phylogenetic analysis. Starting with an
aligned sequence family, the model was used to predict
the topology of the phylogenetic tree and the secondary
structure. The main feature of this model was the inclu-
sion of the solvent accessibility status, and the constrained
transitions to take into account the specific length distri-
bution of secondary structure segments. The Q, score,
reported for only one sequence family, was 65.7% using
single sequence and 74.4% using close homologs. Later,
Bystroff et al [16] proposed a complex methodology
based on the I-Sites fragment library. One of the models
was dedicated to the prediction of secondary structures.
The model construction made use of a number of heuris-
tic criteria to add or delete hidden states. The resulting
models were quite complex and modeled the protein 3D
structures in term of succession of I-site motifs. The pre-
diction accuracy of the model dedicated to secondary
structure prediction was 74.3%, using homologous
sequence information. Other approaches used slightly dif-
ferent type of HMM, based on the concept of a sliding
window along the secondary structure sequence. Crooks
and Brenner [17] proposed a methodology where a hid-
den state represents a sliding window along the sequence.
The prediction accuracy was 66.4% for single sequences
and 72.2% with homologous sequence information.
Zheng et al [18] used a similar approach in combination
with amino-acid grouping, achieving a Q; score of 67.9%
on single sequences. An extension of hidden Markov
Model, semi-HMM, were also applied to secondary struc-
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ture prediction by several groups [19-21]. These models
allow an explicit consideration of the length of secondary
structures. Very recently, Aydin et al claimed a Q, score of
70.3% for single sequences [22]. Chu et al [21] obtained
a Q, score of 72.8% using homogous sequence informa-
tion.

Here, we exploit a novel HMM learned from secondary
structures without taking into account prior biological
knowledge [23]. Because the choice of a particular model
does not rely on any prior constraints, the HMM itself is
an interesting tool to reveal hidden features of the internal
architecture of secondary structures. We first analyze in
detail the model. We then evaluate its predictive potential
on single sequences and on multiple sequence informa-
tion using an evaluation data set of 506 sequences and a
data set of 212 sequences obtained from the EVA Web site
[24]. The influence of the secondary structure assignment
method on the performance is also discussed. The predic-
tion results appear very promising and open the perspec-
tive for further refinements of the method.

Results and discussion

Hidden Markov model selection

The optimal hidden Markov model for secondary struc-
ture prediction, referred as OSS-HMM (Optimal Second-
ary Structure prediction Hidden Markov Model), was
chosen using three criteria: the Q5 achieved in prediction,
the Bayesian Information Criterion (BIC) value of the
model and the statistical distance between models. The
whole selection procedure described in details in [23].
Here we only present the main steps of the selection. Let
ny 1, and n, be the number of hidden states that model
respectively a-helices, S-strands and coils. The optimal
model selection was done in three steps. In the first step,
we set n,; = n, = n, = n and models were estimated with n
varying from 1 to 75. The Q; score evolution indicated
that 10 to 15 states were sufficient to obtain good predic-
tion level without over-fitting and that increasing n above
15 had little impact on the prediction. The BIC selected a
model with n = 14. The statistical distances between mod-
els revealed a great similarity across models for n varying
from 13 to 17. In the second step, models were thus esti-
mated with (1) ny=1to20and n,=n.=1, (2) n,=1to
15and ny=n.=1o0r(3)n.=1to 15 and ny;=n, = 1. The
BIC selected (1) n;; =15, (2) n,=8 and (3) n.= 9. In the
third step, all the architectures were tested with n;, varying
from 12 to 16, n, from 6 to 10 and n.from 3 to 13. The BIC
selected the optimal model having n;; = 15, n,=9 and n.=
12, 1. e., atotal of 36 hidden states. Overall, nearly 300 dif-
ferent model architectures were tested in this procedure
[23]. The automatic generation of a HMM topology has
been previously addressed by several groups [25-29]. Two
main strategies were used: the first one consists in build-
ing models of increasing size starting from small models
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[25,29] and the second one, inversely, consists in progres-
sively reducing large models [26,28]. Regarding the first
strategy, the use of genetic algorithm was introduced and
applied to the modeling of DNA sequences [25,29]. In the
approach presented by Won et al [29], an initial popula-
tion of hidden Markov models with 2 states is submitted
to an iterative procedure of mutations, training and selec-
tion. There are five types of mutation: addition or deletion
of one hidden state, addition or deletion of one transition
and cross-over, consisting in exchanging several states
between two HMMs. The second strategy requires the use
of a pruning algorithm and was applied to language
processing [26] and to describe the structure of body
motion data [28]. The initial model, consists of an explicit
modeling of the training data: each sample is represented
by dedicated HMM states. Hidden states are then removed
iteratively by merging two states. The merging criterion is
based on the evolution of the log-likelihood.

Our approach of automated selection of HMM topology
is related to the first strategy because we also start from
small models and increase them afterward. However,
Won et al note that their mutation operations, even if they
do allow highly connected models, bias the architectures
toward chain structures [29]. A previous experience of
knowledge-based design of HMM for secondary structure
prediction [30] convinced us that highly connected mod-
els are more appropriate in our case. We adopt a system-
atic approach, when we introduce a new state all
transitions between hidden states are initially allowed. We
then let the system evolve. Our final model does not
exhibit a chain structure. A major concern of the genetic
algorithm applied to HMM topology seems to be the over-
fitting of the model toward learning data [25,29]. In our
approach, the over-fitting is monitored by considering an
independent set of structures that is never used in the
cross-validation procedure. An original aspect of our
method is that we not only check the fit with the model
but also the predictive capabilities on these independent
data. The other strategy described in the literature based
on the merging of states requires the manipulation of
large initial models. The large size of the learning datasets
available for secondary structure prediction might be a
problem when employing such a strategy. Nonetheless, a
common feature of our approach with the work of Vasko
et al [28] is the use of initial models were all transitions
are allowed.

It is likely that the appropriate strategy for automated
topology selection depends on the amount and nature of
data to be modeled. Here we are confronted with a prob-
lem with large datasets and, presumably, a complex con-
nected underlying structure. Our approach results in a
model having a reasonable number of parameters
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although it is larger and more complex than the one we
designed in a knowledge-based approach [30].

Hidden Markov model analysis

Our optimal model OSS-HMM was built without prior
knowledge and without imposing any constraint. Thus, it
is interesting to examine the final model as it reveals the
internal architecture of secondary structures learned by
the model. In the following section, we will describe the
main features of the model obtained with DSSP assign-
ment and link these observations with previous studies.

All transitions between hidden states are initially allowed.
As shown in Table 1, many transitions in the final model
are estimated to have probability zero. Only 36% of
potential transitions remain within the helix box, 57%
within the strand box and 68% in the coil box. This high-
lights a first feature of secondary structures: even though
helices require 15 hidden states they can be modeled by
relatively few transitions. On the contrary, p-strand
sequences are fuzzier, with a higher connectivity between
hidden states. Thus, the paths within the helix box are
more constrained than in the strand box. The final model
has 448 non-null transitions (out of 1296), of which 89
have a probability greater than 0.1, for a total of 1096 free
parameters.

The structure of OSS-HMM is presented in Figure 1. For
the sake of clarity, only transitions with probabilities
larger than 0.1 are shown. Hidden states are colored
according to their amino acid preference. The blue figure
close to each state is its Neq value. The Neq value of a hid-
den state is an estimation of the number of output states,
derived from the Shannon Entropy:

Neq(s) = exp[ Y, —p(sir)in(p(si7))]

where p(s; 1) denotes the transition probability from state
s to state r. The sum is taken over all the hidden states. Neq
varies from 1 (only one output state) to the total number
of hidden states (a state uniformly connected to all the
others, including itself). Emission parameters are also pre-
sented in the lower part of Figure 1. The emission proba-
bility of each amino-acid in each hidden state is given
using preference score relative to amino-acid background
frequencies.

Some general remarks can be made from this representa-
tion:

¢ The different secondary structures are characterized by
different transition usage. Very strong transitions appear
in the helix box, whereas they are weaker in strand and
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Table I: Number of transitions in the final 36 states HMM
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Transitions Niie Nenai No, Ratiog,y
Helix to helix 225 8l 24 36%
Helix to coil 180 47 9 26%
Helix to strand 135 21 0 15%
Strand to Strand 81 46 20 57%
Strand to coil 108 50 5 46%
Strand to helix 135 17 0 13%
Coil to coil 144 98 25 68%
Coil to helix 180 31 2 17%
Coil to strand 108 57 4 29%
Total 1296 448 89 34%

Nini: number of allowed transitions in the initial model, Ng,,: number of non-null transitions in the final model, N ;: number of transitions
associated with probabilities greater than 0.1 in the final model, Ratiog,,: percentage of non-null transitions relative to the initial number.

coil boxes. This is confirmed for helices since some helical
states have very low Neq: e. g., H3, H2, H9 and H1 have
Neq lower than 2, meaning that the number of output
states is limited. No such states are apparent in the strand
and coil boxes. The mean Neq value per state is 3.28 for
helix, 4.70 for strand and 5.44 for coil. This confirms the
observations made from Table 1: helices appear very
"structured" motifs with strong transitions and few paths
allowed, whereas strands appear to be "fuzzier", less con-
strained, with many alternative paths and relatively low
transitions probabilities. The coil box is even less struc-
tured than the strand box.

® An examination of amino acid preference scores shows
that hidden states specifically tend to avoid particular res-
idues (many scores less than -2), rather than favor other
ones (few scores greater than 2). This seems to denote a
kind of "negative design", where there is a stronger con-
straint not to include particular residues, than to have some
others.

Helix architecture

Helices in proteins are characterized by the so-called
amphipathic rule (also known as helical wheel rule): one
face is in contact with the solvent and thus bears
hydrophilic residues and one face is in contact with the
protein interior and shows preference for hydrophobic
residues. The canonical a helix has a periodicity of 3.6.
The helix periodicity and the amphipathic rule generate a
periodicity of 3 or 4 in terms of amino acid properties in
the sequence.

The helix box is characterized by a topology that allows
unidirectional paths through the graph.

¢ There is only one entry state for helices: state H3. The
amino acid preference of this state is peculiar since it does
not favor nor disfavor any amino acids except for a slight
tendency to prefer proline and to avoid asparagine. Only
state c10 shows a similar lack of strong preference for
amino acids (i.e., without score larger than 2 or smaller
than -2 and only two scores greater than 1 or less than -1).

e Two alternative trajectories among the states are then
possible: a "bypass" trajectory proceeding to state H7 and
exiting the helix at state H6 and the "main" trajectory that
is detailed below. Note that there is a small probability to
get back to the main trajectory from the bypass trajectory
(state H7). Interestingly this state, H7, is the only helix
state with a self transition.

e States belonging to the main trajectory can be divided
into two groups: core states (H10, H14, H2, H9, H1, HS,
H12) and exit states (H4, H15, H11, H5, H13). As
expected from the helix periodicity and amphipathic rule,
the graph shows a mixture of 3-state and 4-state cycles
with characteristic patterns of hydrophobic and
hydrophilic preferences. It is likely that the strong direc-
tionality observed between the core states is due to the fact
that once in a helix the system must remain in this helix
for at least 4 or 6 residues, i.e., one turn or one turn and a
half. In other words, the core states correspond to the
beginning of a helix.

¢ The second group of states, the exit states, shows the
same 3-state and 4-state cycles with similar patterns of
hydrophilic or hydrophobic preferences as the core states
but now the cycles can be interrupted at any time to move
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Final 36 hidden states HMM learned using DSSP assignment. Upper part: hidden state graph. Only transitions associ-
ated with probabilities greater than 0.1 are shown. The larger the transition probabilities the thicker the arrows. States are

colored according to their amino acid preference (hydrophobic versus hydrophilic). Purple state indicates no strong amino acid
preference and red states strongly favor glycine. The two groups of coil states (cl, c6, c12, c5, c4) in green and (c3, c2, 8, cl0,
c9) in red are discussed in the text. For periodic secondary structures, helix and strand, the entry and exit states are indicated
by different symbols. Lower part: amino-acid propensities of each hidden state. Propensities are measured by log-odd scores.
P(a|s)

(a)

The propensity score of amino-acid a for state s is given by: S =log, , with P(a | s) the emission probability of amino-

acid a in state s and f{a) the background frequency of a in the dataset. A score equal to | means that the amino-acid is twice as
frequent in state s as in the whole dataset.

to a coil state. This shows that helices can end without the e There are 3 entry states (b3, b5, b7) that are all intercon-

need for completing a turn. nected. All entry states are also connected to the same
state, b1, that belongs to the core of the strand architec-
Strand architecture ture.

The strand box shows a different structure. The progres-
sion through the graph is also rather directional:
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¢ the core of the strand architecture is made of states b1,
b6, and b8 that form a 3-state cycle. State b1 is connected
to entry states, state b6 to exit states and state b8 is one of
the two strand states that exhibit a self transition. It is
interesting to note that the core of the strand architecture
contains only states with a preference for hydrophobic
amino acids.

e There are 3 exit states, b2, b4 and b9. There exists two
exit routes, one through b2 that is connected to state c7
and c11 and one through states b9 and b4 that are con-
nected to states c3 and c2. b2 is peculiar in that, unlike
other strand states, it favors proline and aspartate.

There is a number of 2-state cycles that correspond to an
alternation of hydrophilic and hydrophobic states. This is
a known pattern, observed in strands that are at the pro-
tein surface. Another pattern often observed in strands is
the occurrence of several hydrophobic residues. This pat-
tern is represented by paths amongst the core states b1, b8
and b6. It is also known that hydrophobic/hydrophilic
patterns in strands are fuzzier than similar patterns in hel-
ices. This is clearly apparent when one compares the
strength of the connections between states in the helix and
strand boxes.

When assigning secondary structure with DSSP, there are
very few helices immediately followed by a strand or
strands immediately followed by a helix therefore direct
connections between helices and strands are associated
with small probabilities that do not appear on Figure 1.

Coil architecture

The graph structure of the coil box presents a very different
organization compared to the helix and strand boxes. The
most striking feature is the existence of specific states lead-
ing to and coming from helices or strands (there are only
two "core" states, c8 and c6, that are exclusively connected
to other coil states). Unlike the two other boxes, half the
states in the coil box (c2, ¢6, ¢7, c10, c11, c12) have self
transitions. The coil states can be divided into 3 groups:

e states c11 and c7 are the only states that are found both
at the termination of helices and strands (although only
the exit route through b2 leads to this states). These states
are very connected, including a self connection and act as
kinds of "hub" in the coil box.

e a group of states (c2, ¢3, ¢8, c10, ¢9) within the red con-
tour that interact with strands.

® a group of states (c4, c5, 6, c1, c12) within the green
contour that interact with helices.

http://www.biomedcentral.com/1472-6807/6/25

These two groups have the same organization: two states
are connected to secondary structure exit states (c4 and c5
after a helix exit state and c2 and c3 after a strand exit
state), one state is a "core" state, c6 for the first group and
8 for the second group, and two states lead to a secondary
structure entry state (cl and c12 to the helix entry state,
and ¢9 and c10 to the strand entry states). These two
groups are relatively independent, there is a weak direct
connection between the two groups (through states c10
and ¢6) and an indirect connection through the hub state
c11. These two groups seems to model different types of
loop. To further analyze the specific usage of the states in
different loop types, the paths through the coil states are
analyzed for different kind of loops. Note that these paths
are obtained with the Viterbi algorithm. Both amino-acid
and secondary structure sequences are given as input to
OSS-HMM: in a way similar to the estimation of labeled
sequence of secondary structures [31], it is possible to
monitor the Viterbi algorithm using the product of
amino-acid and label emission parameters instead of the
amino-acid emissions only. The protein sequence and the
label sequence are considered to be independent emis-
sions by the same hidden process. In that case, the Viterbi
algorithm computes the most probable trajectory in the
hidden Markov Model, given the real secondary structure
of the protein. Hence, it is not a secondary structure pre-
diction, but the analysis of protein sequences using OSS-
HMM. We then collect the number of times each coil state
is observed in the four different classes of loops: /e, f/5,
af fand f a. The data obtained on the cross-validation set
are shown in Table 2.

The repartition of the coil states indicates that the hidden
states are preferentially found in particular loop types. For
example, state c6 is observed 5256 times in a/a loops and
only 2894 in f/f loops, although o/a loops represent
20.1% of the data, and the f/f loops represent 35%. To
take into account this non-uniform repartition of differ-
ent loop types, Table 2 is then submitted to a correspond-
ence analysis. The data projection on the first two axes is
shown on Figure 2. The first two axes respectively explain
66% and 32% of the variance. As shown by Figure 2, the
first axis differentiate loops found after an helix (a/« and
a/ B) on one hand, and loops found after a strand (/£ and
f/a) on the other hand. It means that, according to the
hidden state usage, o/« or ¢/f differ from /S or fla
loops. The data projection confirms the observations
made from Figure 1: states c4, ¢5, ¢6 and c12 appear
clearly associated to o/ @ loops and states c2, c3, c8, ¢9 and
c10 to /B loops. When projected on the first axis, state c1
appears close to the o/ « type.

As shown on Figure 1 states c11 and, to a lesser extend c7,
act as "hubs", allowing to switch between ¢/« and f/f
loops. They are located near the origin on the correspond-
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Table 2: Occurences of coil states in different types of loops in the Viterbi paths of the cross-validation data set

ada pp alp fla frequency

cl 3308 57 30 3962 52
c2 2686 10374 2920 6941 16.1
c3 14 5880 124 3014 6.3

c4 1953 151 2312 170 32
c5 2327 225 3101 231 4.1

cb 5276 2894 5609 2579 1.5
c7 3165 6684 2996 5691 13.0
c8 1677 6364 3054 2223 9.4
9 2 2382 429 7 2.0
clo 1359 6670 3375 1671 9.2
cll 2828 5477 3585 2748 10.3
cl2 3969 2943 4882 2025 9.7

frequency 20.1 35.2 22.8 21.9

Frequency denotes the marginal distribution of each variable (hidden states or loop type), in percentage.

ence plot. States of the coil box show a marked tendency
to favor particular amino acids: glycine for states c5, c8
and 9 and proline for states c12, and c2.

Comparison with available data in the literature

Several authors studied the sequence specificities of helix
termini [32-35]. A direct comparison with these previous
studies is not straightforward for several reasons. First, sec-
ondary structure boundaries must be the same. As we
showed in a previous study [36], the boundaries of helices
and strands are the main point of disagreement between
different secondary structure assignment methods. For
instance, in their study Kumar and Bansal [33] re-assigned
helix boundaries (based on DSSP assignment) using geo-
metrical criteria. Thus, the reader should keep in mind
that eventual discrepancies might occur because the refer-
ence assignment is different (see for example ref. [35] that
addresses this particular problem). Secondly, these previ-
ous studies often revealed some general trends, whereas
our model found several states for helix termination. The
computation of general trends leads to the attenuation of
the information because they average different signals.

Previous studies [32-35] showed that amino-acid prefer-
ences vary according to the position (begin/middle/end)
in helices. Our model shows a directional progression in
the hidden state graph in agreement with this feature.
Aurora and Rose [32] found that PQDE are preferred at
the first positions of alpha-helices. The helix starter H3 in
our model shows a preference for proline residues, and
H10, the second state in helix favors residues D and E.
Kumar and Bansal identified a clear preference for resi-
dues GPDSTN at positions preceding a helix [33]. It was
confirmed in a recent study [35] in which Gibbs-sampling
and helix shifting were used to reveal amino-acid prefer-
ence in conjunction with a potential re-definition of helix
termini. The idea was to allow a shift in the helix assign-
ment, to maximize the sequence specificity of helix-cap.

In our model, the pre-helix state c1 favors residues D, S, T
and N (weakly G). State c12, that also leads to the helix
box, has a strong preference for Proline.

A typical motif of C-terminal capping in helices is the ter-
mination of an helix by a glycine residue [37]. This feature
has also be learned by OSS-HMM, since state c5, that fol-
lows an helix, shows a strong preference for glycine. More
precisely, Aurora and Rose identified several structural
motifs of helix capping, corresponding to distinct
sequence signatures [32]. This is in agreement with OSS-
HMM since several helix states with different features (e.g.
H4 and H6) can terminate an helix, and lead to several
coil states (c11, c5, c4).

Engel and DeGrado showed a very clear periodicity of
amino-acid distribution in helix cores: alternation of resi-
dues with opposite physico-chemical properties every 3 or
4 residues [34]. This corresponds to the well-known
model of amphipatic helices. Such helices are found at the
interface between protein core and protein surface. One
face, thus, bears polar residues and the other face hydro-
phobic ones. Several cycles appear in the helix core in
OSS-HMM: H2/H9/H1 (with possibly H8), H12/H4/H15
and H15/H11/H5/H13. The succession of H12 (hydro-
phobic), H4 (polar) and H15(polar) fits well with the
amphipatic model, as well as the succession H15(polar),
H11 (hydrophobic), H5(hydrophobic) and H13(polar).
Although in our model, amino-acids are independent, the
periodicity of helices has been learned by the model, via
the hidden structure.

Preferences at strand ends have not been well character-
ized in the literature. Interestingly, OSS-HMM revealed
alternate polar (b3, b7) or apolar (b5) starters of /-
strands, as well as alternate polar (b2, b9) or apolar (b4)
terminators. This could explain why sequence signatures
are weak for strand-capping. If several capping motifs with
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Principal component analysis of the association between hidden states and loop type. Data are obtained from the
Viterbi decoding using secondary structure labeling on the cross-validation data.

opposite sequence signature co-exist, a global study
would conclude to the lack of signature, because several
signals are averaged. Our model exhibits several two state
cycles that allows the alternation of hydrophobic and
polar residues. This alternation has been pointed out in
previous studies [38], it reflects the alternation of polar/

non-polar environments of residues in S-strands at the
protein surface.

The path through the four states c3, c2, c8 and c10 allows
the connection between two strands. Amino-acid prefer-
ences are respectively (G, D, N), (P), (G) and (no prefer-
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ence). The propensities of ¢3, c2 and ¢8 fit well with the
overall turn potentials identified by Hutchinson and
Thornton [39] at position i, i + 1 and i + 2 of turns. How-
ever, state c10 has no clear amino acid preference.

The correspondence analysis indicates that some states are
preferentially used in certain loop type. Previous studies
have also revealed that sequence signatures differ accord-
ing to the loop type [40]. Much like the hydrophobic/
polar alternation in amphipatic helices, HMMs can take
into account such non strictly local correlations, by spe-
cializing hidden states according to the hidden states to
which they lead, instead of the amino-acids they emit, and
the resulting amino-acid sequence bears non strictly local
correlations. Amino-acid emissions are independent but
they are conditioned with respect to the hidden process.
OSS-HMM provides a new framework for the analysis of
protein sequences: for example, the paths within the hid-
den Markov model could be used to cluster the sequences.
It would be particularly interesting to correlate the path
based classification with known properties of the struc-
tures such as SCOP folds. Preliminary results indicate
however that a straightforward classification of the paths
is not sufficient [see Additional file 5].

Use of OSS-HMM for generating protein sequences

Hidden Markov models can be used to generate amino
acid sequences that are compatible with the underlying
model. OSS-HMM is thus useful in bioinformatics appli-
cation where simulated protein sequences are needed. For
example, in protein threading analysis it is necessary, in
order to assess the score significance, to use protein
sequences to obtain an empirical score distribution [41].

A simulation study was carried on using OSS-HMM, indi-
cating that simulated sequences share similar amino-acid
composition with real protein sequences [see Additional
file 3]. Concerning the length distribution of secondary
structure elements, as no explicit constraint is integrated
in the model, simulated sequences contain more very
short segments than real sequences. More sophisticated
models, i. e. semi-HMM, are needed to allows an explicit
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modeling of the length of stay in the hidden states (Aydin
etal [22]).

Secondary structure prediction with OSS-HMM

Evaluation on the independent test set

The prediction performance of OSS-HMM is evaluated on
an independent test set of 505 protein sequences that
were never used for training or model selection. These
sequences share no more than 25% sequence identity
with the sequences of the cross-validation data set and
between sequence pairs; they constitute an appropriate
evaluation data set. Prediction is done using a single
sequence as input. To compare with existing methods,
prediction are also done with the PSIPRED program (ver-
sion 2.45) [4], using the single-sequence mode. This
method is based on neural networks and sequence pro-
files generated by PSI-BLAST. Here, PSI-BLAST is not used.

Prediction scores obtained with OSS-HMM and PSIPRED
are presented in Table 3. Here, the Q5 score is computed
on a per-residue basis. The Q, score obtained by OSS-HMM
is 67.9% and 66.8% with PSIPRED. Due to its limited
number of parameters, OSS-HMM exhibits no over-fit-
ting: during the cross-validation, we obtained a mean per-
residue Q; score of 67.9% on the data used to train the
model, and 67.6% on the data not used to train the model
(data not shown).

As can be seen from the various scores reported, OSS-
HMM is very efficient concerning a-helix prediction, with
a MCC of 0.56, but less efficient for S-strand and coil pre-
diction, with MCC equal to 0.47. The low Q, (sensitivity)
of S prediction, 51.9%, and high Q,, for coil prediction,
73.2%, indicate that coils are frequently predicted instead
of S-strands. This difficulty to predict f-strands is a known
problem of secondary structure prediction method, prob-
ably due to the non-local component of S-sheet forma-
tion. It is difficult, with a HMM, to take into account this
kind of long-range correlation with a model that has a rea-
sonable number of parameters. We tried to integrate a
non-local information in the prediction, without any sig-
nificant amelioration (data not shown).

Table 3: Prediction accuracy obtained for the 505 sequences of the independent test set, using single sequences

OSS-HMM PSIPRED

Qobs Qpred MCC Sov Qobs Qpred MCC Sov
Helix 72.1 72.5 0.56 67.7 70.5 704 0.53 66.7
Strand 51.9 64.5 0.47 583 56.6 60.8 0.47 60.5
Coil 732 65.5 0.47 63.9 69.2 66.7 0.46 61.9

Q3 Sov Q; Sov
Global 67.9 63.9 66.8 63.3
OSS-HMM refers to the HMM with 36 hidden states presented in this article.
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Comparison with PSIPRED prediction scores shows that
OSS-HMM offers a global Q, score of more than one point
above PSIPRED score (67.9 vs 66.8%). Such a small differ-
ence has to be statistically tested for significance. Since the
variances of Q5 scores per protein obtained by OSS-HMM
and PSIPRED were not equal, as assessed by a F-test, the
Welch test was used to compare them. The test is signifi-
cant at the 5% level, we then conclude that OSS-HMM is
more efficient than PSIPRED for the single-sequence
based prediction. The detailed scores indicate OSS-HMM
is better than PSIPRED for helix prediction, both in sensi-
tivity and selectivity. PSIPRED detects more f-strand -
Qups 18 56.6%, vs 51.9% for OSS-HMM - but is thus less
specific — Q.4 18 60.8 vs 64.5% for OSS-HMM.

Testing against EVA dataset

We also tested the prediction accuracy on a dataset of 212
protein sequence from the EVA website. This dataset has
been used to rank several secondary structure prediction
methods and was the largest available at this time. Using
homologous sequence information, the top-three meth-
ods on this dataset were:

1. PSIPRED [4]: Q5= 77.8%,
2. PROFsec (B. Rost, unpublished): Q5= 76.7%,
3. PHDpsi [5] : Q3= 75%.

We ran the prediction on the 212 sequences, again using
single sequences only, with OSS-HMM and PSIPRED. The
per-sequence Q, scores achieved for each protein chain, by
PSIPRED and OSS-HMM, are shown on Figure 3.

EVA dataset includes 20 membrane protein chains :
1pv6:A, 1pw4:A, 1thz:A, 1zcd:A, 1zhh:B, 2a65:A, 1q90:N,
1990:L, 1q90:M, 1s51:1, 1s51:], 1s51:L, 1s51:M, 1s51:T,
1s51:X, 1s51:Z, 1th5:B, 1rkl:A, 1u4h:A and Is7b:A. As can
be seen on Figure 3, PSIPRED achieves good prediction
for membrane proteins, whereas the prediction is rather
poor with the HMM. Membrane proteins have amino acid
propensities very different from those of globular pro-
teins. As membrane proteins were excluded from the
learning set to train the HMM, it is not surprising that
their HMM-based predictions are largely incorrect. When
these 20 sequences are excluded, the global Q; score on
the remaining 192 proteins is 68.9% for PSIPRED and
68.6% for OSS-HMM, computed on 20 539 residues.

EVA data set also contains very short sequences : 42
sequences are shorter than 50 residues. On very short
sequence, a different prediction for a few residues has dra-
matic consequences on the Q; score per protein, as shown
on Figure 3. Proteins shorter than 50 residues are plotted
in gray, they are responsible for the great dispersion of the
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data. Some rather short sequences are shown in the plot:
lycy (62 residues), 1r2m (70 residues), 1zeq:X (84 resi-
dues), 1zv1A (59 residues), 1rdg:A (53 residues). The
mean length of a sequence in the EVA dataset is 189 resi-
dues, and 212 residues in the independent test set. The
protein leng