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Abstract: Layers of high silica zeolites, synthesized with an organic structure directing agent (OSDA)
and grown onto porous support structures, frequently suffer from the thermal stress during the
removal of OSDA via the calcination process. The different thermal expansion coefficients of the
zeolite and the support material, especially when stainless steel is used as a support, causes enormous
tension resulting in defect formation in the zeolite layer. However, the calcination is an easy procedure
to decompose the OSDA in the pore system of the zeolite. Recently, methods to synthesize zeolite
beta without the use of an organic structure directing agent have been described. In the present
study, a seed-directed synthesis is used to prepare OSDA-free zeolite beta layers on stainless steel
supports via an in situ preparation route. For the application as membrane, a porous stainless steel
support has been chosen. The beta/stainless steel composites are characterized by X-ray diffraction
(XRD) and scanning electron microscopy (SEM). To prove its possible application as a membrane,
the beta/stainless steel composites were also tested by single gas permeances of H2, He, CO2, N2,
and CH4.
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1. Introduction

The past two decades have seen tremendous advances in the areas of the preparation,
microstructure characterization, permeation mechanism and application of zeolite-based layers and
coatings. It is generally accepted that the zeolite membranes offer superior thermal, chemical and
mechanical stability in harsh environments, in contrast to the polymeric membranes. Due to the large
diversity of available zeolite materials, support structures and the tunability, the zeolite properties
utilizing various numbers of post-treatment methods, many applications for zeolite coatings and
membranes have been achieved [1–5]. However, just a few applications have been realized on a
technical or pilot scale level. Interesting applications are, most notably, separation tasks [6] and sensor
applications [7], as well as the use as a catalytic membrane reactor [8]. Especially for the application as
a membrane either for separation or as a catalytic membrane, dense and defect-free layers are necessary.
It is critical to prevent defects or voids that might exist in addition to the desired zeolite pores to
improve the potential of zeolite coatings for further industrial applications. Such voids and defects
reduce the membrane properties to separate molecules based on their size. The formation of such
defect might be because zeolite membrane layers are intergrown polycrystalline assembles with the
grain boundaries invariably existing between crystals or crystallites. In addition, such intercrystalline
voids are generated by thermal treatment or calcination processes, which are necessary to remove the
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organic structure directing agent (OSDA) from the zeolite’s pore system. Even if slow heating and
cooling rates are applied during the calcination process, the formation of defects can occur. To avoid
this problem, several groups, in recent years, have studied OSDA-free synthesis methods for MFI-type
zeolite layers and membranes where an organic structure directing agent is usually necessary [9–15].
Most of them performed an in situ or ex situ seeding with silicalite-1 crystals followed by a secondary
growth step. Okubo et al. [16] show a detailed overview for the OSDA-free synthesis of some zeolites
with a special focus on zeolite beta.

Not only MFI zeolite membranes and layers have shown great potential as catalytic coatings
and membranes, but zeolite beta has also attracted more attention in recent years [17–22]. Zeolite
beta is a high-silica zeolite, which can be crystallized on various supports in the form of very well
intergrown layers. In addition, zeolite beta membranes show a good performance for organic vapor
separations and as membrane reactors due to their specific pore width and a three-dimensional pore
system with channel-like geometries. Until now, they have been prepared using an OSDA via seeding
and secondary growth methods [19–21] or via direct synthesis methods [17,18,22].

The group of Xiao [23] reported one of the earliest attempts on seed-induced crystallisation of
zeolite beta powder in the absence of an OSDA. The synthesis recipes were further improved by Xiao’s
group [24–27] themselves and by the groups of Okubo [16,28–31] and Mintova [32]. In these reports,
calcined and uncalcined zeolite beta seed particles, produced earlier with an OSDA, are used in a
secondary growth synthesis solution where indeed no additional OSDA is required. The reported
synthesis procedures vary in terms of the kind and amount of seeding particles, the content of the
secondary growth solution, in synthesis times and temperatures. The most recent publications favor
lower synthesis temperatures around 120 ◦C, which then requires a longer synthesis time up to 120 h
to reach high crystallinities and yields [24–26]. Yilmaz et al. [25] have also pointed out economic
advantages of OSDA-free zeolite beta as compared to conventionally prepared zeolite beta powder.
Thus, under economic aspects, the costs that can be saved by the use of a minimum amount of OSDA
and even the effort to avoid the calcination step at high temperatures are an advantageous aspect of
an OSDA-free beta synthesis. This is especially the case when zeolite beta that is already OSDA-free
can be used as seed material, which Okubo et al. investigated [30]. The published reports show that,
in general, OSDA-free prepared zeolite beta exhibits a larger particle size, lower Si/Al ratio (4.5 to 5)
and larger micropore surface area. Crystallinity is also higher due to a smaller number of structural
defects in the crystal lattice [25].

The group of Tang et al. [33] described recently the OSDA-free synthesis of beta zeolite membranes
on porous α-Al2O3 support. Still, calcined beta seeds here, which originally were synthesized with an
OSDA, were ex situ deposited via spin-coating on a porous alumina support, followed by an OSDA-free
secondary growth step under hydrothermal conditions. Contrary to this description, we used in this
paper an in situ method with OSDA to form the seeding layer directly on a porous stainless steel
support, followed by a calcination step to remove the OSDA. In a further step, an OSDA-free layer
of zeolite beta was generated on top of the seeded, but nearly organic free support structure by a
seed-induced crystallisation. A more detailed description was published earlier [34]. Additionally,
the progress of this method was characterized stepwise mainly by X-ray diffraction (XRD) and scanning
electron microscopy (SEM) measurements and gas separation experiments to prove the idea of the
preparations sequence and their ability to act as membranes, respectively.

2. Results

2.1. Characterization of the OSDA-Free Zeolite Beta Layer

Porous stainless steel support structures with an intermediate TiO2 layer were seeded via a
multiple step procedure: several times with an OSDA containing, zeolite beta synthesis procedure
by multiple in situ crystallization (MISC) method, followed by high-temperature calcination and an
OSDA-free secondary growth method, in order to create an OSDA-free layer. In Table 1, an overview of
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the prepared membranes with different numbers of seeding steps with OSDA followed by one or two
secondary growth steps without an OSDA is given. An inductively coupled plasma optical emission
spectroscopy (ICP-OES) analysis of the resulting excess powder revealed a Si/Al ratio of about 17 for
the zeolite beta seed crystals. It is assumed that the seed layer has the same ratio. The OSDA-free
powder, prepared under similar conditions as the layer, was used for ICP and has a Si/Al ratio of
about 4.5.

Table 1. Overview of the prepared membranes with increasing numbers of seeding steps with OSDA
followed by one secondary growth step without OSDA. For the marked (*) sample, two consecutive
secondary growth steps were performed.

Experimental
Series

Seeding Steps
(with OSDA)

Membrane
Number

Secondary Growth
(without OSDA)

Membrane
Number

1 0 1.1 1 1.2
2 1 2.1 1 2.2
3 2 3.1 1 3.2

3 * 2 3.1 * 2 3.2 *
4 3 4.1 1 4.2

The XRD analysis presented in Figure 1A shows the pure support, the seed layer and the OSDA-free
layer after a secondary growth step, compared to a diffraction pattern of a commercial zeolite beta powder
prepared with tetraethylammonium hydroxide (TEAOH) and the resulting excess powders produced
in the bulk phase during the hydrothermal synthesis step and the secondary growth step (Figure 1B).
These XRD patterns indicate clearly that zeolite beta is obtained on the top of the support structure after a
seed-induced synthesis method, and without the addition of further OSDA. The change in the diffraction
pattern in the 2θ range bet 25◦ and 35◦ of the uncalcined seeded support and the OSDA-free secondary
growth process is due to the transformation during the calcination at higher temperatures of the TiO2

coating from a mixed anatase/rutile phase to a rutile only phase (Figure 2a). After seeding, a very thin
layer is formed, and, therefore, the peaks are less intense, but the excess powder shows the formation of
zeolite beta. The higher intensity of the zeolite beta peaks indicates that the amount of zeolite beta can be
increased by the OSDA-free method, which can be proved as well by a weight increase in the composite
structures. After one seeding step, about 12 mg × cm−2 zeolite was distributed over the support structure;
the zeolite amount was increased to about 23 mg × cm−2 after the secondary growth step.
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Figure 1. XRD patterns of ‘uncoated support’ (TiO2 covered stainless steel), ‘seeded support’ (in situ
seeded: membrane number 2.1) and ’OSDA-free secondary growth’ (membrane number 2.2) for
experimental series 2 (A). In addition, the related excess powders as well as a beta powder prepared
without an OSDA and commercial zeolite beta powder prepared with TEAOH for comparison (B).
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SEM analysis (Figure 2) shows a homogenously distributed zeolite beta layer after the seeding
step with a layer thickness of about 0.2 µm. After the OSDA-free secondary growth step, the crystal
size slightly increased but remained as a well-distributed layer. Cross section analysis shows an overall
layer thickness of about 10 µm, which is divided into two sections: a very thin, denser zeolite beta
base layer of about 1 µm and a porous and loosely packed, thicker part.
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Figure 2. SEM (top view and cross section) of the experimental series 3: layer after the seeding step
(membrane number 3.1—(A,C)), and after the OSDA-free secondary growth step (membrane number
3.2—(B,D)). The overall layer thickness of about 10 µm is a zeolite beta layer, which is divided into
two sections: a very thin, denser zeolite beta base layer of about 1 µm (not marked) and a porous and
loosely packed, thicker part.

The diffraction pattern of the excess powder can be seen in Figure 1B. If TEAOH is used as OSDA
in the bulk phase, zeolite beta powder is produced in parallel to the seed layer that is formed on
the support material. In the second step, we assume that the seed crystals are securely attached to
the support and will not be distributed into the surrounding synthesis solution. This conclusion is
supported by the structure of the excess powder from the OSDA-free synthesis experiment, which is
completely amorphous (see Figure 1B). This means no seeding occurs in the solution itself.

The seeded support structures should not be calcined above 400 ◦C because of the temperature
stability of the porous TiO2 coated stainless steel, so approximately 3 wt% of the total weight,
which means approximately 30% of the decomposed organic material, is left inside the seed crystal
(straight-line). Nevertheless, we were able to show that these residues do not influence the secondary
growth process itself. Thermogravimetric analysis (TGA) curves (Figure 3) prove this fact. In the
TGA curve of the OSDA-free excess powder (dotted line), no organic decomposition steps are
visible indicating that the excess powder does not contain any decomposable organic material.
Consequentially, the seeded support does not release any organic material, which might affect the
crystallisation process.
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Figure 3. TGA curves of beta seeds calcined at 550 ◦C (prepared with OSDA), the OSDA-free excess
powder formed during the secondary growth step, and simulated calcination process at 400 ◦C of
non-calcined beta seeds as it was used for the calcination of the seed layers.

The support structures were seeded several times with an OSDA containing zeolite beta by a
MISC method, in order to evaluate the influence of the seeding amount on the quality of the resulting
membrane. In Figure 4, the diffraction patterns of the synthesized membranes with different seeding
steps and secondary growth steps are given. It is definitely realized that an increasing number of
seeding steps shows higher intensity for the characteristically zeolite beta peaks. This goes along
with the amount of zeolite on the membrane and the thickness of the resulting zeolite beta layers.
In Figure 5, it is shown that an increasing number of seeding steps result in a thicker zeolite beta layer
and a higher mass per surface area of zeolite beta. Consequently, the thickness of a membrane with
three seeding steps followed by a secondary growth procedure has a higher thickness. The execution
of the secondary growth step after two seeding steps, membrane 3* shows no improvement of the
zeolite phase and its amount, Figure 4. The XRD diffraction patterns further show impurities for the
membranes 1.2, and 3.2*, which are belonging to the mordenite structure, as it was also formed during
the OSDA-free secondary growth process.
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mordenite are marked in the diffraction pattern with an arrow.
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Figure 5. Zeolite mass per surface area (columns) and thickness of the resulting beta layer (dots) on the
porous support after the OSDA-free secondary growth step (the membranes 1.2 to 4.2 representing the
variation of the number of seeding procedures (see Table 1)).

2.2. Membrane Preparation with OSDA-Free Beta

Zeolite beta coated materials are applied as structured catalytic reactors and sensors [6–8].
Furthermore, the application as membrane has garnered increasing interest in recent years; we also
evaluated the quality of the coated layers using single gas permeance measurements. The permeances
of the gases He, H2, CO2, N2 and CH4, measured at room temperature with a pressure difference
between feed and permeate side of about 1 bar for the membranes 2.2, 3.2 and 4.2, are depicted
in Figure 6. Thereby, the permeance of molecules with smaller kinetic diameter is higher than the
permeance of bigger molecule. In addition, it is clearly shown that, with an increasing number of
seeding steps, the permeance decreases.
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Figure 6. Comparison of single gas permeance of small gases for the differently prepared membranes
(2.2, 3.2 to 4.2 with increasing numbers of seeding steps 1, 2 to 3 numbers, respectively (see Table 1)).

After the seeding step and calcination, high permeances were measured. These were reduced
by more than one order of magnitude after the secondary growth step, which is shown in Figure 7.
The reproducibility is still low if only one seeding layer is applied. The coverage of the surface
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was very low with only one seeding step so that two seeding steps were tested. The amount of
zeolite beta was increased and the surface looked more homogeneous than after only one seeding
step. The thickness of the layer was around 0.6 µm and the affinity to crack was higher. After the
second seeding, the permeances for the single gases decrease and the selectivity for CO2 over N2 is
slightly improved.
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Figure 7. Comparison of the single gas permeance of small gases for the in situ seeded membrane 2.1
(square) and the OSDA-free layer membrane 2.2 (circle).

3. Materials and Methods

3.1. Preparation of the Zeolite Beta Seed Layer on Porous Stainless Steel Supports

The zeolite beta seed layers were prepared from a molar gel with a composition of 1 SiO2:0.56 TEAOH:
0.02 Al2O3:15 H2O. Ludox AS40 (40%, Sigma Aldrich, St. Louis, MO, USA) and Al(NO3)3·9 H2O (98%,
Fluka, St. Louis, MO, USA) were used as silica and alumina sources, respectively. Tetraethylammonium
hydroxide (TEAOH, 40% in H2O, Sigma Aldrich) was used as OSDA. The silica source and the OSDA were
stirred for 1 h before the alumina source, dissolved in distilled H2O, was added drop-wise and the mixture
was stirred for another hour. As support, stainless steel discs covered with an additional, intermediate
TiO2 layer, provided by GKN Sinter Metals Filters GmbH (Radevormwald, Germany) (SIKA-R 0.1 TiO2,
18 × 2 mm), of 18 mm diameter were used. The support structure and the synthesis mixture were
transferred together into a Teflon-lined autoclave. The support was placed in a Teflon holder in a slightly
vertical position with the fine side facing up. The detailed procedure has been described elsewhere [17,35].
The hydrothermal synthesis was carried out at 150 ◦C for 48 h. This procedure was repeated several
times to increase the amount of seed crystals and to gain a more homogenous distribution on the support
material via these multiple in situ crystallization steps. The resulting excess powder was centrifuged,
washed with distilled H2O and dried at 75 ◦C. The resulting excess powder, produced in the bulk phase,
was analysed by TGA and ICP-OES, assuming that it had the same composition and properties as the
zeolite layer. The seeded supports were calcined at 400 ◦C with a heating rate of 0.2 ◦C min−1 and kept
at isothermal conditions for 16 h to remove the OSDA. During the calcination step, synthetic air, with a
flow rate of 45 mL × min−1, was used. The excess powder was calcined at 550 ◦C with a heating rate of
3 ◦C × min−1 for 6 h.

3.2. Synthesis of OSDA-Free Zeolite Beta Layer

The OSDA-free zeolite beta layer was prepared from a molar gel composition of 1 SiO2:0.36 Na2O:
0.025 Al2O3:40 H2O, [27], using fumed silica (99.8%, Sigma Aldrich) and NaAlO2 (Al2O3 50–56%,
Na2O 40–45% Riedl-de-Haen, Seelze, Germany) as silica and alumina sources, respectively. NaOH
(97% Merck, Darmstadt, Germany) was used as mineralizing agent. Distilled water, NaAlO2 and
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NaOH were stirred for 1 h before the fumed silica was added slowly to the mixture, which was stirred
again for 2 h more. The seeded support and the synthesis mixture were transferred together into a
Teflon-lined autoclave. The support was again placed in a slightly vertical position. The hydrothermal
synthesis was carried out at 140 ◦C for 72 h. For preparing OSDA-free powder, 11.9 wt% based on the
SiO2 amount, of calcined excess powder, formed during the first synthesis step, was suspended in the
synthesis mixture as seed crystals.

3.3. Characterization and Single Gas Permeances

The zeolite beta coated supports and the excess powders were characterized by XRD by means
of an X’Pert Pro diffractometer (Philips Analytical, Almelo, The Netherlands) with Cu-Kα radiation.
SEM of the top view and cross section of the layers was carried out with a FEI Quanta 200 (FEI Company,
Hillsboro, OR, USA). For the cross sectional images, the membrane was placed in an epoxy resin
and cut with a diamond saw, followed by polishing and sputtering with gold. TG measurements
of the excess powders were performed with the SDT 2960 (TA Instruments, New Castle, DE, USA).
The measurement was made with a heating rate of 10 ◦C × min−1 from room temperature until 900 ◦C
under an air flow of 100 NmL × min−1. The Si/Al ratio of the excess powder was determined by
ICP-OES Ciros CCD (Spectro, Kleve, Germany).

The quality of the zeolite coatings was evaluated by single gas permeance measurements.
The disc-shaped membrane was placed in a stainless steel cell and sealed with an O-ring made out
of viton. An electrical heating system was used to heat up the membrane cell and the pipes. For the
single gas measurements, He, H2, CO2, N2 and CH4 were dosed into the set-up with a flow rate of
100 mL × min−1 by mass flow controllers. The pressure at the feed side was varied between 1 and 2 bars.
The permeate side was kept at the atmospheric pressure. The resulting permeate flow was measured
with bubble flow meters of varying sizes. In a first step, the membranes were heated up in situ to 200 ◦C
in N2 atmosphere. This temperature was hold for 6 h to remove any adsorbed or trapped moisture.
The measurements for He, CO2, N2, H2 and CH4 were then carried out at room temperature.

4. Conclusions

The preparation of OSDA-free, thin and active zeolite layer is of great importance e.g., for sensing,
separation and catalytic applications, in particular for the preparation of zeolitic membranes to avoid
a calcination step at higher temperatures of the whole device finally. Such a thermal treatment
would cause stress, due to the different expansion coefficients of the support and zeolites, and, as a
consequence, defects in the membrane itself. With this paper, we present a new systematic approach
for the preparation of OSDA-free zeolite beta layers. We are going to use especially porous stainless
steel supports—covered with a TiO2 intermediate layer—on which a zeolite beta layer will be formed
in an OSDA-free synthesis route. Such syntheses are reported mainly for powders. We adapted and
modified such a preparation route for zeolite beta layers and characterized the resulting membrane
like system. Therefore, we propose in this paper a two-stage process, which includes an in situ seeding
(step 1—eventually multiple seeding) followed by a secondary growth process (step 2).

In particular, we prepared different membranes with a different number of in situ seeding steps
to increase the seed amount systematically. The following secondary growth step was carried out
only once. For comparison, an experimental series has been carried out with a second consecutive
secondary growth synthesis. As expected, the amount of zeolite beta, seeded on the support, increases
with additional in situ seeding steps. The thickness of the final OSDA-free zeolite layer is increasing
systematically with number of seeding steps by just one secondary growth step, where no OSDA is
used. However, the layer prepared without an OSDA is thicker than for membranes prepared with
OSDA. Thus, a final calcination step at the end of the preparation procedure can be avoided.

In the application tests, single gas permeation measurements have been carried out with H2,
He, CO2, N2 and CH4. Two main conclusions can be drawn: (i) the high permeance of small single
gases after the seeding step could be reduced by more than one order of magnitude by the OSDA-free
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secondary growth step, which documents the success of this two-step procedure—a denser zeolite
beta layer could be prepared; (ii) in addition, this effect could be improved by increasing the number
of in situ seeding steps if, finally, an OSDA-free secondary growth step follows.

Hence, additional optimization of the preparation route is on the way. Such experiments include
a systematic repetition of the OSDA-free secondary growth step and the use of an ex situ seeding
step, in order to realize a complete OSDA-free membrane preparation procedure. In addition to
the synthesis optimization already presented here, a systematic variation of the Si/Al ratios in the
zeolitic layers is ongoing to adjust the ion-exchange capability of the zeolites in the device. With this,
two modifications can be investigated: (i) the acidity of the zeolite induced by an ammonia exchange
and an additional mild thermal treatment and (ii) the pore design via using different kinds of cations
and/or cation exchange levels.

5. Patents

The following patent results from the reported work: S. Reuss; W. Schwieger; M. Schülein; B. Reif;
S. Basahel; A. Al-Youbi; S. Al-Thabaiti. Process for the preparation of organo-template free supported
zeolite layers, Germany, 2015, WO 2015001095 A1.
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