
Frontiers in Cellular and Infection Microbiolo

Edited and reviewed by:
Benoit Chassaing,

Institut National de la Santé et de la
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Editorial on the Research Topic

The Pivotal Role of Oral Microbiota Dysbiosis and Microbiota-Host Interactions in Diseases

The oral microbiome is an important constituent of human microbiome, playing a pivotal role in
human health. Oral microbial dysbiosis is the major causative factor of oral diseases such as dental
caries and periodontal diseases, and it is also closely associated with systemic diseases such as
cardiovascular diseases, diabetes, and gastrointestinal diseases, etc (Hajishengallis, 2015;
Hajishengallis and Chavakis, 2021). The last two decades have witnessed tremendous progress in
the field of oral microbiota and its related human diseases, largely due to the advancement in high
throughput “-omics” techniques such as metagenomics and metatranscriptomics. In addition, the
development of non-invasive detection methods such as Raman Spectroscopy also makes the
dynamic detection of microbial metabolic activity possible (Su et al., 2020). Oral microbiota can be
recognized as the “fingerprint” of human health, and tools and models developed based on metadata
and comprehensive bioinformatics can be utilized to robustly predict the occurrence and prognosis
of oral diseases as well as the related systemic diseases (Xu et al., 2017). In addition, identification of
Porphyromonas gingivalis as the keystone pathogen of periodontitis has greatly advanced the
knowledge on the pathogenesis of this disease (Hajishengallis et al., 2012). Novel approaches that
can specifically target key pathogens are promising for the ecological management of oral diseases.
In this Research Topic, we have included eight original research articles as well as six comprehensive
reviews, covering the novel findings in oral microbiota dysbiosis and microbiota-host interactions,
and new compounds or novel approaches in the diagnosis and treatment of diseases associated with
oral microbial dysbiosis.

The relationship between oral cancer and microbiome has been suggested, but with controversial
conclusions (Kamarajan et al., 2020; Sepich-Poore et al., 2021). Chen et al. investigated the salivary
microbiome in the cohorts of orally healthy, non-recurrent oral verrucous hyperplasia, and oral
verrucous hyperplasia–associated oral cancer at taxonomic and function levels. They demonstrated
that predicted functional profiles were more related to the alterations of oral health status as
compared to taxonomic data. In addition to oral cancer, increasing evidence has suggested the
association of HIV infection and oral microbiota (Annavajhala et al., 2020; Fulcher, 2020). However,
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the impact of antiretroviral therapy (ART) on oral microbiome
of HIV-infected patients has yet to be investigated. Li et al
performed a longitudinal comparative study, and investigated
the oral microbial alterations in the men who have sex with men
with acute/chronic HIV infections. They found that microbial
diversity was significantly decreased in patients with acute and
chronic HIV infections compared with those HIV-free
individuals before and after ART. Specific genera with altered
abundance were also identified to be associated with HIV
infection and ART administration. In addition to bacterial
dysbiosis, HIV-infected individuals are more susceptible to
fungal infections (Patil et al., 2018). The longitudinal study by
Chang et al. identified an increased diversity and richness of
salivary mycobiome in HIV-infected individuals as compared to
the HIV-free controls. After ART, the diversity and richness of
salivary mycobiome in HIV-infected patients were reduced
significantly. These findings suggest that both HIV infection
and ART administration have significantly impact on salivary
mycobiome, which might mirror the immune state of the body.
In addition to viral infection that can alter oral microbiome,
translocation of specific pathogens also contributes to the
microbial alterations in the oral cavity. A cross-sectional study
on reflux esophagitis patients by Liang et al. demonstrated that
reflux esophagitis significantly disturbed oral microbiome with
an increased beta diversity, and Helicobacter pylori infection
could inhibit this disorderly trend.

As the occurrence, progression and prognosis of oral diseases
are accompanied with compositional and metabolic alterations
of oral microbiota, development of non-invasive, high
throughput detection tools with single-cell resolutions are
promising in the diagnosis, treatment planning and outcome
evaluation of oral diseases. Raman spectroscopy detects
molecular vibration information by collecting inelastic
scattering light, which provides rapid, sensitive, accurate, and
minimally invasive detection (Xu et al., 2017). Zhang et al.
reviewed the application of Raman spectroscopy in the early
diagnosis, treatment and prognosis evaluation of oral diseases
including dental caries, periodontal diseases and oral cancer.
Although Raman spectroscopy is promising, the authors
suggested that future efforts to increase signal-to-noise ratios
and develop robust tools for data analysis are still needed.

Bacterial protein phosphorylation systems have been
suggested to be involved in microbial dysbiosis and microbes-
host interaction (Lamont et al., 2018). Ren et al. discussed the
roles of tyrosine and serine/threonine phosphorylation systems
in keystone species P. gingivalis, with a particular focus on their
involvement in bacterial metabolism and virulence, community
development, and bacteria-host interactions. In addition to its
association with periodontitis, P. gingivalis can increase the risk
of systemic diseases such as type 2 diabetes mellitus (T2DM),
cardiovascular diseases, nonalcoholic fatty liver disease
(NAFLD), rheumatoid arthritis, and gut inflammation
(Hajishengallis, 2015; Kitamoto et al., 2020; Hajishengallis and
Chavakis, 2021). Previous study by Xu’ group demonstrated that
P. gingivalis was able to induce insulin resistance by increasing
the serum level of branched-chain amino acid (BCAA) in high
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fat diet (HFD)-fed mice (Tian et al., 2020). Work by Wu et al.
further demonstrated that P. gingivalis elevated serum level of
BCAA and exacerbated liver injury in HFD-fed mice, and this
effect was dependent on the bacterial BCAA transport system
genes livh/livk.

Streptococcus mutans is the main aciduric and acidogenic
species in the oral cavity, and its persistence within the
multispecies oral biofilms may antagonize commensal bacteria
and drive compositional shift of oral microbiota towards a more
cariogenic community that favors the development of dental
caries (Lamont et al., 2018; Du et al., 2021). Fluoride is an
effective anti-caries agent. However, widespread application of
fluoride may induce fluoride-resistance in S. mutans (Li et al.,
2021). Zhang et al. established an antagonistic dual-species
biofilm consisting of S. mutans and Streptococcus sanguinis,
and demonstrated that fluoride-resistant strain of S. mutans
gained a survival advantage over S. sanguinis with an excessive
production of extracellular polysaccharides after fluoride
exposure, challenging the control of dental plaque biofilm.
Dental caries is a multifactorial disease, and its progression is
closely associated with ecological shift of oral microbiota towards
a more cariogenic community that favors the demineralization of
tooth hard tissue (Lamont et al., 2018). Wu et al. created a
multifactorial machine learning model using oral microbiome of
mother-child dyads in combination with demographic-
environmental factors and relevant fungal information. By
using this model, they identified specific caries-associated oral
bacteria, Candida, and other multi-source factors for preschool
children and their mothers.

The interactions between host and microbes play pivotal role
in the development of oral diseases. Osteomicrobiology is a novel
terminology that refers to the role of microbiota in bone
homeostasis. Recent studies have shown the roles of oral
microbiota in modulating host defense systems and alveolar
bone homeostasis. Cheng et al. proposed the terminology “oral
osteomicrobiology” and discussed the regulation of alveolar bone
development and bone loss by oral microbiota under
physiological and pathological conditions. Signaling pathways
involved in oral osteomicrobiology and critical techniques for
related investigations were also introduced. The recognition of
pathogen-associated molecular patterns (PAMP) or damage-
associated molecular patterns (DAMP) by the pattern-
recognition receptors (PRRs) such as Toll-like receptors
(TLRs) and nucleotide-binding oligomerization domain-like
receptors (NLRs) has been well documented as the main
molecular mechanisms for the host-microbial interactions
(Akira et al., 2006; Kanneganti et al., 2007). Recent studies
have identified a wide expression of extra-gustatory taste
receptors in tissues/organs including airways, nasopharyngeal
cavities, gastrointestinal tract and gingivae, and demonstrated
their pivotal role in host immune responses and infectious
diseases (O'Leary et al., 2019; Schneider et al., 2019; Ting and
Von Moltke, 2019; Zheng et al., 2019). A review article from
Dong et al discussed how taste receptors, particularly bitter and
sweet taste receptors, mediated the oral microbiota-host
interaction and the development of oral diseases. The taste
June 2022 | Volume 12 | Article 947638
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receptor-mediated signaling and host immune responses may
provide novel treatment targets for the management of oral
infectious diseases such as periodontal diseases.

Since frequent use of wide-spectrum antimicrobials may
cause microbial dysbiosis and drug resistance, novel
approaches that can restore microecology without necessarily
killing the bacteria are promising (Kuang et al., 2018). Zhang et
al. reviewed the application of probiotics in the management of
periodontal diseases. Probiotic bacteria derived from the genera
Lactobacillus, Bifidobacterium, Streptococcus, and Weissella have
shown effectiveness in the prevention and treatment of
periodontal diseases. Competition for adhesion sites,
antagonism against growth, biofilm formation and virulence
expression of periodontopathogens, and regulation on host
immune responses are the most recognized mechanisms.
Nevertheless, more well-controlled clinical trials are still
needed to provide solid evidence for their clinical usage. Small
molecules which can either selectively inhibit keystone microbes
or suppress the key virulence of the microbial community, are
promising for the ecological management of oral diseases.
Yang et al. discussed the research progress in the development
of antimicrobial small molecules and delivery systems, with a
particular focus on their antimicrobial activity against typical
species such as S. mutans, P. gingivalis and Candida albicans.
Although future work is still needed to delineate its molecular
mechanisms and the exact drug targets, the authors believed that
small molecules with potent antimicrobial activity, high
selectivity, and low toxicity are promising for the ecological
management of oral diseases. In addition to probiotics and
small molecules, poly(amidoamine) dendrimers with amino
terminal groups (PAMAM-NH2) have been identified as
promising antimicrobial agents (Mintzer et al., 2012).
Secondary caries caused by microbial leakage and hybrid layer
degradation is one of the major causes of treatment failure of
dental caries. Gou et al. developed a novel dentin cavity cleanser
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
that contains PAMAM-NH2. Although the exact molecular
mechanisms are still unclear, the PAMAM-NH2 showed long-
term antimicrobial and anti-proteolytic activities, which are
crucial for the maintenance of resin-dentin bond durability
and thus promote the prevention of secondary caries.

A recurring theme in the current topic is the microbial
diversity of oral microbiota and its association with oral and
systemic health status. Although we have seen several
submissions with longitudinal studies that showed dynamic
microbial alterations during the treatment process, the key
factors and underlying mechanisms that drive the microbial
shift have yet to be investigated. In addition, although
functional profiles have been suggested to be more related to
diseases as compared to taxonomic alterations, current
submissions mainly include data obtained from 16S and 18S
rRNA amplicon sequencing. Future studies with metagenomic,
meta-transcriptomic and meta-metabolomic approaches are still
needed to better delineate the robust interactions between host
and microbiota, and thus provide molecular basis for the
development of new diagnostics and treatment modalities that
target keystone pathogens in oral diseases.
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