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Abstract

In digital breast tomosynthesis (DBT) systems, projection data are acquired from a limited

number of angles. Consequently, the reconstructed images contain severe blurring artifacts

that might heavily degrade the DBT image quality and cause difficulties in detecting lesions.

In this study, we propose a two-phase learning approach for artifact compensation in a

coarse-to-fine manner to mitigate blurring artifacts effectively along all viewing directions of

the DBT image volume (i.e., along the axial, coronal, and sagittal planes) to improve the

detection performance of lesions. The proposed method employs a convolutional neural

network model comprising two submodels/phases, with Phase 1 performing three-dimen-

sional (3D) deblurring and Phase 2 performing additional 2D deblurring. To investigate the

effects of loss functions on the proposed model’s deblurring performance, we evaluated

several loss functions, such as the pixel-based loss function, adversarial-based loss func-

tion, and perception-based loss function. Compared with the DBT image, the mean squared

error of the image and the root mean squared errors of the gradient of the image decreased

by 82.8% and 44.9%, respectively, and the contrast-to-noise ratio increased by 183.4% in

the in-focus plane. We verified that the proposed method sequentially restored the missing

frequency components as the DBT images were processed through the Phase 1 and Phase

2 steps. These results indicate that the proposed method performs effective 3D deblurring,

significantly reducing the blurring artifacts in the in-focus plane and other planes of the DBT

image, thus improving the detection performance of lesions.

Introduction

Digital breast tomosynthesis (DBT) imaging systems widely used for chest, wrist, head, neck,

dental and breast for medical diagnostics [1–5]. Recent developments in high-quality digital

receptors have allowed DBT systems to be used in detecting breast cancer [5, 6]. Unlike mam-

mograms, DBT systems use multiple projection data from different viewing angles, resulting

in a significant improvement in detection accuracies in reconstructed DBT images [7, 8].
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As the DBT system obtains patient data scanned from a limited range of angles (e.g., 30˚ to

60˚ [9]), severe blurring artifacts occur when conventional filtered backprojection methods are

used for image reconstruction (e.g., the Feldkamp–Davis–Kress (FDK) [10] algorithm).

Although analysis-based methods, such as the gradient-projection Barzilai-Borwein algorithm

(GP-BB) [11], have been developed to improve the image quality of DBT systems, they still

have limitations in terms of reducing the blurring artifacts, especially in breast tissue images,

as illustrated in Fig 1.

In recent studies, convolutional neural networks (CNNs) for mitigating blurring artifacts

caused by camera motion [12] have been proposed. The camera motion is formulated as con-

volutions between the reference images and motion kernels. Theoretically, considering that

the FDK algorithm is a linear system, the DBT image reconstructed by FDK algorithm can be

expressed as a convolution between the reference image and the point spread function (PSF)

[13], similar to camera motion deblurring as follows:

rðx; y; zÞ ¼ iðx; y; zÞ � � � pðx; y; zÞ þ nðx; y; zÞ ð1Þ

where i(x, y, z) is an ideal breast image, p(x, y, z) is the 3D PSF of DBT system, r(x, y, z) is the

reconstructed DBT image, and n(x, y, z) is the reconstructed noise. The conventional deconvo-

lution method such as Richardson-Lucy (RL) [14], which requires a manual control of the

parameters in RL deconvolution, is not suitable for deblurring DBT image because accurate

estimation of the PSF is difficult [13]. However, due to the robust characteristics of CNN and

its wide receptive field, a more accurate deblurring kernel with spatially varying properties can

be estimated. In our previous work [15], we proposed a method to deblur DBT images using a

deep residual-block-based CNN (DRCNN), where the cone-beam computed tomography

(CBCT) images reconstructed by the FDK algorithm were used as target images. As the CBCT

data were acquired over a 360˚ range, the reconstructed image did not contain blurring arti-

facts caused by insufficient view sampling. Our previously proposed CNN learned the local

and global properties of the blurring artifacts; thus, it reduced these blurring artifacts effec-

tively in the in-focus plane using the two-dimensional (2D) in-focus slice data for training the

model. However, the blurring artifacts could not be effectively reduced in the images along the

coronal and sagittal planes because the DBT system captures less sufficient data along the coro-

nal and sagittal planes. To solve the afore-mentioned problem, a new method for 3D deblur-

ring the DBT volume is required.

In this study, we propose a two-phase learning-based 3D deblurring technique to reduce

the blurring artifacts along all imaging planes of DBT images from anatomical backgrounds.

Fig 1. Limitation of the conventional DBT reconstruction algorithm. (a) CBCT images, (b) DBT images reconstructed

using FDK, and (c) DBT images reconstructed using GP-BB. The display window is [0.0456 0.0844] cm−1.

https://doi.org/10.1371/journal.pone.0262736.g001
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As the DBT system produces much blurrier images along the coronal plane, we designed our

network to reflect this spatially varying property of DBT images for effective deblurring. Our

proposed two-phase learning method involves two different network models with a sequential

training scheme. In Phase 1, we perform an initial 3D deblurring on the 3D DBT volume,

where the entire volume is restored at a coarse scale. In Phase 2, we increase the sharpness of

the restored 3D volume obtained from Phase 1 by applying U-Net [16] along the coronal

plane, where the blurring artifacts are observed to be most severe.

To investigate the effects of loss functions on our model’s deblurring performance, we eval-

uate various loss functions (i.e., pixel-based loss, adversarial-based loss [17], and perception-

based loss [18]). Pixel-based evaluations are conducted using the mean squared error of the

image (MSE) and the root mean squared errors of the gradient of the image (GRMSE) [19]

between the CBCT and deblurred images. Contrast enhancement of the lesions is also evalu-

ated using the contrast-to-noise ratio (CNR). The effectiveness of the proposed deblurring

method is analyzed by comparing the restored frequency components between the CBCT and

deblurred images. Experiments with 3D breast volume datasets demonstrate that our proposed

network achieves excellent deblurring compared to the network described in our previous

study [15].

Methods

Data preparation

In Phase 1 training, generated 100 CBCT and DBT volume pairs using the characteristics of

clinical mammograms [20, 21] were divided with a ratio of 1:1:3 for training, validation, and

testing set, respectively. The testing set used in Phase 1 was divided with a ratio of 1:1:1 for

training, validation, and testing set, respectively, further being used to train Phase 2 CNN.

Breast volumes were simulated using a randomly generated inverse power law noise model

[22, 23]. A Gaussian noise volume of voxel size 899 × 899 × 899 pixels was generated and trans-

formed into the frequency domain using the discrete Fourier transform (DFT). The trans-

formed volume was multiplied with a filtering kernel (i.e., 1/f3/2, where f is the radial frequency

in per millimeter) and transformed into the spatial domain via the inverse DFT [20] to obtain

the actual breast statistics. Note that the zero frequency value of the filter was designated as

twice the first non-zero frequency component to prevent an infinite value at zero frequency

[24]. To avoid the wrap-around effect caused by DFT, a central spherical volume with a diame-

ter of 450 voxels was extracted. Next, to implement a 30% volumetric glandular fraction

(VGF), the voxel values were sorted in descending order. The upper (lower) 30% (70%) were

assigned 0.0802 cm−1(0.0456 cm−1), corresponding to the attenuation coefficient of the glandu-

lar (adipose) tissue at an energy of 20 keV [25]. A rectangular volume with a short z-axis direc-

tion (i.e., 288 × 288 × 144) was extracted, reflecting a compressed breast volume. We

generated projection data from the rectangular volume using Siddon’s algorithm [26]. The

DBT image was reconstructed using 41 projection data (−20˚ to 20˚), and the CBCT image

was reconstructed using 360 projection data (−180˚ to 180˚) based on the FDK algorithm with

a Hanning-weighted ramp filter. We did not use a slice thickness (ST) filter [27] to maintain

the high-frequency components [21] of the breast volume.

Fig 2 illustrates the data acquisition geometry of the DBT system, and Table 1 summarizes

the details of the simulation parameters. For noise simulation, quantum noise with Poisson

statistics 2 × 105 incident photons per detector cell, which is equivalent to the dose level of 1.6

mGy for a 4 cm breast with 20 KeV energy, was added to the projection data. The dose level is

similar to the exposure level measured in the work of Zeng et al [28]. The total flux was

matched for the DBT and CBCT data acquisition systems. Breast tissue near the volume center
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was replaced by a 2 mm or 4 mm diameter spherical lesion in 40 test volumes to examine the

generalization performance of the trained CNN. The attenuation coefficient of the lesion was

0.0844 cm−1, corresponding to 20 keV [25] energy. To evaluate the generalized performance

for different background structures, we applied the trained CNN model to deblur 15% VGF

DBT images, as the 15% VGF represents the median value of women’s VGF statistics [29].

Two-phase CNN architecture

Our proposed method was motivated by the model-stacking approach. Although the training

time is relatively longer than that required for a single network training, previous studies [30,

31] have shown that model-stacking demonstrates better performance in terms of accuracy in

medical image segmentation and classification. We focused on the fact that our target dataset

is a 3D DBT volume dataset, which has similar visual patterns across the training dataset as

Fig 2. Data acquisition geometry of the DBT system.

https://doi.org/10.1371/journal.pone.0262736.g002
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other fine-grained datasets. Inspired by the success of the model-stacking approach in predic-

tion tasks on fine-grained datasets, we employed it in our artifact compensation procedure on

the 3D DBT volume. Various studies [32, 33] have confirmed the advantages of model-stack-

ing for more accurate prediction and reliable estimation than the single network model for the

same number of filters. Owing to these benefits, we adopted a two-phase learning-based

approach. The proposed CNN architecture is presented in Fig 3.

The depth of the CNN model must be increased to increase the modeling power of Phase 1.

In this case, however, the training became more difficult because of the gradient vanishing

problem [34, 35]. Therefore, the residual network was adopted to increase the model capacity

to mitigate the gradient vanishing problem [36, 37]. Phase 1 has several residual network

building blocks [38]. Each residual block comprises of two different steps. First, an input passes

through the convolutional layer, rectified linear unit (ReLU) layer, and an additional convolu-

tional layer. Second, the input and the output of the first step are added.

Phase 2 was designed to render the output of Phase 1 more accurately by learning the tex-

ture of the breast tissue and reducing any remaining blurring artifacts in the coronal plane. As

the PSF in the coronal plane is particularly wide, the most severe blurring artifacts are pro-

duced here compared to other image planes. The U-Net was adopted to reflect this during the

deblurring procedure because it is known to have a wide receptive field. As indicated in Phase

2 of Fig 3, the number of filters is doubled when the feature map passes through the max-pool-

ing layer, whereas the number of filters is halved when the feature map passes through the

upsampling layer.

Loss function

In Phase 1, we used the mean absolute error (MAE) as a loss function for the relatively good

sharpness of the output image [39]. The MAE loss function is defined as follows:

LMAE ¼
1

w� h
k G1ðzÞ � x k1; ð2Þ

where, G1 is the Phase 1 CNN, x is the CBCT image, z is the input DBT image reconstructed

using the FDK algorithm, and w and h are the width and height of the input DBT image,

respectively.

Algorithm 1 Optimization procedure of PL-MAE.

Table 1. Simulation parameters.

Parameters CBCT DBT

Source to iso-center distance 545 mm
Detector to iso-center distance 105 mm

Data acquisition angle −180˚ * 180˚ −20˚ * 20˚

Number of views 360 41

Detector cell size 0.125 × 0.125mm2

Detector array size 450 × 450

Reconstructed volume size 47.2 × 47.2 × 47.2mm3

Reconstructed voxel size 0.105 × 0.105 × 0.105mm3

VGF 30% (Training and testset)

15% (Generalization testset)

Number of incident X-ray photons 2 × 105/Number of views
Reconstruction algorithm FDK

https://doi.org/10.1371/journal.pone.0262736.t001
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Require: Set hyperparameters, α = 5 × 10−3, β1 = 0.9, β2 = 0.999, λ2 =
0.05, the number of total epochs, Nepoch = 100, the batch size n = 2,
and patch size of 48 × 48 × 48.
Require: Initial G1 (i.e., Phase 1) parameters φ0, initial G2 (i.e.,
Phase 2) parameters θ0
Require: Load pretrained VGG-16 network parameters
1: for epoch = 0, . . ., Nepoch do
2: Sample a batch of DBT image patches fzðiÞgni¼1

and corresponding CBCT
patches fxðiÞgni¼1

3: for i = 1, . . ., n do
4: L(i)(G1) LMAE(z

(i), x(i))
5: end for
6: Update G1; � Adam 5�

1

n

Pi¼1

n LðiÞðG1Þ; �; a; b1;b2

� �

7: end for
8: Aggregate G1(z;φ) in the form of 3D volume ẑ, aggregate G1(x;φ) in
the form of 3D volume x̂
9: Divide ẑ into coronal slices ~z, divide x̂ into coronal slices ~x
10: for epoch = 0, . . ., Nepoch do
11: Sample a batch of f~zðiÞgni¼1

and f~xðiÞgni¼1

12: for i = 1, . . ., n do
13: LðiÞðG2Þ  l2LPLð~z ðiÞ; ~xðiÞÞ þ LMAEð~zðiÞ; ~xðiÞÞ
14: end for
15: Update G2; y Adam 5y

1

n

Pi¼1

n LðiÞðG2Þ; y; a;b1; b2

� �

16: end for
After deblurring the DBT images in Phase 1, further deblurring was performed in Phase 2.

To investigate the effect of the loss function on breast tissue restoration, we used the pixel-

based loss function (i.e., MAE), adversarial loss function with MAE (AL-MAE), and percep-

tion-based loss function with MAE (PL-MAE). For the adversarial loss function, we used the

Wasserstein generative adversarial network with a gradient penalty (WGAN-GP) [17] and a

discriminator of 144 × 144 PatchGAN [40]. The adversarial-based loss function is defined as

Fig 3. Architecture of the proposed CNN. The proposed CNN is composed of two phase. Phase 1 is composed of several residual blocks. The 2D slice

of the coronal plane of the Phase 1 output volume is the input of Phase 2. Phase 2 has the structure of U-Net and it yields the final output of the

proposed CNN.

https://doi.org/10.1371/journal.pone.0262736.g003
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follows:

LAL ¼ DðG2ðzÞÞ � DðxÞ þ Zðk rx̂Dðx̂Þ k2
2
� 1Þ

2 ; ð3Þ

where, D is a discriminator, G2 is the Phase 2 CNN,r denotes the gradient,

x̂ ¼ �x þ ð1 � �Þz, and � has the standard uniform distribution. The weighting parameter η
was set to 0.1 following the recommendations in previous work [17].

We used the first 13 layers of the VGG-16 network [41] for the perception-based loss func-

tion, which was pretrained on the ImageNet dataset [42]. The CBCT and deblurred images of

the proposed CNN model were passed through the VGG-16 network, and the outputs were

used for loss calculation. The perception-based loss function is defined as follows:

LPL ¼
1

W � H � C
k �ðG2ðzÞÞ � �ðxÞ k

2

2
; ð4Þ

where, W, H, and C are the width, height, and the number of channels in the feature space,

and ϕ is the feature extractor.

When using the adversarial-based and perception-based loss functions, MAE loss was used

together to render a deblurred image that is more similar to the CBCT image. We determined

the weighting values (i.e., λ1 and λ2) to minimize the loss function on the validation dataset in

a search range of [0.0001 0.1]. The optimal values were 0.001 and 0.05 for λ1 and λ2 respec-

tively. The objective functions of Phase 2 (i.e., MAE, AL-MAE, and PL-MAE loss functions)

are defined as follows.

LAL� MAE ¼ LMAE þ l1LAL; ð5Þ

LPL� MAE ¼ LMAE þ l2LPL; ð6Þ

The definition of the MAE loss function is the same as in (2), except that G1 is replaced by

G2.

Training and test dataset

In Phase 1 training, a total of 20 CBCT and DBT volume pairs (i.e., 288 × 288 × 144) was used.

Each of the volume pairs was divided into 108 non-overlapping patches of size 48 × 48 × 48; a

total of 2,160 patch pairs was used during the training. After passing the DBT image patches

through the trained Phase 1, the output patches were aggregated in the form of breast volume

and separated into the 288 coronal plane slices of size 288 × 144. These output slices of Phase 1

and the corresponding CBCT slices were used for Phase 2 training. Since we used 20 volumes

during the Phase 2 training, a total of 5,760 slice pairs was used.

Model and implementation details

In Phase 1, the network was composed of the residual network building blocks, and all convo-

lutional layers have 40 filters of 3 × 3 × 3 size with a stride 1. The number of filters was selected

experimentally to achieve the best performance without sacrificing training efficiency. We

attached these results in the supplementary material. We evaluated different network depths

by adjusting the number of residual network building blocks to 6, 8, 10, 12, and 14 blocks. The

network with 10 residual network building blocks is superior to the others, as depicted in Fig

4. Furthermore, Fig 5 demonstrates the capability of the 10-block CNN on the validation data-

set. Thus, we selected 10 residual network building blocks for the network design of Phase 1.

In Phase 2, to restore the fine texture of breast tissue, we used U-Net structures with 32 fil-

ters of size 3 × 3 with a stride of 1, which have a 140 × 140 wide receptive field size covering
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the PSF of the coronal plane. The PSF of the coronal plane has an elongated shape spanning a

60-pixel length.

In Phase 1, the network was trained using the adaptive moment estimation (Adam) opti-

mizer [43] with a batch size of 2 due to the memory issue. We excluded the batch normaliza-

tion layer, as our network is stably trained without the batch normalization layer. The training

efficiency with and without batch normalization is compared in the supplementary material.

Fig 4. The influence of different residual network building blocks in Phase 1.

https://doi.org/10.1371/journal.pone.0262736.g004

Fig 5. The training and validation loss of the ten-block CNN (i.e., Phase 1) with each training epoch.

https://doi.org/10.1371/journal.pone.0262736.g005
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We trained the network using 100 epochs by setting the Adam optimizer’s exponential decay

rates for the first and second moment (i.e., β1 and β2) estimates to 0.9 and 0.999, respectively,

as recommended in the previous study [43]. The learning rate (i.e., α) was 5 × 10−3, which was

found experimentally in the range [0.0001 0.01].

In Phase 2, we used the same Adam optimizer and hyperparameters as in Phase 1 and

observed that the CNN with all proposed loss functions converged stably within 100 epochs in

each phase. Convergence required about 8 h each using the Keras library on a system with an

Nvidia Titan XP (Pascal) 12 GB GPU and Intel (R) Core (TM) i7–6700 3.40 GHz processor.

Performance evaluation

Pixel-based evaluation. The means of the 2D MSE and 2D GRMSE were used to evaluate

the similarities between the CBCT and deblurred images. The mean of the 2D MSE is calcu-

lated as follows:

MSEmeanðy; ~yÞ ¼
1

mn

Xm

i¼1

Xn

j¼1

ðyij � ~yijÞ
2
; ð7Þ

where yij is the jth pixel of the central slice image of ith CBCT volume, ~yij is the jth pixel of the

central slice image of the ith deblurred volume, m is the number of images, and n is the number

of pixels in the image.

For the subjective visual assessment [19], we used the mean of the 2D GRMSE, defined as

follows:

GRMSEmeanðy; ~yÞ ¼
1

m

Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
ðOðyijÞ � Oð~yijÞÞ

2

n

s

; ð8Þ

where we used the intermediate operator O as a gradient function. The mean of the 2D MSE

and 2D GRMSE between the CBCT and deblurred images were compared in the axial, coronal,

and sagittal planes.

Lesion contrast. The CNR was calculated for the images with 4 mm lesions inserted to

evaluate the contrast improvement of lesions against the background in the deblurred image.

The CNR is strongly associated with the reader preference score for lesion contrast [44]. We

extracted the central slice of the breast volume to calculate the CNR. In the extracted slice, the

circular-shaped lesion was set as the foreground, and the outer part of the lesion was set as the

background. The mean of CNR is calculated as follows:

CNRmean ¼
1

m

Xm

i¼1

juf ðyiÞ � ubðyiÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

f ðyiÞ þ s2
bðyiÞÞ=2

q ; ð9Þ

where yi is the central slice image of ith CBCT volume, ~yi is the central slice image of the ith

deblurred volume, ub(uf) is the mean CT number outside (inside) the mass lesion, and σb(σf) is

the standard deviation outside (inside) the mass lesion.

Frequency domain analysis. To evaluate the ability of the CNN to fill in the missing data

of the DBT image in the frequency domain, we examined the frequency responses for the

axial, coronal, and sagittal planes. We extracted the central slice in each direction from 20

independently generated breast volumes. Then, the extracted images were 2D Fourier trans-

formed and its absolute values were averaged. We displayed them on the log scale. The MSE

values between the 2D FFTs of the CBCT and deblurred images were compared. The central
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vertical profiles of each 2D frequency response were also compared, as this area contains the

most missing data in the DBT images.

Results

We compared the proposed two-phase learning-based scheme with the FDK algorithm, total-

variation iterative reconstruction with GP-BB (TV-IR), and DRCNN [15]. In TV-IR method,

we applied the algorithm by setting the iteration number to 100 and regularization parameter

(i.e., λ) to 5 × 10−4. In DRCNN method, we trained the network using 100 epochs by setting

the β1 and β2 estimates to 0.9 and 0.999, respectively. The learning rate was 1 × 10−3, which

was found experimentally in the range [0.0001 0.01]. Fig 6 illustrates the DBT images recon-

structed using the FDK algorithm and TV-IR, DRCNN, CNN-based deblurred images with

different loss functions, and CBCT images. In Fig 6(a)–6(c), we observe that severe blurring

artifacts in the DBT image are reduced in all planes using the proposed method. In particular,

the coronal and sagittal planes of the DBT image contain very severe blurring artifacts due to

the limited range of data acquisition angles, and it is difficult to recognize the original struc-

tures compared to the axial plane. We also observed that GP-BB has a low lesion contrast com-

pared with the FDK algorithm, although it could enhance the edge. In the image deblurred

using DRCNN, the deblurring is not properly performed in the coronal and sagittal planes.

However, the proposed deblurring method recovers the original structures of these planes reli-

ably with notably improved image quality.

We also observed that different loss functions produce different textures in the deblurred

images. Compared with the CBCT images, the deblurred images with MAE loss functions

introduce slight blurs, reflected as reduced image noise. In addition, we observed that the pro-

posed method using AL-MAE loss overestimated the original structures and amplified the

noise. Using the proposed method with WGAN-GP loss to restore extensive missing data in

DBT images would not be appropriate due to the amplification of high-frequency components.

However, the deblurred images with PL-MAE loss functions exhibit textures more similar to

the CBCT images due to their ability to preserve feature information via the perception-based

loss functions. Overall, the image sharpness is preserved well in the deblurred images with

MAE and PL-MAE loss functions.

Table 2 summarizes the means of the 2D MSE and 2D GRMSE between the CBCT and

deblurred images for different loss functions. A smaller value indicates better performance in

the MSE and GRMSE. In the DBT image, we only used the axial plane for pixel-based evalua-

tions because the other planes do not contain any useful information due to the severe blur-

ring. The quantitative results confirm our observation in Fig 6, implying that the proposed

method achieves excellent deblurring performance comparable to or better than that of the

DRCNN. Compared with other loss functions, the deblurred image by MAE provides slightly

better scores in terms of the MSE. This result may be attributable to the generated anatomical

background image being relatively piecewise linear, thus rendering the MAE loss function

more appropriate for these metrics. As GRMSE reflects perceptual characteristics, the

deblurred image using PL-MAE provides better results in the GRMSE evaluation.

Fig 6(d)–6(i) displays the DBT images reconstructed by FDK algorithm and TV-IR,

deblurred images, and CBCT images with the presence of 4 mm and 2 mm diameter lesions.

Three lesions were included along the x-direction to examine how well the proposed method

can recover spatially varying blurring artifacts in DBT images. It is challenging to identify the

lesions in the coronal and sagittal planes in the DBT image due to the severe blurring artifacts.

In the image deblurred by the DRCNN, the shapes of lesions are distorted. However, the pro-

posed method restores the original lesion shapes more effectively. In particular, the lesion
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detectability in the coronal and sagittal planes is superior to the FDK algorithm, TV-IR, and

DRCNN. Despite the powerful deblurring performance, we observed that the boundaries of 4

mm and 2 mm lesions are not recovered well in the coronal and sagittal planes compared to

the axial plane. It appears that the proposed CNN experiences difficulties in filling extensive

missing data in the coronal and sagittal planes compared to the axial plane.

Table 3 summarizes the CNR of each plane for the 4 mm lesions. In the 4 mm lesions, the

deblurred axial plane image achieves significantly improved CNR performance, which is 2.84

times higher than that of the original DBT image reconstructed using the FDK algorithm.

Even coronal and sagittal plane images exhibit a much higher CNR than DRCNN images.

Fig 6. Results using 30% VGF DBT images. DBT images reconstructed with FDK and TV-IR, deblurred images by

DRCNN, deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE loss functions, and CBCT

images (from left to right). Images without mass lesion for (a) axial, (b) coronal, and (c) sagittal planes; images

containing 4 mm lesions for (d) axial, (e) coronal, and (f) sagittal planes, and images containing 2 mm lesions for (g)

axial, (h) coronal, and (i) sagittal planes. The display window is [0.0456 0.0844] in cm−1.

https://doi.org/10.1371/journal.pone.0262736.g006

Table 2. Pixel-based evaluation with 30% VGF DBT images. MSE and GRMSE results of the DBT images reconstructed with FDK and TV-IR, deblurred images by

DRCNN, deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE. (mean±standard deviation).

MSE (×10−5) GRMSE (×10−2)

Method Axial Coronal Sagittal Axial Coronal Sagittal

DRCNN 9.67 ± 1.01 10.51 ± 2.20 10.21 ± 2.06 0.92 ± 0.03 0.87 ± 0.07 0.77 ± 0.06

MAE 7.09 ± 0.78 8.28 ± 1.32 7.56 ± 1.20 0.59 ± 0.01 0.59 ± 0.01 0.64 ± 0.01

AL-MAE 8.72 ± 3.40 8.51 ± 1.82 11.48 ± 0.12 0.65 ± 0.15 0.56 ± 0.01 0.73 ± 0.20

PL-MAE 8.90 ± 1.30 10.02 ± 2.15 9.62 ± 2.06 0.59 ± 0.01 0.55 ± 0.01 0.64 ± 0.02

FDK 41.09 ± 5.56 1.07 ± 0.06

TV-IR 11.04 ± 2.39 0.61 ± 0.01

https://doi.org/10.1371/journal.pone.0262736.t002
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While all loss functions provide similar improvements in the CNR, the PL-MAE achieves a rel-

atively higher CNR over all planes than other loss functions because the PL-MAE compro-

mises the sharpness and textures of the original image more effectively for this task. Through

the CNR results, the CNR of the axial plane has a relatively high value compared with the other

planes. As the missing data in the axial plane is smaller than in the other planes, the lesion con-

trast improvement of the proposed method seems better.

The 2D frequency responses of the deblurred images from Phases 1 and 2 were calculated,

as listed in Fig 7, to analyze the restoring power of the proposed method in each phase. We

selected the MAE (PL-MAE) loss for this comparison because it yielded the highest perfor-

mance in the pixel-based evaluation (lesion contrast) with the CBCT images. As expected, the

DBT image contains many missing data points due to the limited data acquisition angle, as

depicted in Fig 7(a). However, most of the missing data are appropriately filled in by the pro-

posed method. Note that the high-frequency components are observed in the DBT image

because the ST filter is not applied. When we used the ST filter, the high-frequency compo-

nents are reduced, which is common in many breast tomosynthesis imaging cases. The DBT

images with a ST filter are included in the supplementary material. Table 4 summarizes the

MSE between the 2D FFTs of the CBCT and deblurred images. The PL-MAE achieves a rela-

tively low MSE value in all planes, demonstrating the effectiveness of using the perception-

based loss function to fill in the missing data in the frequency domain. Fig 8 compares the cen-

tral vertical profiles in Fig 7 for the CBCT, DBT, and deblurred images with MAE and

Table 3. Lesion contrast evaluation with 30% VGF DBT images. CNR results of the DBT images reconstructed with FDK and TV-IR, deblurred images by DRCNN,

deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE. (mean±standard deviation).

Contrast-to-Noise Ratio

Method Axial Coronal Sagittal

DRCNN 2.25 ± 0.54 2.01 ± 0.57 1.98 ± 0.65

MAE 2.91 ± 0.79 2.42 ± 0.76 2.67 ± 0.73

AL-MAE 2.17 ± 0.81 2.06 ± 0.66 2.04 ± 0.82

PL-MAE 3.24 ± 0.75 2.98 ±1.05 3.19 ± 1.00

FDK 1.14 ± 0.57

TV-IR 0.65 ± 0.42

https://doi.org/10.1371/journal.pone.0262736.t003

Fig 7. Frequency domain analysis. Frequency responses of DBT images using FDK, deblurred images, and CBCT

images for fx-fy plane (Top), fx-fz plane (middle), and fy-fz plane (bottom). (a) DBT images with FDK reconstruction,

(b) deblurred images after Phase 1 and deblurred images after Phase 2 with (c) MAE, (d) PL-MAE, and (e) CBCT

images. The display window is [1 4]. The red arrows indicate the missing data regions in the DBT images.

https://doi.org/10.1371/journal.pone.0262736.g007
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PL-MAE loss functions. The proposed method sequentially restores the missing frequency

components as the DBT image is processed through Phases 1 and 2. As we intended, Phase 1

performs the initial deblurring to fill in the missing data of the DBT image, as presented in Fig

7(b), but small differences in the CBCT image are still observed, as presented in Fig 8. The

image sharpness is restored further by Phase 2, producing improved similarity between the

CBCT and deblurred images, as indicated in Fig 8.

The proposed method’s generalization performance is tested using 15% VGF data, and the

corresponding deblurred images are illustrated in Fig 9. The results demonstrate that the pro-

posed CNN is still effective for reducing blurring artifacts and exhibits robust characteristics,

even for unseen data. The results of the quantitative evaluation are summarized in Tables 5

and 6. The proposed CNN using different loss functions demonstrated better results than

DRCNN over all planes, even for unseen data through these results. In particular, the CNN

using AL-MAE exhibits good performance for generalization tests represented by the MSE

results. In contrast, the CNN using PL-MAE still produces the best score using the GRMSE.

Based on the different values of VGF, we compared the relative improvements from the

MSE, GRMSE, and CNR based on the data from the axial plane of the DBT image recon-

structed using the FDK algorithm. For the 15% (30%) VGF dataset, the MSE and GRMSE

decreased by 81.0% (82.8%) and 34.1% (44.9%), respectively, compared with the DBT image,

and the CNR increased by 191.2% (183.4%) compared with the DBT image.

Discussion and conclusion

In this study, we reduced the blurring artifacts in the DBT images using a two-phase learning-

based CNN and evaluated the image quality using the MSE, GRMSE, and CNR. Although the

simulated lesions included in the DBT image were slightly distorted, images deblurred by the

proposed method achieved a higher CNR compared with the conventional method. We also

demonstrated that the proposed method could reduce the blurring artifacts for unseen data,

which was tested using data obtained based on different VGF values.

Given the limited access to actual breast CT volumes, we validated the proposed method

using 3D volume data generated using a computer simulation. Further validation of the pro-

posed method using clinically available DBT image datasets could be an interesting future

research topic. We generated the training data pair by generating the DBT and CBCT volume

using a computer simulation in this work. In actual clinical situations, acquiring such paired

data would not be feasible. In this case, the DBT image can be generated by conducting a for-

ward projection of the CBCT volume by reflecting the data acquisition geometry of the DBT

system.

We specifically aimed to achieve digital tomosynthesis image deblurring in anatomical

backgrounds, but the proposed two-phase CNN structure could also be applied to deblur other

digital tomosynthesis images, such as chest images. The publicly available clinical CBCT chest

Table 4. MSE between the 2D FFTs of the CBCT and deblurred images by the proposed method with MAE and

PL-MAE.

MSE in the frequency domain

Method Axial Coronal Sagittal

Phase 1 0.82 1.31 1.12

Phase 2 (MAE) 0.51 0.59 0.34

Phase 2 (PL-MAE) 0.42 0.57 0.29

FDK 12.21 11.91 6.19

https://doi.org/10.1371/journal.pone.0262736.t004
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data provided by the NIH clinical center was used to verify that the proposed CNN is effective

for other types of clinical data as well. We observed that the MSE of the axial plane with the

proposed method was reduced by 60% compared with the digital tomosynthesis image. We

believe further improvements can be achieved using an optimized network structure and

training strategy for the chest dataset, which is a topic for future research. We attached these

results in the supplementary material.

We used breast volumes with 30% VGF for training and testing the model. In the previous

study [29], it was reported that 80% of women have a VGF lower than 27%, and 95% have a

VGF below 45%. Although the VGF is a little higher, breast volumes with a 30% VGF were

generated to verify that the proposed CNN could reduce blurring artifacts under harsh

Fig 8. Central vertical profiles of the frequency domain. Central vertical profiles of Fig 7 for (a) fx-fy, (b) fx-fz, and (c)

fy-fz planes. Note that f is the pixel frequency in mm−1.

https://doi.org/10.1371/journal.pone.0262736.g008

Fig 9. Results using 15% VGF DBT images. VGF 15% DBT images reconstructed with FDK and TV-IR, deblurred

images by DRCNN, deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE loss functions, and

CBCT images (from left to right). Images without mass lesion for (a) axial, (b) coronal, and (c) sagittal planes; images

containing 4 mm lesions for (d) axial, (e) coronal, and (f) sagittal planes, and images containing 2 mm lesions for (g)

axial, (h) coronal, and (i) sagittal planes. The display window is [0.0456 0.0844] in cm−1.

https://doi.org/10.1371/journal.pone.0262736.g009
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conditions in which deblurring may be difficult. To examine the generalization performance

of the proposed algorithm, we generated a 30% VGF DBT volume acquired over the ranges of

−40˚ to 40˚ and −10˚ to 10˚ for the same breast volume. These two volumes were deblurred

using the CNN, pretrained with the DBT volume acquired over the range of −20˚ to 20˚ and

the corresponding CBCT volume pair. The generalization performance is much better for a

larger data acquisition angle (i.e., −40˚ to 40˚). Because the primary role of the proposed

method is to fill in the missing data of DBT volume in frequency space (or equivalently,

deblurring in image space), the generalization performance of the CNN for the DBT volumes

acquired over a −10˚ to 10˚ data acquisition angle is worse because it contains much more

missing data in frequency space. We attached these results in the supplementary material.

We adopted U-Net in phase 2, because it contains a large receptive field size to cover the

length of PSF in the DBT system, which is a key aspect of the proposed method. When we

used REDCNN [45] or ResNet [38] in phase 2, the performance of the deblurring was not

effective compared to the case of U-Net. Detailed results are included in the supplementary

material.

For further validation of the proposed method, the PSF deblurring method based on itera-

tive blind deconvolution (i.e., PSF deblur) [13] was compared with the proposed method (i.e.,

PL-MAE). The image deblurred by the PSF deblur method slightly increased the CNR of 4 mm
lesions compared to the image reconstructed by FDK, similar to the result of the previous

study [13]. However, the MSE and GRMSE between the PSF deblurred image and the refer-

ence image were increased compared to the image reconstructed by the FDK due to the

increased noise level. These results demonstrate that our proposed method showed a higher

performance than the PSF deblur method. The following results are shown in the supplemen-

tary material.

Table 5. Pixel-based evaluation with 15% VGF DBT images. MSE and GRMSE results of the DBT images reconstructed with FDK and TV-IR, deblurred images by

DRCNN, deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE in generalization testset. (mean±standard deviation).

MSE (×10−5) GRMSE (×10−2)

Method Axial Coronal Sagittal Axial Coronal Sagittal

DRCNN 6.33 ± 1.41 8.89 ± 2.50 7.60 ± 1.89 0.81 ± 0.04 0.69 ± 0.06 0.66 ± 0.04

MAE 4.62 ± 1.23 5.06 ± 1.23 4.93 ± 1.45 0.57 ± 0.01 0.56 ± 0.02 0.62 ± 0.02

AL-MAE 4.47 ± 1.32 4.63 ± 1.35 6.16 ± 4.91 0.60 ± 0.02 0.56 ± 0.06 0.69 ± 0.01

PL-MAE 5.10 ± 1.80 5.26 ± 1.89 5.63 ± 2.10 0.56 ± 0.02 0.51 ± 0.02 0.60 ± 0.02

FDK 23.47 ± 7.98 0.85 ± 0.10

TV-IR 7.10 ± 2.67 0.56 ± 0.02

https://doi.org/10.1371/journal.pone.0262736.t005

Table 6. Lesion contrast evaluation with 15% VGF DBT images. CNR results of the DBT images reconstructed with FDK and TV-IR, deblurred images by DRCNN,

deblurred images by the proposed method with MAE, AL-MAE, and PL-MAE in generalization testset. (mean±standard deviation).

CNR

Method Axial Coronal Sagittal

DRCNN 3.22 ± 0.49 2.98 ± 0.61 3.22 ± 0.86

MAE 4.27 ± 0.85 3.64 ± 0.84 3.32 ± 0.77

AL-MAE 1.94 ± 1.12 2.97 ± 1.12 1.96 ± 1.08

PL-MAE 4.67 ± 0.92 4.25 ± 0.80 3.84 ± 0.83

FDK 1.61 ± 0.40

TV-IR 1.07 ± 0.40

https://doi.org/10.1371/journal.pone.0262736.t006
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In this study, we trained the proposed CNN using the MAE, AL-MAE, and PL-MAE loss

functions. All these loss functions exhibited verifiable image quality improvement compared

to the DRCNN and the FDK algorithm reconstruction methods. In particular, the PL-MAE

loss function exhibited the best deblurring performance in the results for the GRMSE, CNR,

and frequency domain analysis. Because previous works [46–50] have reported that adver-

sarial loss effectively recovers missing data, we also used the WGAN-GP as a loss function to

determine the performance of the proposed method. However, the deblurring performance

of WGAN-GP was worse than that of the MAE and PL-MAE. We conjecture that

WGAN-GP is not effective for filling in extensive missing data, as is the case for the DBT

system.

We used ±20˚ data acquisition, which falls within the range of data acquisition angle (i.e.,

[±7.5˚ ±25˚]) of the commercialized DBT systems [51]. Depending on the imaging applica-

tions, digital tomosynthesis systems use different data acquisition angles (e.g., ±25˚ for scaph-

oid [52], ±45˚ for head and neck [3], and ±102.5˚ for dental [4]), producing fewer blurring

artifacts compared to the current work. Extending the proposed method to different angle dig-

ital tomosynthesis imaging systems and different background structures would be interesting

for future research.

In this study, the proposed deblurring method was tested only on FDK reconstructed DBT

images. However, the proposed method can also be used for any practical reconstruction as

long as the training data pair can be acquired; when DBT images are reconstructed with differ-

ent apodization filters, the network can be separately trained for each apodization filters.

Moreover, using transfer learning [53] could be an additional solution when only a limited

amount of training dataset can be acquired.

In conclusion, we proposed the two-phase learning-based 3D deblurring technique consid-

ering the wide PSF of the DBT system. We quantitatively analyzed the deblurring results using

quantitative evaluation (i.e., MSE, GRMSE, and CNR). The results reveal that the proposed

method performs effective 3D deblurring and reduces the blurring artifacts effectively from

the in-focus plane and other planes of the DBT image. Combining the proposed method with

the DBT system would be extremely useful for computer-assisted diagnosis. External valida-

tion through experimental results will be performed in future work, as all datasets used in the

experiment were generated using a computer simulation.

Supporting information

S1 File. Supplementary material includes additional implementation details and further

clarification.

(PDF)

Author Contributions

Conceptualization: Yunsu Choi, Hanjoo Jang, Hyunjung Shim, Jongduk Baek.

Data curation: Yunsu Choi.

Formal analysis: Yunsu Choi, Hanjoo Jang, Jongduk Baek.

Funding acquisition: Hyunjung Shim, Jongduk Baek.

Investigation: Yunsu Choi, Minah Han, Jongduk Baek.

Methodology: Yunsu Choi, Minah Han, Hanjoo Jang, Jongduk Baek.

Project administration: Yunsu Choi, Minah Han, Hyunjung Shim, Jongduk Baek.

PLOS ONE Two-phase learning-based 3D deblurring

PLOS ONE | https://doi.org/10.1371/journal.pone.0262736 January 24, 2022 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262736.s001
https://doi.org/10.1371/journal.pone.0262736


Resources: Yunsu Choi.

Software: Yunsu Choi.

Supervision: Yunsu Choi, Minah Han, Jongduk Baek.

Validation: Yunsu Choi, Minah Han, Hanjoo Jang.

Visualization: Yunsu Choi, Minah Han, Hanjoo Jang.

Writing – original draft: Yunsu Choi.

Writing – review & editing: Yunsu Choi, Minah Han, Hanjoo Jang, Hyunjung Shim, Jongduk

Baek.

References

1. Dobbins JT III, McAdams HP. Chest tomosynthesis: technical principles and clinical update. European

journal of radiology. 2009; 72(2):244–51. https://doi.org/10.1016/j.ejrad.2009.05.054

2. Duryea J, Dobbins J III, Lynch J. Digital tomosynthesis of hand joints for arthritis assessment. Medical

physics. 2003; 30(3):325–33. https://doi.org/10.1118/1.1543573 PMID: 12674232

3. Bachar G, Siewerdsen J, Daly M, Jaffray D, Irish J. Image quality and localization accuracy in C-arm

tomosynthesis-guided head and neck surgery. Medical physics. 2007; 34(12):4664–77. https://doi.org/

10.1118/1.2799492 PMID: 18196794

4. Ogawa K, Langlais R, McDavid W, Noujeim M, Seki K, Okano T, et al. Development of a new dental

panoramic radiographic system based on a tomosynthesis method. Dentomaxillofacial Radiology.

2010; 39(1):47–53. https://doi.org/10.1259/dmfr/12999660 PMID: 20089744

5. Bonafede MM, Kalra VB, Miller JD, Fajardo LL. Value analysis of digital breast tomosynthesis for breast

cancer screening in a commercially-insured US population. ClinicoEconomics and outcomes research:

CEOR. 2015; 7:53.

6. Gao Y, Babb JS, Toth HK, Moy L, Heller SL. Digital breast tomosynthesis practice patterns following

2011 FDA approval: a survey of breast imaging radiologists. Academic radiology. 2017; 24(8):947–53.

https://doi.org/10.1016/j.acra.2016.12.011 PMID: 28188043

7. Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Opsahl-Ong B, et al. Digital tomo-

synthesis in breast imaging. Radiology. 1997; 205(2):399–406. https://doi.org/10.1148/radiology.205.2.

9356620 PMID: 9356620

8. Gennaro G, Toledano A, Di Maggio C, Baldan E, Bezzon E, La Grassa M, et al. Digital breast tomo-

synthesis versus digital mammography: a clinical performance study. European radiology. 2010; 20

(7):1545–53. https://doi.org/10.1007/s00330-009-1699-5 PMID: 20033175

9. Sechopoulos I. A review of breast tomosynthesis. Part I. The image acquisition process. Medical phys-

ics. 2013; 40(1):014301. https://doi.org/10.1118/1.4770279 PMID: 23298126

10. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. Josa a. 1984; 1(6):612–9. https://

doi.org/10.1364/JOSAA.1.000612

11. Park JC, Song B, Kim JS, Park SH, Kim HK, Liu Z, et al. Fast compressed sensing-based CBCT recon-

struction using Barzilai-Borwein formulation for application to on-line IGRT. Medical physics. 2012; 39

(3):1207–17. https://doi.org/10.1118/1.3679865 PMID: 22380351

12. Nah S, Hyun Kim T, Mu Lee K. Deep multi-scale convolutional neural network for dynamic scene

deblurring. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.

13. Mota AM, Clarkson MJ, Almeida P, Matela N. An Enhanced Visualization of DBT Imaging Using Blind

Deconvolution and Total Variation Minimization Regularization. IEEE Transactions on Medical Imaging.

2020; 39(12):4094–101. https://doi.org/10.1109/TMI.2020.3013107 PMID: 32746152

14. Fish D, Brinicombe A, Pike E, Walker J. Blind deconvolution by means of the Richardson–Lucy algo-

rithm. JOSA A. 1995; 12(1):58–65. https://doi.org/10.1364/JOSAA.12.000058

15. Choi Y, Shim H, Baek J. Image Quality Enhancement of Digital Breast Tomosynthesis Images by

Deblurring with Deep Residual Convolutional Neural Network. 2018 IEEE Nuclear Science Symposium

and Medical Imaging Conference Proceedings (NSS/MIC); 2018: IEEE.

16. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

International Conference on Medical image computing and computer-assisted intervention; 2015:

Springer.

PLOS ONE Two-phase learning-based 3D deblurring

PLOS ONE | https://doi.org/10.1371/journal.pone.0262736 January 24, 2022 17 / 19

https://doi.org/10.1016/j.ejrad.2009.05.054
https://doi.org/10.1118/1.1543573
http://www.ncbi.nlm.nih.gov/pubmed/12674232
https://doi.org/10.1118/1.2799492
https://doi.org/10.1118/1.2799492
http://www.ncbi.nlm.nih.gov/pubmed/18196794
https://doi.org/10.1259/dmfr/12999660
http://www.ncbi.nlm.nih.gov/pubmed/20089744
https://doi.org/10.1016/j.acra.2016.12.011
http://www.ncbi.nlm.nih.gov/pubmed/28188043
https://doi.org/10.1148/radiology.205.2.9356620
https://doi.org/10.1148/radiology.205.2.9356620
http://www.ncbi.nlm.nih.gov/pubmed/9356620
https://doi.org/10.1007/s00330-009-1699-5
http://www.ncbi.nlm.nih.gov/pubmed/20033175
https://doi.org/10.1118/1.4770279
http://www.ncbi.nlm.nih.gov/pubmed/23298126
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1118/1.3679865
http://www.ncbi.nlm.nih.gov/pubmed/22380351
https://doi.org/10.1109/TMI.2020.3013107
http://www.ncbi.nlm.nih.gov/pubmed/32746152
https://doi.org/10.1364/JOSAA.12.000058
https://doi.org/10.1371/journal.pone.0262736


17. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved training of wasserstein gans.

arXiv preprint arXiv:170400028. 2017.

18. Gatys LA, Ecker AS, Bethge M. Image style transfer using convolutional neural networks. Proceedings

of the IEEE conference on computer vision and pattern recognition; 2016.

19. Rose SD, Sanchez AA, Sidky EY, Pan X. Investigating simulation-based metrics for characterizing lin-

ear iterative reconstruction in digital breast tomosynthesis. Medical physics. 2017; 44(9):e279–e96.

https://doi.org/10.1002/mp.12445 PMID: 28901614

20. Gong X, Glick SJ, Liu B, Vedula AA, Thacker S. A computer simulation study comparing lesion detec-

tion accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.

Medical physics. 2006; 33(4):1041–52. https://doi.org/10.1118/1.2174127 PMID: 16696481

21. Richard S, Samei E. Quantitative imaging in breast tomosynthesis and CT: Comparison of detection

and estimation task performance. Medical physics. 2010; 37(6Part1):2627–37. https://doi.org/10.1118/

1.3429025 PMID: 20632574

22. Burgess AE, Jacobson FL, Judy PF. Human observer detection experiments with mammograms and

power-law noise. Medical physics. 2001; 28(4):419–37. https://doi.org/10.1118/1.1355308 PMID:

11339738

23. Reiser I, Nishikawa RM. Task-based assessment of breast tomosynthesis: Effect of acquisition param-

eters and quantum noise a. Medical physics. 2010; 37(4):1591–1600. https://doi.org/10.1118/1.

3357288 PMID: 20443480

24. Burgess AE, Judy PF. Signal detection in power-law noise: effect of spectrum exponents. JOSA A.

2007; 24(12):B52–60. https://doi.org/10.1364/JOSAA.24.000B52 PMID: 18059914

25. Johns PC, Yaffe MJ. X-ray characterisation of normal and neoplastic breast tissues. Physics in Medi-

cine & Biology. 1987; 32(6):675. https://doi.org/10.1088/0031-9155/32/6/002 PMID: 3039542

26. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Medical

physics. 1985; 12(2):252–5. https://doi.org/10.1118/1.595715 PMID: 4000088

27. Zhou J, Zhao B, Zhao W. A computer simulation platform for the optimization of a breast tomosynthesis

system. Medical physics. 2007; 34(3):1098–109. https://doi.org/10.1118/1.2558160 PMID: 17441255

28. Zeng R, Park S, Kakic P, Myers KJ. Evaluating the sensitivity of the optimization of acquisition geometry

to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study.

Physics in Medicine & Biology. 2015; 60(3):1259. https://doi.org/10.1088/0031-9155/60/3/1259

29. Yaffe M, Boone JM, Packard N, Alonzo-Proulx O, Huang SY, Peressotti C, et al. The myth of the 50–50

breast. Medical physics. 2009; 36(12):5437–43. https://doi.org/10.1118/1.3250863 PMID: 20095256

30. Kim M, Yun J, Cho Y, Shin K, Jang R, Bae H-j, et al. Deep learning in medical imaging. Neurospine.

2019; 16(4):657. https://doi.org/10.14245/ns.1938396.198 PMID: 31905454

31. Nguyen TT, Liew AW-C, Pham XC, Nguyen MP. A novel 2-stage combining classifier model with stack-

ing and genetic algorithm based feature selection. International Conference on Intelligent Computing;

2014: Springer.

32. Jarrett K, Kavukcuoglu K, Ranzato MA, LeCun Y. What is the best multi-stage architecture for object

recognition?. 2009 IEEE 12th international conference on computer vision; 2009: IEEE.

33. Graczyk M, Lasota T, Trawiński B, Trawiński K. Comparison of bagging, boosting and stacking ensem-

bles applied to real estate appraisal. Asian conference on intelligent information and database systems;

2010: Springer.

34. Tong T, Li G, Liu X, Gao Q. Image super-resolution using dense skip connections. Proceedings of the

IEEE international conference on computer vision; 2017.

35. Han X-H, Zheng Y, Chen Y-W. Multi-level and multi-scale spatial and spectral fusion CNN for hyper-

spectral image super-resolution. Proceedings of the IEEE/CVF International Conference on Computer

Vision Workshops; 2019.

36. Mao X-J, Shen C, Yang Y-B. Image restoration using very deep convolutional encoder-decoder net-

works with symmetric skip connections. arXiv preprint arXiv:160309056. 2016.

37. Yue B, Fu J, Liang J. Residual recurrent neural networks for learning sequential representations. Infor-

mation. 2018; 9(3):56. https://doi.org/10.3390/info9030056

38. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE

conference on computer vision and pattern recognition; 2016.

39. Zhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE

Transactions on computational imaging. 2016; 3(1):47–57. https://doi.org/10.1109/TCI.2016.2644865

40. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks.

Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.

PLOS ONE Two-phase learning-based 3D deblurring

PLOS ONE | https://doi.org/10.1371/journal.pone.0262736 January 24, 2022 18 / 19

https://doi.org/10.1002/mp.12445
http://www.ncbi.nlm.nih.gov/pubmed/28901614
https://doi.org/10.1118/1.2174127
http://www.ncbi.nlm.nih.gov/pubmed/16696481
https://doi.org/10.1118/1.3429025
https://doi.org/10.1118/1.3429025
http://www.ncbi.nlm.nih.gov/pubmed/20632574
https://doi.org/10.1118/1.1355308
http://www.ncbi.nlm.nih.gov/pubmed/11339738
https://doi.org/10.1118/1.3357288
https://doi.org/10.1118/1.3357288
http://www.ncbi.nlm.nih.gov/pubmed/20443480
https://doi.org/10.1364/JOSAA.24.000B52
http://www.ncbi.nlm.nih.gov/pubmed/18059914
https://doi.org/10.1088/0031-9155/32/6/002
http://www.ncbi.nlm.nih.gov/pubmed/3039542
https://doi.org/10.1118/1.595715
http://www.ncbi.nlm.nih.gov/pubmed/4000088
https://doi.org/10.1118/1.2558160
http://www.ncbi.nlm.nih.gov/pubmed/17441255
https://doi.org/10.1088/0031-9155/60/3/1259
https://doi.org/10.1118/1.3250863
http://www.ncbi.nlm.nih.gov/pubmed/20095256
https://doi.org/10.14245/ns.1938396.198
http://www.ncbi.nlm.nih.gov/pubmed/31905454
https://doi.org/10.3390/info9030056
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.1371/journal.pone.0262736


41. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:14091556. 2014.

42. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-

tion challenge. International journal of computer vision. 2015; 115(3):211–52. https://doi.org/10.1007/

s11263-015-0816-y

43. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.

44. Goodsitt MM, Chan H-P, Schmitz A, Zelakiewicz S, Telang S, Hadjiiski L, et al. Digital breast tomosynth-

esis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of

low-contrast objects in breast phantom images. Physics in Medicine & Biology. 2014; 59(19):5883.

https://doi.org/10.1088/0031-9155/59/19/5883 PMID: 25211509

45. Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, et al. Low-dose CT with a residual encoder-decoder

convolutional neural network. IEEE transactions on medical imaging. 2017; 36(12):2524–35. https://doi.

org/10.1109/TMI.2017.2715284 PMID: 28622671

46. Su S, Delbracio M, Wang J, Sapiro G, Heidrich W, Wang O. Deep video deblurring for hand-held cam-

eras. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2017.

47. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: Feature learning by

inpainting. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016.

48. Yang C, Lu X, Lin Z, Shechtman E, Wang O, Li H. High-resolution image inpainting using multi-scale

neural patch synthesis. Proceedings of the IEEE conference on computer vision and pattern recogni-

tion; 2017.

49. Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion. ACM Transac-

tions on Graphics (ToG). 2017; 36(4):1–14. https://doi.org/10.1145/2897824.2925974

50. Li Y, Liu S, Yang J, Yang M-H. Generative face completion. Proceedings of the IEEE conference on

computer vision and pattern recognition; 2017.

51. Tirada N, Li G, Dreizin D, Robinson L, Khorjekar G, Dromi S, Ernst T. Digital breast tomosynthesis:

physics, artifacts, and quality control considerations. Radiographics. 2019; 32(2):413–26. https://doi.

org/10.1148/rg.2019180046 PMID: 30768362

52. Mermuys K, Vanslambrouck K, Goubau J, Steyaert L, Casselman JW. Use of digital tomosynthesis:

case report of a suspected scaphoid fracture and technique. Skeletal Radiology. 2008; 37(6):569–72.

https://doi.org/10.1007/s00256-008-0470-3 PMID: 18343919

53. Pan SJ, Yang Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering.

2009; 22(10):1345–59. https://doi.org/10.1109/TKDE.2009.191

PLOS ONE Two-phase learning-based 3D deblurring

PLOS ONE | https://doi.org/10.1371/journal.pone.0262736 January 24, 2022 19 / 19

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1088/0031-9155/59/19/5883
http://www.ncbi.nlm.nih.gov/pubmed/25211509
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TMI.2017.2715284
http://www.ncbi.nlm.nih.gov/pubmed/28622671
https://doi.org/10.1145/2897824.2925974
https://doi.org/10.1148/rg.2019180046
https://doi.org/10.1148/rg.2019180046
http://www.ncbi.nlm.nih.gov/pubmed/30768362
https://doi.org/10.1007/s00256-008-0470-3
http://www.ncbi.nlm.nih.gov/pubmed/18343919
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1371/journal.pone.0262736

