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Abstract

Skeletal muscle wasting is a serious disorder associated with health conditions such as 

aging, chronic kidney disease and AIDS. Vitamin D is most widely recognized for its 

regulation of calcium and phosphate homeostasis in relation to bone development and 

maintenance. Recently, vitamin D supplementation has been shown to improve muscle 

performance and reduce the risk of falls in vitamin D deficient older adults. However, 

little is known of the underlying molecular mechanism(s) or the role it plays in myogenic 

differentiation. We examined the effect of 1,25-D3 on myogenic cell differentiation in 

skeletal muscle derived stem cells. Primary cultures of skeletal muscle satellite cells were 

isolated from the tibialis anterior, soleus and gastrocnemius muscles of 8-week-old  

C57/BL6 male mice and then treated with 1,25-D3. The efficiency of satellite cells 

isolation determined by PAX7+ cells was 81%, and they expressed VDR. Incubation of 

satellite cells with 1,25-D3 induces increased expression of: (i) MYOD, (ii) MYOG,  

(iii) MYC2, (iv) skeletal muscle fast troponin I and T, (v) MYH1, (vi) IGF1 and 2, (vii) FGF1 

and 2, (viii) BMP4, (ix) MMP9 and (x) FST. It also promotes myotube formation and 

decreases the expression of MSTN. In conclusion, 1,25-D3 promoted a robust myogenic 

effect on satellite cells responsible for the regeneration of muscle after injury or muscle 

waste. This study provides a mechanistic justification for vitamin D supplementation in 

conditions characterized by loss of muscle mass and also in vitamin D deficient older 

adults with reduced muscle mass and strength, and increased risk of falls.

Introduction

Vitamin D is universally recognized for its classical effects 
on calcium regulation and phosphate homeostasis, in 
relation to bone development and maintenance (1, 2). 
However, vitamin D deficiency has also been linked to the 
pathogenesis of several acute and chronic diseases such 
as musculoskeletal disorders, especially associated with 
reduced muscle mass and impaired physical performance 
in frail and elderly individuals (3, 4). While vitamin D  

deficiency has been associated with a reduction in 
upper and lower limb muscle strength and physical 
performance (5), a positive association between vitamin 
D supplementation on upper and lower body muscle 
strength has been described in healthy individuals (6).

At a cellular level there is also evidence of VDR 
expression and direct effects of vitamin D on human 
skeletal muscle precursor cells (7), which provides a 
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rationale for a direct role of vitamin D in muscle function. 
Furthermore, mice lacking VDR show an abnormal skeletal 
muscle phenotype with smaller, variable muscle fibers and 
persistence of immature muscle gene expression during adult 
life, suggesting a role of vitamin D in muscle development  
(8, 9). However, more research needs to be done in order to 
decipher the underlying mechanism or the role vitamin D 
plays in association with myogenic differentiation. Vitamin 
D, a fat-soluble secosteroid prohormone, is obtained from 
sun exposure or from dietary sources. During exposure to 
sunlight 7-dehydrocholesterol in the skin is converted to 
previtamin D3, which is immediately converted by a heat-
dependent process to vitamin D3. Vitamin D2 and vitamin 
D3 from dietary sources are incorporated into chylomicrons 
and transported by the lymphatic system into the venous 
circulation. Vitamin D in the circulation is bound to the 
vitamin D-binding protein, which transports it to the liver, 
where the enzyme, D-25 hydroxylase, converts vitamin 
D to 25-hydroxyvitamin D3. 25-HydroxyvitaminD3 is 
biologically inactive and is converted primarily in the 
kidney by the 25-hydroxyvitamin D-1-hydroxylase to its 
biologically active form 1,25-D3 or calcitriol (10). Our group 
and others have previously delineated the role of vitamin 
D in myogenic cell differentiation in C2C12 cells (11, 12, 
13, 14). Mouse C2C12 skeletal muscle myoblast cells are an 
‘in vitro’ cell line, which is widely used to study genes that 
regulate muscle growth and differentiation (15, 16).

Satellite cells, also known as ‘skeletal muscle stem 
cells’, have a remarkable ability to regenerate after muscle 
injury and are responsible for compensation of muscle 
turnover caused by daily wear and tear. In this study, we 
expand our previous results and conclusions (11, 12) by 
now utilizing a more clinically relevant cell model, which 
is the primary culture of skeletal muscle derived satellite 
cells. In conclusion, the aim of the present study was to 
test the hypothesis that 1,25-D3 promotes myogenic cell 
differentiation by targeting skeletal muscle stem cells, 
and to determine the associated molecular mechanism(s). 
This was done by investigating the expression of key pro- 
and anti-cell differentiation lineage markers and select 
growth factors modulated by 1,25-D3 in primary cultures 
of skeletal muscle satellite cells.

Materials and methods

Experimental animals

Male 8-week-old C57/BL6 mice (B.W.: 22.0 ± 0.3 g) from 
Jackson Laboratories were used for this study, which 

was approved by the Institutional Animal Care and Use 
Committee (IACUC) at Charles R. Drew University of 
Medicine and Science. Mice were housed for one week prior 
to experimental procedures to permit acclimatization. 
Animals were killed by CO2 inhalation. After confirming 
the death of the animals, they were soaked in alcohol 70% 
for 5 min. The skin and fascia were then removed and the 
hind limb muscles tibialis, soleus and gastrocnemius were 
removed under aseptic conditions. Later we proceeded 
with the satellite cells isolation.

Cell culture and satellite cell isolation

Primary satellite cell cultures were isolated as previously 
described (17, 18). Briefly, once tendons, vessels and fat 
were removed, each muscle was cut into small fragments 
and enzymatically digested at 37°C in 0.2% collagenase 
solution for 1 h. Myofibers were further purified from 
interstitial cells and tendons by a series of trituration, 
sedimentation and washings. Myofiber fragments were 
passed through a 40-μm cell strainer, resuspended in 
growth media (DMEM medium containing 20% FBS, 
10% horse serum and 1% chick embryo extract) and 
plated in culture dishes. Cells were allowed to adhere for 
2 h to remove large debris, macrophages and fibroblasts 
that adhere to the plastic. The primary non-attached 
myoblasts were transferred onto collagen-coated T25 flask 
and left undisturbed for 3 days allowing the cells to attach. 
Upon reaching 70% confluency, the satellite cells were 
detached and replated according to different treatments. 
Cells were incubated with or without 100 nM 1,25-D3 
(Sigma-Aldrich) dissolved in less than 0.1% ethanol as 
vehicle in growth media for 1–12 days. The 100 nM supra-
physiological concentration of 1,25-D3 employed in the 
experimental designed was the optimal concentration 
established based on our prior dose–response studies  
(21, 22) and it is in alignment with a commonly used 
dose applied in the majority of publications related to 
1,25-D3 effects on different cell lines or in primary cell 
cultures (19–24). Because of the 10-h half-life of 1,25-D3, 
the cell culture media, incubated with or without 1,25-D3 
(100 nM), was replaced daily (11, 12).

Detection of PAX7, VDR and MYC by 
immunocytochemistry

Satellite cells incubated in growth media for 1  day in 
collagen-coated chamber slides were washed thrice with 
PBS (1×) and fixed by immersion in 2% p-formaldehyde. 
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Cells were first quenched with 3% H2O2 and then blocked 
with normal goat or horse serum, and incubated with:  
(1) a rabbit polyclonal antibody against PAX7 at a dilution 
of 1:200 (Abcam), (2) a rabbit polyclonal antibody against 
VDR at a dilution of 1:50 (Santa Cruz Biotechnology) or 
(3) a mouse monoclonal antibody against MYC type II 
(1:400) from Abcam. The detection was followed by a 1:200 
dilution of either anti-rabbit or anti-horse biotinylated 
secondary antibody from Calbiochem, followed by the 
ABC complex (1:100) (Vectastain Elite ABC System, Vector 
Laboratories) and 3,3-diaminobenzidine (DAB) (Sigma), 
without counterstaining. In negative controls, we either 
omitted the first antibody or replaced it with a rabbit IgG 
isotype antibody (11).

Double labeling immunofluorescence detection of 
PAX7 and VDR

The double localization of PAX7 and VDR was carried 
out on 2% p-formaldehyde-fixed satellite cells primary 
cultures plated on collagen-coated chamber slides. For 
VDR, cells were blocked with normal goat serum, and 
incubated with a rat monoclonal antibody against VDR at 
a dilution of 1:50 (Abcam), followed by a 1:200 dilution 
of anti-rat biotinylated secondary antibody (Vector 
Labs, Burlingame, CA, USA). The subsequent reaction 
was carried out by incubating the cells in a 20 mg/mL 
solution of streptavidin-FITC (Vector Labs), followed by 
10% normal goat serum and then a 1:250 dilution of 
anti-PAX7 monoclonal antibodies (Abcam). Fluorescence 
labeling was performed with secondary antibody ‘Texas 
Red’ (13 mg/mL; Vector Labs). After several washes, the 
slides were detached and counterstained/mounted in 
‘vectashield’ mounting medium with DAPI (Vector Labs). 
Slides were examined under a Leica DMLB fluorescence 
microscope equipped with the appropriate filters. The 
VDR/PAX7 co-localization images were obtained by 
merging the red and green filtered pictures, as well as 
the blue filter for the VDR/PAX7/DAPI merge. Fields were 
photographed with a Leica DFC310 FX digital camera and 
Leica acquisition software. Negative controls were done 
by either omitting the first antibody or using a rabbit 
non-specific IgG (25).

PCR array analysis of skeletal muscle growth and 
differentiation factors

RT2 profiler PCR pathway focused arrays (SABiosciences, 
Qiagen) were applied in triplicate in order to detect 
changes in gene expression of skeletal muscle growth and 

differentiation factors. Total cellular RNA from satellite 
cells that were treated with or without 1,25-D3 (100 nM) 
for 7 days, was isolated with TRIzol Reagent (Invitrogen). 
They were then subjected to reverse transcription, and 
the resulting cDNA was analyzed by the Mouse Skeletal 
Muscle: Myogenesis & Myopathy (PAMM-099Z) PCR 
Arrays (SABiosciences, Qiagen). The Mouse Skeletal 
Muscle: Myogenesis & Myopathy RT2 Profiler™ PCR Array 
contains genes related to skeletal muscle differentiation, 
function and disease-related processes. Real-time PCRs 
were performed as follows: melting for 10 min at 95°C, 
40 cycles of two-step PCR including melting for 15 s at 
95°C and annealing for 1 min at 60°C. The raw data was 
analyzed using the Ct method following the manufacturer’s 
instructions (SABiosciences Corp., Qiagen) (26).

Real-time quantitative PCR

Total RNA was extracted using TRIzol Reagent 
(Invitrogen) and equal amounts (1 µg) of RNA were 
reverse transcribed using High Capacity RNA-to-cDNA 
PCR kit (Applied Biosystems). Mouse gene PCR primer 
sets (RT2) for VDR, IGF1, IGF2, FGF1, FGF2, MSTN 
and FST were obtained from SABiosciences. The Power 
SYBR green PCR Master Mix (Applied Biosystems) was 
used with Step-One-Plus real-time PCR System (Applied 
Biosystems). The protocol included melting for 15 min 
at 95°C, 40 cycles of three-step PCR including melting 
for 15 s at 95°C, annealing for 30 s at 58°C, elongation 
for 30 s at 72°C with an additional detection step of 
15 s at 81°C, followed by a melting curve from 55 to 
95°C at the rate of 0.5°C per 10 s. The samples of 25°ng 
cDNA were analyzed in quadruplicate in parallel with 
GAPDH controls; standard curves (threshold cycle vs log 
pg cDNA) were generated by log dilutions of standard 
cDNA (reverse transcribed mRNA from satellite cells in 
GM) from 0.1 pg to 100 ng. Experimental mRNA starting 
quantities were then calculated from the standard curves 
and averaged using SABioscience software as described 
previously (26). The ratios of marker experimental gene 
(e.g., VDR, IGF1 and 2, FGF1 and 2, MSTN, and FST 
mRNA) to that of GAPDH mRNA were computed and 
normalized with control (untreated) samples as 100%.

Western blotting and densitometry analyses

The cell lysates (50 μg protein) were subjected to Western 
blotting analyses by 4–15% Tris–HCl PAGE (Bio-Rad) in 
a running buffer (Tris/glycine/SDS). The proteins were 
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transferred onto PVDF membranes in a transfer buffer (Tris/
glycine/methanol) using transblot semi-dry apparatus (Bio-
Rad). The nonspecific binding was blocked by immersing 
the membranes into 5% nonfat dried milk and 0.1% (v/v) 
Tween 20 in PBS for 3 h at RT. After several washes with 
the washing buffer (PBS Tween 0.1%), the membranes 
were incubated with the primary antibodies for 3 h at RT 
or overnight at 4°C. Primary rabbit polyclonal antibodies 
from Abcam were used for: VDR (1:1000), IGF1 (1:500), 
IGF2 (1:500), FGF1 (1:500), FGF2 (1:500) and FST (1:500). 
The MYC type II (1:1000) was a monoclonal antibody 
also from Abcam. The MYOD (1:500) and the MYOG 
(1:500) were both polyclonal rabbit antibodies from 
Santa Cruz Biotechnology. The rabbit polyclonal MSTN 
antibody (1:500) and the mouse monoclonal GAPDH 
antibody (1:5000) were both from Millipore. After several 
washes with buffer, the membranes were incubated for 
3 h at RT with 1/2000 dilution (anti-mouse) or 1:2000 

dilution (anti-rabbit) of secondary antibody linked with 
HRP (Cell Signaling Technology). After several washes, 
the immunoreactive bands were visualized using the 
WesternSure PREMIUM chemiluminescent detection 
system (Li-COR Biotechnology, Lincoln, NE, USA). The 
scanning of the bands was done with the C-DiGit Blot 
Scanner (Li-COR Biotechnology) and the images were 
captured with the Image Studio Software, version 5.2 
(Li-COR Biotechnology).

Statistical analysis

All data are presented as mean ± s.e.m., and between-
group differences were analyzed using ANOVA. If the 
overall ANOVA revealed significant differences, then 
pair-wise comparisons between groups were performed 
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Figure 1
Efficiency in the isolation of primary cultures of satellite cells from 
skeletal muscle. Once the satellite cells were isolated and prior to starting 
the culture expansion, the efficiency of the applied technique was tested 
by the expression of PAX7 by immunocytochemistry (A). Magnification 
400×. The counting of positive PAX7 nuclei with the Image-Pro software 
renders an 81% efficiency (P < 0.01) in the isolation of satellite cells by the 
applied methodology (B).
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Figure 2
Expression, nuclear translocation and upregulation of steady-state mRNA 
and protein levels of VDR upon incubation of satellite cells with 1,25-D3. 
Cultures of satellite cells were continuously incubated with or without 
1,25-D3 (100 nM) for 7 days on four-well removable chamber slides and 
then were subjected to real-time PCR (A); Western blotting with the 
corresponding densitometric analysis (B) and immunocytochemistry using 
a rabbit polyclonal antibody for VDR, magnification 400× (C). 
Mean ± s.e.m. corresponds to experiments done in triplicate, P < 0.001  
(A) and P < 0.05 (B). Samples and controls were normalized to the GAPDH 
housekeeping mRNA/protein.
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Figure 3
Co-expression of PAX7 and VDR in primary cultures of satellite cells. The experiment was carried out on primary cultures of satellite cells plated on 
collagen-coated chamber slides that were continuously incubated with or without 1,25-D3 for 7 days, (A) no addition of 1,25-D3 and (B) with 1,25-D3. 
After the incubation period, cells were subjected to double immunofluorescence for VDR (FITC, green) and PAX7 (Texas red). The counterstaining was 
done with DAPI (blue). The ‘yellow’ VDR/PAX7 merge images were obtained by fusing the red and green filtered pictures, and the ‘purple’ picture were 
obtained by merging the VDR/PAX7/DAPI pictures. Magnification 400×.
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by Tukey’s multiple comparison test. All comparisons 
were two-tailed, and P < 0.05 were considered statistically 
significant. The in vitro experiments were repeated thrice, 
and data from representative experiments are shown. 
Specifically, the RT2 Profiler PCR Arrays were done 
in triplicates and in some cases further confirmed by  
qRT-PCR done in triplicates.

Results

Efficiency in the isolation of primary cultures of 
satellite cells from skeletal muscle

To determine the efficiency of the satellite cell isolation 
from skeletal muscle by the methodology described by 
Danoviz and Yablonka-Reuveni, the primary cultures were 
tested for the expression of PAX7 by immunocytochemistry 

(Fig. 1A). PAX7 is a unique marker for satellite cells, which is 
expressed in the nuclei of myogenic progenitor cells during 
development and thought to be exclusively expressed in 
satellite cells of mature muscle (27, 28). The counting of 
positive PAX7 nuclei with the Image-Pro software renders 
an 81% of efficiency (P < 0.01) in the isolation of satellite 
cells by the applied methodology (Fig. 1B).

Increase expression and nuclear translocation of VDR 
in satellite cells upon incubation with 1,25-D3

To determine whether satellite cells expressed  
VDR at a basal level and whether its expression and 
nuclear translocation is induced upon incubating 
the cells with 1,25-D3, real-time PCR, Western blots 
and immunocytochemistry were carried out after 
the cells were continuously incubated or not with  

Table 1  Differential steady-state mRNA levels of pro- and anti-myogenic growth factors and myogenic markers between 1,25-D3 

treated and untreated satellite cells.

Ref. Seq Symbol Description Fold Δ

NM_007554 Bmp4 Bone morphogenic protein 4 +2.7
NM_008006 Fgf2 Fibroblast growth factor 2 +2.52
NM_010512 Igf1 Insulin-like growth factor 1 +1.62
NM_010514 Igf2 Insulin-like growth factor 2 +6.01
NM_010834 MSTN Myostatin −2.6
NM_013599 MMP9 Matrix metallopeptidase 9 +3.2
NM_030679 Myh1 Myosin, heavy polypeptide 1, 

skeletal muscle adult
+3.99

NM_009405 Tnni2 Troponin I, skeletal, fast 2 +1.93
NM_011620 Tnnt3 Troponin T3, skeletal, fast +2.2

Total RNA from cells treated as in Fig. 2 for 7 days was subjected to RT real-time PCR by the Skeletal Muscle: Myogenesis & Myopathy PCR Array, and the 
ratios between the 1,25-D3-treated and 1,25-D3-untreated cells corrected by GAPDH were calculated for assays performed in triplicate. All experiments 
were done in triplicates.
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Figure 4
1,25-D3 promotes myogenic differentiation in primary cultures of satellite cells. Primary cultures of satellite cells were treated as in Figs 2 and 3. 
Representative Western blots with the corresponding densitometric analysis (*P < 0.05) are shown for MYOD, MYOG and MYC type II. Samples and 
controls were normalized with GAPDH housekeeping gene (A). Panel (B) shows representative immunocytochemistry pictures at 100× and 400× 
magnification of satellite expressing MYC type II with the corresponding image analysis expressing percentage IOD (area × intensity) for experiments 
done in triplicate (**P < 0.01). Arrows indicate polynucleated myotubes.
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1,25-D3 (100 nM) for 7 days. The dose of 1,25-D3 used for 
these studies was derived from studies published by us and 
others on the effect of different concentrations of 1,25-D3 at 
3 and 4 days on the proliferation of C3H 10T1/2 multipotent 
cells. In those studies, comparison of 1,25-D3 at 10 and 
50 nM to controls had no effect, while there was a dose-
dependent significant decrease in cell proliferation with 
increasing doses that peaked at 1,25-D3 (100 nM) (22). The 
increased expression of VDR upon incubation with 1,25-D3 
was demonstrated by real-time PCR (quantitative RT-PCR 
(qRT-PCR)) (Fig. 2A). VDR mRNA expression was increased 
by 8-fold at 7  days, compared with the controls (no  
1,25-D3 addition). The increased expression of VDR after 
1,25-D incubation was further confirmed by Western blot 
analyses with the corresponding image analysis using whole-
cell culture homogenates under the same conditions as above. 
Densitometric analysis of the bands revealed an increased VDR 
expression upon incubation with 1,25-D3 for 7 days by 1.7-
fold (Fig. 2B). Immunocytochemistry studies showed mostly 

a basal cytoplasmic localization of VDR in the control (no  
1,25-D3 incubation) compared with a predominant nuclear 
localization upon continuous incubation of the cells with 
1,25-D3 for 7 days (Fig. 2C).

Co-expression of PAX7 and VDR in primary cultures  
of satellite cells

In order to demonstrate that the isolated satellite 
cells are PAX7 positive and in addition express VDR, 
a double immunofluorescence experiment was carried 
out. Figure  3 shows first (panel A) that satellite cells 
not incubated with 1,25-D3 express PAX7 (red) in 
the nuclei and express VDR (green) mostly located 
in the cytoplasm. Upon continuously incubating the 
satellite cells with 1,25-D3 for 7  days (panel B), they 
still expressed PAX7 (red) in the nuclei, but this time 
the same cells expressed the VDR (green) mostly in the 
nuclei, denoting a typical translocation of the VDR 
receptors to the nuclei. DAPI was utilized to show the 
nuclear localization. The yellow merge picture denotes 
the co-expression between PAX7 (red) and VDR (green) 
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Figure 5
Upregulation of IGF1 steady-state mRNA and protein levels upon 
incubation of satellite cells with 1,25-D3. Primary cultures of satellite cells 
were incubated as in Fig. 2 for 7 days. Total RNA and whole-protein 
extracts were isolated for qRT-PCR and Western blottings, respectively.  
(A) Mean ± s.e.m. corresponds to experiments done in triplicate for IGF1; 
**P < 0.01. (B) Western blottings with the corresponding densitometric 
analysis for IGF1; *P < 0.05. In both cases, real-time PCR and Western 
blottings, samples and controls were normalized with GAPDH 
housekeeping gene.
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Figure 6
Steady-state mRNA and protein levels upregulation of IGF2 upon 
incubation of satellite cells with 1,25-D3. Primary cultures of satellite cells 
were incubated as in Fig. 2 for 7 days. Total RNA and whole-protein 
extracts were isolated for qRT-PCR and Western blottings, respectively.  
(A) Mean ± s.e.m. corresponds to experiments done in triplicate for IGF2; 
***P < 0.001. (B) Western blottings with the corresponding densitometric 
analysis for IGF2; *P < 0.05. In both cases, real-time PCR and Western 
blottings, samples and controls were normalized with GAPDH 
housekeeping gene.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1530/EC-17-0008


This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International 
License.

DOI: 10.1530/EC-17-0008
http://www.endocrineconnections.org� © 2017 The authors

Published by Bioscientifica Ltd

Research M Braga et al. VitD induces myogenesis on 
muscle stem cells

En
d

o
cr

in
e 

C
o

n
n

ec
ti

o
n

s
6:146146–150

and the purple cells demonstrate the co-localization 
among PAX7, VDR and DAPI.

1,25-D3 enhances myogenic differentiation in satellite 
cells by promoting the expression of myogenic 
markers, myotube formation and by modulating 
myogenic growth factors

The effect of 1,25-D3 on specific myogenic markers of 
cell differentiation and growth factors were evaluated at 
the steady-state mRNA level by RT2 Profiler PCR Array 
(Skeletal Muscle: Myogenesis & Myopathy Pathways). 
Table 1 shows the differential steady-state mRNA levels 
between 1,25-D3 treated (7  days) and untreated cells 
for determinations done in triplicate after 7  days of 
continuous incubation with 1,25-D3. The PCR array 
analysis showed an upregulation in the expression 
of skeletal muscle myogenic markers such as MYH1 
(+3.99), Tnni2 (+1.93) and Tnni3 (+2.2). Changes 
in the expression of pro- and anti-myogenic factors 
were also observed: upregulation in the expression 
of IGF1 (+1.62), IGF2 (+6.01) and FGF2 (+2.52), and 

most importantly a marked downregulation of MSTN 
(−2.6). Continuous incubation of satellite cells with  
1,25-D3 also increased the expression of BMP4 (+2.7), a 
positive marker of myotube formation/maturation (29). 
In addition, MMP9 was upregulated (+3.2); MMP9 is a 
marker of myogenic cell migration and engraftment (30) 
that is also known to coordinate and affect wound repair.

The pro-myogenic effect of vitamin D on satellite cells 
was further demonstrated by the increased expression 
of myogenic markers such as MYOD, MYOG and 
MYC type II by Western blots with the corresponding 
densitometric analysis upon incubation of satellite 
cells with 1,25-D3 (Fig. 4A). In addition we were able to 
demonstrate that 1,25-D3 induced myotube formation 
showing polynucleated myotube formation and increased 
expression of MYC type II by immunocytochemistry with 
the corresponding image analysis expressing percentage 
IOD (area × intensity) for experiments done in triplicate 
(**P < 0.01) (Fig. 4B).

The increased expression of IGF1, IGF2, FGF1 and 
FGF2 after 1,25-D3 incubation was further confirmed 
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Figure 7
Steady-state mRNA and protein levels upregulation of FGF1 upon 
incubation of satellite cells with 1,25-D3. Primary cultures of satellite cells 
were incubated as in Fig. 2 for 7 days. Total RNA and whole-protein 
extracts were isolated for qRT-PCR and Western blottings, respectively. (A) 
Mean ± s.e.m. corresponds to experiments done in triplicate for FGF1; 
**P < 0.01. (B) Western blottings with the corresponding densitometric 
analysis for FGF1; ***P < 0.001. In both cases, real-time PCR and Western 
blottings, samples and controls were normalized with GAPDH 
housekeeping gene.
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Figure 8
Steady-state mRNA and protein levels upregulation of FGF2 upon 
incubation of satellite cells with 1,25-D3. Primary cultures of satellite cells 
were incubated as in Fig. 2 for 7 days. Total RNA and whole-protein 
extracts were isolated for qRT-PCR and Western blottings, respectively.  
(A) Mean ± s.e.m. corresponds to experiments done in triplicate for FGF2; 
*P < 0.05. (B) Western blottings with the corresponding densitometric 
analysis for FGF2; **P < 0.01. In both cases, real-time PCR and Western 
blottings, samples and controls were normalized with GAPDH 
housekeeping gene.
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at 7  days by quantitative real-time PCR, and at the 
protein level by Western blots with the corresponding 
densitometric analysis. Figure  5A shows the +1.5-fold 
increase in the expression of IGF1 by real-time PCR 
compared with the control (P < 0.01), and Fig. 5B shows a 
similar pattern by Western blot compared with the control 
(P < 0.05). Figure  6A shows a +4.0-fold increase of IGF2 
mRNA expression by real-time PCR upon incubating the 
cells with 1,25-D3 compared to the control with a similar 
pattern of expression at the protein level by Western 
blot (Fig.  6B). The increased expression of FGF1 (+3.9-
fold) upon 1,25-D3 incubation was also confirmed at the 
steady-state mRNA level by real-time PCR (Fig. 7A) and at 
the protein level by Western blots with the corresponding 
densitometric analysis (Fig.  7B). Similarly, an increased 
expression of FGF2 was confirmed by real-time PCR (+2.3-
fold) (Fig. 8A) and by Western blot analysis (Fig. 8B).

Because the PCR arrays showed a decreased expression 
of MSTN upon incubating the cells with 1,25-D3, and 
because MSTN is a known negative regulator of skeletal 

muscle mass, we further confirmed the PCR arrays by 
quantitative real-time PCR. The real-time PCR for MSTN 
performed at 7  days of continuous incubation with  
1,25-D3 showed a remarkable decrease in MSTN expression 
by 5-fold, compared with the control (P < 0.001) (Fig. 9A). 
The remarkable decreased expression of MSTN at the 
protein level was shown by Western blotting, with the 
respective densitometric analysis (Fig. 9B).

1,25-D3 increases FST expression in primary cultures 
of skeletal muscle satellite cells

To determine whether FST, which inhibits MSTN activity  
in vitro and in vivo, is involved in the mechanism by which 
1,25-D3 promotes muscle growth, we investigated FST 
expression in primary cultures of skeletal muscle derived 
satellite cells, with and without 1,25-D3 incubation. 
Real-time qPCR revealed that after 7 days of continuous 
incubation with 1,25-D3, FST expression was increased 
by 1.7-fold compared with controls (P < 0.05) (Fig. 10A). 
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Figure 9
1,25-D3 downregulates the expression of MSTN in satellite cells. Cultures 
of satellite cells were treated as in Fig. 2 for 7 days. Total RNA and 
whole-cell protein extracts were isolated for qRT-PCR and Western 
blottings, respectively. (A) Mean ± s.e.m. corresponds to experiments done 
in triplicate for MSTN; ***P < 0.001. (B) MSTN Western blottings with the 
corresponding densitometric analysis; ***P < 0.01. In both cases, qRT-PCR 
(A) and Western blottings (B), samples and controls were normalized with 
GAPDH housekeeping gene.
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Figure 10
Steady-state mRNA and protein upregulation levels of FST expression 
upon incubation of satellite cells with 1,25-D3. Cultures of satellite cells 
were incubated as in Fig. 2 for 7 days. Total RNA and whole-protein 
extracts were isolated for qRT-PCR and Western blottings. (A) 
Mean ± s.e.m. corresponds to experiments done in triplicate; *P < 0.05.  
(B) FST Western blottings with the corresponding densitometric analysis; 
**P < 0.01. In both cases, qRT-PCR (A) and Western blottings (B), samples 
and controls were normalized with GAPDH housekeeping gene.
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Because MSTN expression was substantially downregulated 
at day 7 by 1,25-D3, we determined the expression of FST 
at the protein level by Western blotting. Figure 10B shows 
that the expression of FST was significantly upregulated 
(P < 0.01) compared with controls, suggesting that  
1,25-D3 promotes myogenic differentiation by inhibiting 
MSTN activity, possibly through an increase in FST 
expression.

Discussion

The data presented in this manuscript demonstrate that 
VDR is expressed in skeletal muscle satellite cells that 
are responsible for restoring muscle mass after injury. 
Furthermore, the addition of  1,25-D3 to satellite cell 
primary cultures enhances myogenic differentiation 
through an increased expression and nuclear translocation 
of VDR; triggering an increase in the expression of 
myogenic markers, myotube formation, and a modulation 
of pro- and antimyogenic factors. The increase in VDR 
expression, to some extent, is expected, because it is 
known that 1,25-D3 auto-regulates the expression of the 
VDR gene through intronic and upstream enhancers 
(32). In this manuscript, we also demonstrated that the 
1,25-D3 effect on skeletal muscle satellite cells involves: 
an increased expression of known pro-myogenic 
skeletal muscle markers such as (1) MYOD, (2) MYOG, 
(3) MYC type II, (4) muscle troponin I and troponin T, 
(5) MYH1 (myosin heavy chain I); and growth factors 
such as (6) IGF1 and 2, (7) FGF1 and 2, (8) BMP4 and 
(9) MMP9. Furthermore, exposure of satellite cells to  
1,25-D3 increases myotube formation. It also upregulates 
the expression of FST (a MSTN inhibitor) (33); even more, 
we showed that 1,25-D3 downregulates MSTN expression, 
the most important negative regulator of muscle mass (34). 
Myogenesis of skeletal muscle cells is a highly ordered and 
sequential process: it starts with a period of proliferation 
followed by a differentiation process that generates 
myoblasts from mesodermal stem cells. Satellite cells are 
maintained in a quiescent state and upon requirement 
are activated to proliferate and fuse with other cells to 
form or repair myofibers. In addition, they are able to 
self-renew and replenish the stem pool. In this study, we 
were able to demonstrate that satellite cells express the 
VDR receptor, making them the main target for vitamin 
D. Satellite cells were characterized by the expression of  
PAX7, which is considered the main defining factor 
for this cell type (27, 35). The increase in expression of 
well-known myogenic markers such as MYOD, MYOG, 

MYC type II, MYH1 and muscle troponin I and T, upon 
incubation of satellite cells with 1,25-D3, is a clear 
indication of the pro-myogenic effect of vitamin D in this 
primary culture cell system. We also demonstrated that the 
addition of 1,25-D3 induced gene expressions of pathways 
involved in myogenic differentiation, such as IGF, FGF and  
TGF-β-related signaling pathways.

1,25-D3 increases the expression of IGF1 and IGF2, 
which indicates that IGFs play an important role in pushing 
muscle differentiation in the proposed system. It has been 
shown that the IGF signaling pathway plays a key role in 
the regulation of skeletal muscle growth and differentiation. 
Both IGF1 and 2 are locally expressed in muscle cells 
contributing to the regulation of skeletal muscle growth, 
differentiation, and also maintaining adult muscle tissue 
homeostasis (36). Moreover, IGFs plays a critical role in 
adult muscle survival, regeneration and hypertrophy  
(37, 38, 39). Even more, it has been recently described that 
IGF1 suppresses MSTN signaling pathway during myogenic 
differentiation, adding one more mechanistic indication to 
the inhibition of MSTN by vitamin D (40). At the same time, 
it has been shown that IGF2 inhibition leads to a reduced 
expression of MYOD target genes, which suggests that IGF2 
is also essential for amplifying and maintaining MYOD 
efficacy (41). Regarding the increase expression of FGF1 and 
FGF-2 by 1,25-D3, it has been previously described that both 
proteins are present in proliferating skeletal muscle cells, 
but are undetectable after terminal differentiation (42). 
The same publication reports that transient transfection 
of cells with FGF1 or FGF2 expression constructs exerted 
a global effect on myoblast DNA synthesis indicating that 
production of FGF1 and FGF2 by skeletal muscle cells may 
act as a paracrine and autocrine regulator of skeletal muscle 
development in vivo.

We also demonstrated the increased expression of 
Bmp4 upon incubation of satellite cells with 1,25-D3, 
consistent with the concept that Bmp4 expressed in 
myoblasts has a positive role in myotube formation/
maturation through MYOG expression (29).

Concerning the increased expression of MMP9 
induced by vitamin D incubation, it has been shown that 
overexpression of MMP family members, especially MMP9, 
improves myogenic cell migration and engraftment (30). 
As it was mentioned earlier in the text, it also coordinates 
wound repair since deficient MMP9 mice were unable to 
remove the fibrinogen matrix during wound healing (31).

Regarding the TGF-β signaling pathway involvement 
in myogenic differentiation promoted by vitamin D, 
our study in primary cultures of satellite cells confirms 
our previous results obtained on the C2C12 myoblast 
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cell line (11): that 1,25-D3 administration to skeletal 
muscle cells reduced the expression of MSTN, the most 
relevant negative regulator of muscle mass known 
to date (34). Even more, we were also able to confirm 
in this highly relevant cell system that FST, which is a 
MSTN-binding protein that can inhibit MSTN activity  
in vitro and promote muscle growth in vivo (33) increases 
upon incubation with 1,25-D3. It has been shown that 
FST antagonizes MSTN by a direct protein interaction, 
preventing MSTN from executing its inhibitory effect on 
muscle development (43).

These sets of results reinforce the pro-myogenic effect 
of 1,25-D3 on skeletal muscle differentiation via regulation 
of different pathways and the decreased MSTN expression 
at the steady-state mRNA and protein level, by possibly 
inhibiting MSTN activity through an increase in FST and 
IGF1 expression.

In summary, we showed that satellite cells expressed 
VDR and that addition of 1,25-D3 to satellite cells induces 
increased expression of: (i) MYOD, (ii) MYOG, (iii) MYC 
type II, (iv) muscle troponin I and T, (v) MYH1, (vi) IGF1 
and 2, (vii) FGF1 and 2, (viii) BMP4, (ix) MMP9 and 
(x) FST. It also induces a decrease expression of MSTN. 
In conclusion, vitamin D exerts a clear pro-myogenic 
effect on satellite cells in charge of muscle reconstitution 
after muscle injury or muscle waste. We believe that this 
study provides a mechanistic justification for vitamin D 
replenishment in muscle waste conditions such as AIDS, 
cancer and renal failure, characterized by loss of muscle 
mass, and also in vitamin D deficient elderly adults who 
have an age-related loss of muscle mass and strength, and 
an increased rate of falls. The study even opens the door 
for an emerging potential role of therapies directed to 
trigger select vitamin D regulated muscle pathways in the 
treatment of adverse muscle conditions.
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