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Abstract. Growth factors and cell anchorage jointly 
regulate transit through G1 in almost all cell types, but 
the cell cycle basis for this combined requirement re- 
mains largely uncharacterized. We show here that cell 
adhesion and growth factors jointly regulate the cyclin 
D1- and E-dependent kinases. Adhesion to substratum 
regulates both the induction and translation of cyclin 
D1 mRNA. Nonadherent cells fail to phosphorylate 
the retinoblastoma protein (Rb), and enforced expres- 
sion of cyclin D1 rescues Rb phosphorylation and entry 
into S phase when G1 cells are cultured in the absence 
of substratum. Nonadherent cells also fail to activate 

the cyclin E-associated kinase, and this effect can be 
linked to an increased association of the cdk inhibitors, 
p21 and p27. These data describe a striking conver- 
gence in the cell cycle controls used by the two major 
signal transduction systems responsible for normal and 
abnormal cell growth. Taken together with our previ- 
ous studies showing adhesion-dependent expression of 
cyclin A, they also establish the cell cycle basis for ex- 
plaining the combined requirement for growth factors 
and the extracellular matrix in transit through the Rb 
checkpoint, entry into S phase, and anchorage-depen- 
dent growth. 

W 
'ITH the exception of some cells in the hemato- 
poietic lineage, adhesion to substratum is re- 
quired for cell cycle progression through G1 and 

into S phase. Cell adhesion is largely mediated by the in- 
teraction of extracellular matrix proteins with integrins, a 
heterodimeric family of cell surface matrix protein recep- 
tors (Hynes, 1987, 1992; Albelda and Buck, 1990; Hemler, 
1990). Like growth factor receptors, the display of inte- 
grins varies in different cell types. Well studied anchorage- 
dependent cells, such as fibroblasts, express integrins that 
bind to collagen, fibronectin, and vitronectin. Although 
less well studied, syndecans, a distinct class of cell surface 
adhesion molecules, also play an important role in mediat- 
ing cell adhesion and focal contact formation (Woods and 
Couchman, 1994). 

lntegrins act as signaling receptors and transmit growth 
regulatory signals from the extracellular matrix to the cell. 
They lack the intrinsic kinase activities characteristic of 
growth factor receptors, but signal-transducing molecules 
such as focal adhesion kinase (FAK) 1 and IRS-1 can asso- 
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ciate with integrin cytoplasmic tails (Vuori and Ruoslahti, 
1994; Lewis and Schwartz, 1995; Miyamoto et al., 1995), 
These interactions likely explain the result that integrins, 
like growth factor receptors, can activate MAP kinase 
(Chen et al., 1994; Schlaepfer et al., 1994; Morino et al., 
1995; Zhu and Assoian, 1995) and a number of other sig- 
nal transduction events (Woods and Couchman, 1992; 
Vuori and Ruoslahti, 1993; Miyamoto et al., 1995). 

As opposed to these G0/G1 regulatory events that seem 
to be activated independently by integrins and growth fac- 
tor receptors, the turnover of phosphoinositides (a hall- 
mark of the G0/G1 transition) requires the coordination of 
signals from integrins and growth factor receptors. Inte- 
grin signals lead to the production of PIP2, and signals 
from growth factor receptors lead to the activation of 
phospholipase C and the turnover of PIP2 (McNamee et 
al., 1993; Chong et al., 1994). Indeed, the cooperative regu- 
lation of phospholipid turnover by integrins and growth 
factor receptors provides a paradigm for explaining the 
fact that soluble mitogens and the extracellular matrix have 
nonredundant roles in cell cycle progression through G1. 

Adherent cells irreversibly commit to cell cycle progres- 
sion at a point in late G1 known as the restriction point 
(Pardee, 1989). Transit through the restriction point was 
originally defined as the switch from mitogen-dependent 
to -independent cell cycle progression. But the growth fac- 
tor and adhesion requirements for proliferation are typi- 
cally detected or lost in parallel; nontransformed cells are 
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mitogen and anchorage-dependent, and most transformed 
ceils are mitogen- and anchorage-independent (Pardee, 
1989). This overlap in growth requirements raises the pos- 
sibility that adhesion-dependent signals may also be in- 
volved in cell cycle progression through the restriction 
point. 

The molecular basis of restriction point regulation is not 
fully understood, but it correlates with the G1 hyperphos- 
phorylation of the retinoblastoma protein (Rb). These 
phosphorylations are catalyzed by the cyclin-dependent 
kinase (cdk) family (Hinds et al., 1992; Ewen et al., 1993; 
Dowdy et al., 1993; Kato et al., 1993; Matsushime et al., 
1992, 1994; Hatakeyama et al., 1994). Although several cy- 
clin-cdk complexes can phosphorylate Rb in vitro, the tim- 
ing of Rb phosphorylation in vivo indicates that cyclin 
D-cdk4/6 and cyclin E-cdk2 are likely to be the principal 
Rb kinases (Koff et al., 1992; Dulic et al., 1992; Meyerson 
and Harlow, 1994; Matsushime et al., 1994). Growth fac- 
tors stimulate the expression of cyclins D and E and 
thereby activate the cdks that phosphorylate Rb (Mat- 
sushime et al., 1991; Lew et al., 1991; Koff et al., 1992; Oht- 
subo and Roberts, 1993). The phosphorylation of Rb in 
G1 phase inactivates its growth inhibitory effects, presum- 
ably by allowing for the release of E2F (for reviews see 
Nevins, 1992; Sherr, 1994; Johnson et al., 1993). Rb also 
binds to other proteins, including c-abl (Kim et al., 1992; 
Gu et al., 1993; Welch and Wang, 1993, 1995; Dunaief et 
al., 1994), and these interactions may also contribute to the 
control that Rb imposes on cell cycle progression. 

Cdk activity is negatively regulated by specific cdk in- 
hibitors (CKIs). There are two families of CKIs: p21/p27/ 
p57 (which bind to and inactivate all cyclin-cdk complexes; 
EI-Deiry et al., 1993; Xiong et al., 1993; Harper et al., 1993; 
Polyak et al., 1994a,b; Toyoshima and Hunter, 1994; Lee 
et al., 1995; Matsuoka et al., 1995) and the INK4s (which 
only inhibit complexes containing cdk4/6; Serrano et al., 
1993; Harmon and Beach, 1994; Guan et al., 1994; Hirai et 
al., 1995; Chan et al., 1995). Low levels of p21 and p27 can 
be found in association with active cyclin-cdk complexes, 
but increased association of p21 or p27 leads to the inhibi- 
tion of cyclin-cdk activity (Zhang et al., 1994; Polyak et al., 
1994a,b; Nourse et al., 1994; Harper et al., 1995). CKIs are 
regulated by mitogenic and anti-mitogenic signals (Han- 
non and Beach, 1994; Kato et al., 1994a; Polyak et al., 
1994a,b; Nourse et al., 1994), thereby providing a clear link 
between mitogenic signal transduction pathways and the 
cell cycle. Activation of the cdks also requires phosphory- 
lation by cyclin-activating kinase (CAK; Kato et al., 1994b; 
Fisher and Morgan, 1994; M/ikel~i et al., 1994), but this en- 
zyme seems to be constitutively expressed in an active 
form throughout the cell cycle (Matsuoka et al., 1994). 

Although the molecular pathways that link mitogen ac- 
tion and cell cycle progression are beginning to be under- 
stood, there is relatively little insight into the pathways by 
which cell adhesion activates cell cycle progression. Never- 
theless, our previous studies in NRK fibroblasts showed 
that the stimulatory effect of adhesion on cell proliferation 
can also be understood in terms of the cyclins and cyclin- 
dependent kinases. In this cell line, growth factors stimulate 
transit from GO until late G1, and cell adhesion stimulates 
transit from late G1 into S phase (Guadagno and Assoian, 
1991). NRK cells show an adhesion requirement for the 

expression of cyclin A mRNA, and infection with a cyclin 
A retrovirus allows for anchorage-independent expression 
of cyclin A--dependent kinase activity and anchorage-inde- 
pendent growth (Guadagno et al., 1993). We also found 
that the expression of cyclin D1 mRNA is dependent upon 
cell adhesion in normal human fibroblasts (Bohmer et al., 
1996). 

We now report that NRK cells express only a subset of 
the controls that normally link cell adhesion to cell cycle 
progression. In both NIH-3T3 cells and normal human fi- 
broblasts, but not in NRK cells, we find that cell anchorage 
is required for the phosphorylation of the retinoblastoma 
protein. This effect can be linked to the adhesion-depen- 
dent expression of cyclin D1 and the adhesion-dependent 
activation of cyclin E-cdk2. Since cyclin D-  and E-depen- 
dent kinase activities are also dependent upon mitogens, 
our results show that proper regulation of the G1 cdks re- 
quires the convergence of signals from growth factors and 
the extracellular matrix. 

Materials and Methods 

Cell Culture 
Confluent (NRK cells) or 50% confluent (NIH-3T3 cells) cultures were 
trypsinized and seeded in fresh 150-ram-tissue culture dishes at near con- 
fluence in medium containing 5% serum. After the cells had attached, the 
medium was removed, the cells were washed with DME and synchronized 
in GO by incubation in 20-ml serum-free DME for 24-36 h (NIH-3T3) or 4 d 
(NRK). Early passage explant cultures of human foreskin flbroblasts were 
grown to density arrest, and then incubated for 3-5 d in serum-free DME 
containing ITS + (Collaborative Research, Waltham, MA). NIH-3T3 cells 
overexpressing human cyclin D1 and human fibroblasts overexpressing 
human cyclin E were prepared by retroviral infection as described 
(Guadagno et al., 1993); pools of G418-resistant colonies (>100 colonies 
per infection) were selected and serum-starved using the conditions de- 
scribed for the parent. 

The GO-synchronized cells were trypsinized, suspended in medium con- 
taining mitogens (5% FCS, 2-3 nM EGF for NRK and NIH-3T3 cells and 
10% heat-inactivated FCS, 2 nM EGF for human fibroblasts) and cultured 
in monolayer or suspension using procedures similar to those described 
(Guadagno and Assoian, 1991; Han et al., 1993). At selected times after 
seeding, the cells were collected by centrifugation, either directly (sus- 
pended cells) or after trypsinization (monolayer cells). The collected cells 
(typically 1-5 × 106 cells per time point) were washed twice with HBSS 
and extracted for total RNA or immunoblotting (see below). In most ex- 
periments, N10% of each sample was suspended in 0.5 ml of a solution 
(25% ethanol in calcium-free PBS) containing 2 ixg/ml HOECHST 33258. 
The cells were stored (4°C, >16 h) before flow cytometric analysis of 
DNA content. In several experiments, G0-synchronized NIH-3T3 cells 
were preincubated with mitogens in monolayer for 9 h (G1 phase cells) or 
16 h (S phase cells) before trypsinization and incubation of the cells in 
monolayer and suspension. Fresh mitogen was added to these cultures 
during the incubation period. 

Antibodies and lmmunoblotting 
NRK and NIH-3T3 cells (5 x 106) and human fibroblasts (106) were ex- 
tracted in 0.t ml lysis buffer (50 mM Tris, pH 7.4, 250 mM NaCI, 2 mM 
EDTA, 1% NP-40, 1 mM PMSF, 10 p,g/ml aprotinin, 10 p,g/ml leupeptin, 
50 mM sodium fluoride, and 0.1 mM sodium orthovanadate). Unless 
noted in the figure legend, either 100 or 200 Ixg of each extract (deter- 
mined by Coomassie binding; BioRad [Hercules, CA] protein assay) were 
fractionated on reducing SDS gels (7.5-12% acrylamide), and electro- 
eluted onto nitrocellulose filters. Immunoblotting was performed as de- 
scribed (Zhu and Assoian, 1995) using filters blocked in BSA (anti-Rb 
[Pharmingen, San Diego, CA or Ciba-Corning, Alemeda, CA]) or nonfat 
milk (anti-cyclin D1 [Pharmingen or Upstate Biotechnology, Lake Placid, 
NY], anti-cdk2 [Upstate Biotechnology], anti-cdk4 [Pharmingen], anti- 
p21 [Pharmingen or Santa Cruz Biotechnology, Santa Cruz, CA], anti- 
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cyclin A, anti-cyclin E, and anti-p27. A pan-cyclin D antiserum was also 
purchased from Pharmingen. Enhanced chemiluminesence (ECL, Amer- 
sham, Arlington Heights, IL) was used to visualize the immunoblot signals. 

Immunoprecipitations and In Vitro Kinase Assays 
Cell extracts (0.5 }xg) were incubated in their lysis buffer with 5-10 ~1 of 
cyclin E antiserum (1 h, 4°C). The reaction volume was brought to 0.5 ml 
with fresh lysis buffer, and the immune complexes were collected by incu- 
bation (l h at 4°C with rocking) with protein A agarose (50 p,1, Life Tech- 
nologies, Gaithersburg, MD). For subsequent immunoblotting, the col- 
lected imrnunoprecipitates were washed five times in ice-cold lysis buffer 
and fractionated on reducing SDS-gels as described above. For determina- 
tion of cyclin E-associated kinase activity, the collected immunoprecipi- 
tares were washed three times with cold lysis buffer and twice with room 
temperature kinase buffer (50 mM Tris-HCl, pH 7.4, l0 mM MgCI2). Ki- 
nase reactions were started by adding 2 Ixg histone H1, 25 I~M ATP, and 
10 p~Ci [.y-32p] ATP (3,000 Ci/mmol) in a final volume of 30 pJ. The kinase 
reactions proceeded for 30 rain at 30°C at which time they were stopped 
by addition of 2 × SDS-sample buffer (30 I.d). The extent of histone H1 
phosphorylation (the measure of kinase activity) was determined by SDS- 
gel electrophoresis (12% acrylamide) and autoradiography. 

Biosynthetic Labeling 
NIH-3T3 cells in late G1 (see above) were trypsinized, washed in DME 
lacking methionine and cysteine, and incubated (~2 x 106 cells per 
100-mm dish with 5 ml Met/Cys-free DME) in monolayer and suspension 
with mitogens. After 4 h, the cells were pulsed for 60 min with Translabel 
(I mCi/dish; ICN Biomedicals, Costa Mesa, CA). The cells were collected 
and extracted in 0.3 ml using the procedures described above. Equal 
amounts of TCA-precipitable radioactivity (107 cpm) were incubated with 
5 i~1 of a rat monoclonal antibody to murine cyclin D1 (gift of C. Sherr) or 
CD44 (gift of L. Bourguignon) using the procedures similar to those de- 
scribed above except that the immune complexes were recovered by incu- 
bation with 50 ~1 protein G-plus agarose (Santa Cruz Biotechnology, 
Santa Cruz, CA). The washed immtmoprecipitates were fractionated on a re- 
ducing SDS-gel, and the amount of cyclin D1 was determined by fluorog- 
raphy. 

RNA Blot Hybridization 
Total RNA was isolated from cells (typically 2.5 x 106 cells per time 
point), and equal amounts of RNA (~10 Ixg) were fractionated on dena- 
turing agarose gels. The filters were incubated with a random-primed 
eDNA probe for murine cyclin D1 using standard conditions. The hybrid- 
ized filters were washed with 0.2 x SSPE, 0.1% SDS at 65~8°C. 

Results 

To explore the effects of anchorage on cell cycle transit, 
monolayer cultures of anchorage-dependent fibroblasts in 
GO, late G1, and in S phase (Fig. 1) were trypsinized and 
transferred to suspension or reseeded in monolayer. We 
determined the effect of anchorage (or loss of anchorage) 
on the activity of cell cycle proteins, in particular the G1 
and S phase cyclin-cdk complexes. 

Adhesion-dependent Hyperphosphorylation of the 
Retinoblastoma Protein 
Initial experiments tested the effects of anchorage on cell 
cycle progression from quiescence to S phase. Monolayer 
and suspension cultures of G0-synchronized NRK and 
NIH-3T3 cells were stimulated with soluble mitogenic 
growth factors (FCS/EGF). As previously reported, cells 
stimulated with soluble mitogens in suspension failed to 
complete G1 and enter S phase (Guadagno et al., 1993; 
Han et al., 1993). Expression of cyclin A is coincident with 
and necessary for the onset of S phase, and neither NRK 
nor NIH-3T3 fibroblasts synthesized cyclin A mRNA 
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Figure 1. Experimental design. Anchorage-dependent fibroblasts 
were synchronized in GO by serum-starvation in monolayer. 
These quiescent cells were trypsinized and incubated in mono- 
layer (Mn) and suspension (Sp) before collection and analysis for 
adhesion-dependent cell cycle events. To obtain populations of 
late G1 and S phase cells, quiescent fibroblasts were preincu- 
bated with soluble mitogens in monolayer (for 9 and 16 h, respec- 
tively) before trypsinization and incubation in monolayer and 
suspension. When cultured with mitogens in monolayer, the G0- 
to-S phase interval is N12-14 h for NRK and NIH-3T3 cells. 

(Guadagno et al., 1993) or protein during an 18-h incuba- 
tion in suspension (Fig. 2 A). Expression of cyclin A was 
also anchorage-dependent in human primary foreskin fi- 
broblasts (see Fig. 8 A). We observed a modest induction 
of cyclin A (Fig. 2 A) and DNA synthesis (not shown) af- 
ter prolonged incubation (>18 h) of NRK cells in suspen- 
sion. However, this muted induction was not sufficient to 
stimulate cell proliferation in suspension as assessed by 
colony formation in soft agar (Guadagno et al., 1993). 

The effect of cell anchorage on G1 progression in NIH- 
3T3 and normal human fibroblasts was more profound 
than in NRK ceils. First, cyclin A was never induced dur- 
ing incubation in suspension (Figs. 2 A and 8). Second, 
growth factor-dependent hyperphosphorylation of the Rb 
protein was essentially anchorage-independent in NRK 
cells, whereas it was completely anchorage-dependent in 
NIH-3T3 (Fig. 2 B) and normal human fibroblasts (See 
Fig. 8 A). These results indicate that cell adhesion controls 
multiple cell cycle events during G1 and that the pathways 
causing Rb hyperphosphorylation had become largely an- 
chorage-independent in NRK cells. 

Adhesion-dependent Expression of Cyclin D1 
The G1 cyclin-cdk complexes, cyclin D-cdk4 and cyclin 
E-cdk2, are thought to be the kinases that hyperphosphor- 
ylate Rb during G1 in fibroblasts (see Introduction). We 
compared the expression of cyclin D1 and cdk4 in mono- 
layer and suspension cultures of G0-synchronized NRK 
and NIH-3T3 cells (Fig. 2 C) and found that cyclin D1 pro- 
tein levels were growth factor-dependent in both cell 
lines. However, the growth factor-dependent induction of 
cyclin D1 protein was minimally affected by cell anchorage 
in NRK cells, consistent with the fact that Rb hyperphos- 
phorylation was also anchorage-independent. In contrast, 
the induction of cyclin D1 was completely anchorage-depen- 
dent in NIH-3T3 cells, as was Rb hyperphosphorylation. 
Cyclin D1 is the predominant D-type cyclin expressed in 
both NRK and NIH-3T3 cells, as a monoclonal antiserum 
that recognizes all three D-type cyclins detected only cy- 
clin D1 (not shown). Expression of cdk4 protein in both 
NRK and NIH-3T3 cells was neither anchorage- nor growth 
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Figure 2. Phosphorylation of the retinoblastoma protein is associated with adhesion-dependent expression of cyclin D1. NRK and NIH- 
3T3 cells were synchronized in GO, and trypsinized and seeded with soluble mitogens (FCS/EGF) in monolayer and suspension. Cells 
were collected and extracted at the times shown. The extracts were fractionated on SDS gels and analyzed by immunoblotting with anti- 
bodies to cyclin A (A), Rb (B), cyclin D1 (C), and cdk4 (C). The upper and lower arrowheads in B, respectively, show the hyper- and 
hypo-phosphorylated forms of Rb. In D, an anti-cdk4 antibody was used to harvest cyclin D-cdk4 complexes from extracts (0.5 mg) of 
monolayer (Mn) and suspension (Sp) NRK and NIH-3T3 cells. The immunoprecipitates were fractionated on reducing SDS gels, and 
the amount of associated cyclin D1 was determined by Western blotting. In E, equal amounts of total RNA (assessed by ethidium bro- 
mide staining of rRNA) were isolated from extracts of monolayer and suspension NIH-3T3 cells and analyzed by Northern blot hybrid- 
ization with a murine cyclin D1 cDNA. Extracts from monolayer and suspension cells were always analyzed in parallel and exposed to 
film for the same times. Approximate exposure times: A and B (30 s); C (1 min); D (3 min); E (4 d). 

factor-dependent, and cdk4 immunoprecipitations showed 
that cyclin D/cdk4 complex formation was unaffected by 
cell adhesion in NRK cells and strongly adhesion-depen- 
dent in NIH-3T3 cells (Fig. 2 D). 

Cyclin D1 mRNA was present in both monolayer and 
suspension cultures of NIH-3T3 cells (Fig. 2 E), and con- 
trol studies (not shown) indicated that the mRNA was cy- 
toplasmic in both conditions. Cyclin D1 mRNA levels 
were induced 3-5-fold by soluble mitogens in adherent 
3T3 cells, and this induction was greatly reduced in the 
suspended cells (Fig. 2 E). We concluded that the de- 
creased expression of cyclin D1 protein in suspended 
NIH-3T3 cells was at least partly due to the 3-5-fold lower 
levels of its mRNA, but that this effect might not be suffi- 
cient to completely account for the apparent absence of 
the cyclin D1 protein. 

Indeed, posttranscriptional control of cyclin D1 protein 
levels could be demonstrated by transferring NIH-3T3 
cells to suspension late in G1, after growth factor-depen- 

dent induction of the cyclin D1 mRNA had occurred. Qui- 
escent NIH-3T3 cells were preincubated with soluble mi- 
togens in monolayer for 9 h, at which time cyclin D1 mRNA 
(Fig. 3 A) and protein (Fig. 3 B) were almost fully induced. 
As determined by densitometric scanning, the subsequent 
incubation of these cells in monolayer and suspension had 
less than a twofold effect on the expression of cyclin D1 
mRNA (Fig. 3 A), but the amount of cyclin D1 protein de- 
creased almost fivefold and became almost undetectable 
within 5 h after the transfer of cells to suspension (Fig. 3 
B). In contrast, expression of cyclin D1 was constant dur- 
ing the incubation of cells in monolayer (Fig. 3 B). 

Cycloheximide was added to the late G1 cells in order to 
compare the rates of cyclin D1 degradation in monolayer 
and suspension cells. The preaccumulated cyclin D1 pro- 
tein (shown as 9 h) had a half-life of less than 1 hour in 
both culture conditions (Fig. 3 C). Thus, the turnover of 
cyclin D1 appeared to be anchorage-independent. Cyclin 
E levels were unaffected by cell adhesion, both in the ab- 
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Figure 3. Adhesion-dependent translation of cyclin D1 mRNA. G0-synchronized NIH-3T3 cells were preincubated with soluble mito- 
gens (FCS/EGF) in monolayer for 9 h. These late G1 cells were trypsinized and reseeded in monolayer (Mn) and suspension (Sp) in the 
continued presence of mitogens. At the times indicated in the figure, the cells were collected and extracted for RNA blot and immuno- 
blot analysis. A shows the expression of cyclin D1 mRNA (equal loading was confirmed by ethidium bromide staining of rRNA; shown 
as 28S). B and C show the expression of cyclin D1 and E (control) proteins. For the experiment shown in C, quiescent NIH-3T3 cells 
were preincubated with mitogen for 9 h to accumulate cyclin D1 protein. These preincubated cells were trypsinized, and then seeded in 
monolayer or suspension in the presence of cycloheximide (10 ~g/ml); collected cells were extracted at 1, 3, and 5 h, and the decay of cy- 
clin D1 (accumulated during the preincubation) was determined by immunoblotting. For the experiments shown in D, the late G1 cells 
were pulsed (for the last 60 min of a 5-h incubation) with Translabel. As expected from the results of others (Benecke et al., 1978), total 
protein synthesis was decreased slightly by incubation in suspension (20% over four separate experiments as determined by TCA pre- 
cipitation). Therefore, equal amounts of TCA-insoluble radioactivity were incubated with rat monoclonal antibodies to murine cyclin 
D1. Duplicate extracts from adherent cells were also incubated in parallel with monoclonal antibodies to cyclin D1 and CD44 (CON) to 
identify nonspecifically immunoprecipitated proteins. The collected immunoprecipitates were ffactionated on reducing SDS gels and 
analyzed by fluorography. E shows the results obtained when protein blots (prepared as described for B) were incubated with an anti- 
body against Rb. The positions of hypo- and hyperphosphorylated Rb are shown by the lower and upper arrowheads, respectively. Ap- 
proximate exposure times: A (18 h); B and C (2 rain); D (3 d); E (30 s). 

sence and presence of  cycloheximide (Fig. 3, B and C, re- 
spectively). The rate of  cyclin D1 synthesis was evaluated 
by immunoprecipitating cyclin D1 from extracts of  late G1 
cells that were incubated in monolayer  and suspension and 
pulse-labeled with [35S]methionine. Minimal synthesis of 
cyclin D1 protein was detected in the late G1 cells after in- 
cubation in suspension whereas it was readily detected 
when the late G1 cells were incubated in monolayer  (Fig. 3 
D). Together,  the results in Figs. 2 E and 3 indicate that 
both transcriptional and translational controls contribute 
to the adhesion-dependent expression of  cyclin D1. Im- 
portantly, the extent of  Rb  phosphorylation paralleled the 

changes in cyclin D1 protein levels. Rb was hyperphosphor- 
ylated when late G1 cells were incubated in monolayer,  
and it dephosphorylated when these cells were transferred 
to suspension (Fig. 3 E). 

To determine if regulation of cyclin D1 protein was 
causally related to adhesion-dependent phosphorylation 
of  Rb and entry into S phase, we studied the phenotype of 
cells that constitutively expressed cyclin D1 from an exog- 
enous gene. When NIH-3T3 cells were infected with a cy- 
clin D1 retroviral expression vector, we found that expres- 
sion of cyclin D1 protein became anchorage-independent.  
It is possible that the high level of cyclin D1 m R N A  ex- 
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Figure 4. Adhesion-dependent expression of cyclin D1 is linked to G1, but not S phase, phosphorylation of Rb. G0-synchronized NIH- 
3T3 cells (A and C) or NIH-3T3 cells overexpressing human cyclin D1 (hD1/NIH-3T3; B) were preincubated with soluble mitogens in 
monolayer for 9 h (A and B) or 16 h (C). The cells were then trypsinized and incubated with soluble mitogens in monolayer (Mn) and 
suspension (Sp) for 1-5 h. Collected cells were extracted and the extracts were analyzed by immunoblotting with anti-Rb and anti-cyclin 
D antibodies. The hypo- and hyperphosphorylated forms of pRb are indicated by the lower and upper arrows, respectively. Exposure 
times: 30 s for each panel. Aiiquots of each sample were also analyzed by flow cytometry to assess the effect of adhesion and the expres- 
sion of cyclin D1 on cell cycle progression. D shows the percent of S phase cells in the initial G0-sychronized cultures ("0"), the cultures 
after preincubation with mitogens in monolayer ("9" and "16" h), and the cultures after final incubation in monolayer and suspension 
for 5 h (Mn and Sp, respectively). 

pressed from the retroviral LTR compensated for the de- 
creased translational efficiency in suspended cells or that 
the absence of the cyclin D1 untranslated regions in the 
retroviral vector evaded the adhesion controls on transla- 
tion. Regardless of the specific molecular mechanism, the 
cyclin D1 protein was expressed at high levels in the quiescent 
and mitogen-stimulated transfectant, and this high level of 
expression was maintained even when late Gl-transfected 
cells were transferred to suspension (compare Fig. 4 A and 
4 B). Flow cytometry and [3H]thymidine incorporation as- 
says demonstrated that our NIH-3T3 cells and cyclin D1 
transfectants had similar G0-to-S phase intervals when 
stimulated with both FCS and EGF in monolayer (data 
not shown). 

Cells constitutively expressing cyclin D1 differed from 
control cells in two important ways. First, the enforced ex- 
pression of cyclin D1 allowed Rb to remain hyperphos- 
phorylated when G1 cells were transferred to suspension 
(Fig. 4 B), indicating that cyclin D1 was necessary to main- 
tain the hyperphosphorylated state of Rb during G1. 

(Note that cyclin E-dependent  kinase activity was induced 
during the 9-h preincubation with mitogens in these exper- 
iments, and the activity persisted throughout the subse- 
quent incubation in monolayer and suspension [data not 
shown]. Thus, in this protocol the G1 phosphorylation of 
Rb is specifically controlled by the expression of cyclin D.) 
Second, the forced expression of cyclin D1 rescued entry 
into S phase. Aliquots of the cells used for the immuno- 
blots above were processed for a flow cytometric analysis 
of cell cycle progression (Fig. 4 D). Consistent with the de- 
phosphorylation of Rb, entry into S phase was inhibited 
when G1 control cells were incubated in suspension (Fig. 4 
D, left) and expression of cyclin D1 overcame this G1 
block (Fig. 4 D, middle). Since cyclin A is necessary for en- 
try into S phase, these results also indicate that the forced 
expression of cyclin D1 affects the expression of cyclin A 
in nonadherent NIH-3T3 cells (see Discussion). 

In contrast to the results obtained with G1 cells, cyclin 
D1 was not necessary to maintain Rb hyperphosphoryla- 
tion or cell cycle progression once cells had entered S 
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phase. Quiescent NIH-3T3 cells were preincubated with 
soluble mitogens in monolayer for 16 h to generate a pop- 
ulation of S phase cells (refer to Fig. 1). The cells were 
then trypsinized and placed in suspension or returned to 
monolayer. Cyclin D1 protein still decreased when these S 
phase cells were incubated in suspension, but Rb remained 
hyperphosphorylated (Fig. 4 C). This result is in contrast 
to the behavior of Rb in late G1 cells, and it suggests that 
once cells have completed G1, other kinases maintain Rb 
in its hyperphosphorylated state. Cyclin A-cdk2, which re- 
mained active in the suspended S phase cells (not shown), 
is one candidate for the S-phase Rb kinase. The suspended 
S-phase cells were also able to progress into G2/M (Fig. 4 
D, right) despite the fact that the expression of cyclin D1 
remained adhesion dependent (Fig. 4 C). Overall, Fig. 4 
shows that the expression of cyclin D1 protein is anchor- 
age dependent throughout the cell cycle, but the biological 
consequence of this restriction (for both Rb phosphoryla- 
tion and cell cycle progression) is evident only in G1 cells. 

Cell Adhesion Regulates Cyclin E-cdk2 Activity 

Growth factor-dependent induction of cyclin E kinase ac- 
tivity was modestly delayed when NRK cells were cultured 
in suspension (Fig. 5 A), but it was completely blocked in 
suspended NIH-3T3 cells (Fig. 5 A) and primary human fi- 
broblasts (see Fig. 8 B). The effects of adhesion on cyclin 
E-associated kinase activity could not be explained by 
changes in the levels of cyclin E or its catalytic partner, 
cdk2" the expression of these proteins was anchorage-inde- 
pendent in all three of these fibroblasts (Fig. 5 B and refer 
to Fig. 8 B). Thus, the activities of both G1 cyclin-cdk com- 
plexes (cyclin D-cdk4 and cyclin E-cdk2) are tightly regu- 
lated by cell adhesion in NIH-3T3 and human fibroblasts. 
In large part, both of these controls are absent in NRK 
cells. 

Cyclin E was immunoprecipitated from extracts of qui- 
escent and growth factor-stimulated NIH-3T3 cells in 
monolayer and suspension, and all of the immunoprecipi- 
tates contained similar amounts of cdk2 (Fig. 5 C). Thus, 
formation of the cyclin E-cdk2 complex is unaffected by 
cell adhesion. Cyclin E-cdk2 complexes are activated by a 
CAK-mediated phosphorylation at threonine 160, and this 
phosphorylation can be detected as an increase in the elec- 
trophoretic mobility of cdk2 on SDS gels (Fesquet et al., 
1993; Poon et al., 1993; Solomon et al., 1993). This CAK- 
phosphorylated form of cdk2 was readily detected in the 
cyclin E complexes harvested from NIH-3T3 cells (com- 
pare total and cyclin E-associated cdk2 in Fig. 5 C), and 
the degree of CAK phosphorylation was unaffected by in- 
cubation of the cells in suspension (Fig. 5 C). Moreover, 
extracts of monolayer and suspended NIH-3T3 cells con- 
tained readily detectable CAK activity, and the amount of 
activity was largely unaffected by cell adhesion (Fig. 5 D). 
Thus, the strict adhesion requirement for cyclin E-kinase 
activity in NIH-3T3 cells could not be explained by differ- 
ences in complex formation or by the regulation of CAK. 
CAK phosphorylation of cdk2 was also anchorage-inde- 
pendent in NRK cells (data not shown). 

Extracts from monolayer and suspension cultures of 
NRK and NIH-3T3 cells (Fig. 6) were analyzed by immu- 
noblotting to determine whether cell adhesion controlled 

Figure 5. Adhesion-dependent activity of cyclin E-cdk2. G0-syn- 
chronized NRK and NIH-3T3 cells were incubated in monolayer 
(&In) and suspension (Sp) in the presence of soluble mitogens 
(FCS/EGF). At the indicated time, cells were collected and ex- 
tracted for the analysis of cyclin E-associated kinase activity us- 
ing histone H1 as substrate (A). Identically prepared extracts 
were fractionated on reducing SDS gels and immunoblotted with 
antisera against cyclin E and cdk2 (B). To assess assembly of the 
cyclin E-cdk2 complex and its activation by CAK, extracts were 
prepared from quiescent NIH-3T3 cells (0) and cells that had 
been treated with soluble mitogens for 12 h in monolayer and 
suspension. Cyclin E complexes immunoprecipitated from the 
extracts were fractionated on SDS gels and immunoblotted with 
an antibody to cdk2 (C, left side). The migration of total cdk2 
from the same extracts is shown by immunoblotting (C, right 
side). Note that the samples analyzed in C were run on one gel 
and exposed to film for the same time. For direct measurement of 
CAK activity (D), extracts (0.2 mg protein) from adherent and 
nonadherent cells were incubated with 1, 3, or 5 ixl of an antibody 
to MO15 (the catalytic subunit of CAK, Upstate Biotechnology 
Inc.) or normal serum (NRS, negative control), and the amount 
of CAK activity was determined by the ability of the immunopre- 
cipitates to activate H1 histone kinase activity (H1) of a recombi- 
nant cyclin A-cdk2 complex (see Nourse et al., 1994 for proce- 
dures). The dose-dependent increase in CAK activity (with 
increasing amounts of anti-MO15) confirms that this analysis was 
performed in the linear range. Approximate exposure times: A 
and D (2 rain); B (1 min); C (30 s). 
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Figure 6. Cell adhesion affects the association of p21 and p27 
with cyclin E-cdk2 complexes in NIH-3T3 Cells. The figure shows 
immunoblots of total and cyclin E-associated p27 and p21 (as 
well as cyclin E and cyclin E-associated kinase activity) from qui- 
escent (0) and mitogen-treated (12 h) NRK and NIH-3T3 cells in 
monolayer (Mn) and suspension (Sp). The levels of total and cyclin 
E-associated proteins were determined with 100 and 500 ~g ex- 
tract, respectively. Approximate ECL exposure times for both 
NRK and NIH-3T3 cells: (30 s for total cyclin E, 30 s for total and cy- 
clin E-associated p27, 5 min for total and cyclin E-associated p21). 

the expression of the cdk inhibitory proteins, p21 and p27, 
or their association with cyclin E-cdk2 complexes. In NRK 
cells, p21 was very low at quiescence and induced similarly 
when the cells were treated with soluble mitogen in mono- 
layer or suspension, p27 was strongly expressed at quies- 
cence and downregulated similarly during the incubation 
of NRK cells in monolayer and suspension. Similar amounts 
of p21 and p27 were associated with the cyclin E-cdk2 
complexes isolated from monolayer and suspension cul- 
tures of NRK ceils. Thus, although mitogen regulated, the 
expression of total p21 and p27, and their association with 
cyclin E-cdk2 is anchorage-independent in NRK cells. 

The behavior of p21 and p27 in NIH-3T3 cells differed 
from that seen in NRK cells in two ways. First, the total 
levels of both p21 and p27 were slightly higher when the 
cells were cultured with mitogens in suspension (Fig. 6). 
Second, about threefold more p21 and about twofold more 
p27 were present in the inactive cyclin E complexes har- 
vested from suspended NIH-3T3 cells (Fig. 6). Although 
there was some experiment-to-experiment variability in 
the levels of p21 and p27 that were associated with cyclin 
E-cdk2 complexes in nonadherent NIH-3T3 cells (e.g., re- 
fer to the error bars in Fig. 7), the increased association 
was reproduced in several independent experiments and 
the results shown in Fig. 6 are representative. 

We assessed the amounts of p21 and p27 that were asso- 
ciated with cyclin E-cdk2 by comparing signal intensities 

~d 
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Figure Z Stoichiometry of CKI binding to cyclin E-cdk2 com- 
plexes. G0-synchronized NIH-3T3 cells were cultured in mono- 
layer and suspension for 12 h in the presence of mitogens. Col- 
lected cells were lysed and equal aliquots (0.5 mg) of each sample 
were incubated with anti-cyclin E. The immunoprecipitates were 
thoroughly washed before fractionation on reducing SDS gels. 
Selected amounts of recombinant GST-murine p21, his-tagged 
murine p27, and GST-cdk2 were electrophoresed in parallel. The 
immunoprecipitates and standards were analyzed simultaneously 
by immunoblotting with antibodies that detect murine p21, p27, 
and cdk2. We visually matched band intensities to the standard 
curves and confirmed the results by densitometry (to correct for 
potential nonlinearity in the ECL signals). The recombinant stan- 
dards were quantified by Coomassie blue staining (Bio-Rad as- 
say) and purity was assessed on SDS gels. Quantification of GST- 
cdk2 and GST-p21 was confirmed with anti-GST immunoblots 
using a preparation of homogeneous GST as standard. From this 
analysis, we calculated the moles of cdk2, p21, and p27 in the 
cyclin E-cdk2 complexes from adherent and nonadherent cells. 
The results are presented as the moles of p21 and p27 per mol 
cdk2 and show the mean of two separate experiments. Error bars 
indicate the ranges observed. 

of components in the isolated complexes with standard 
curves for recombinant p21, p27, and cdk2 (Fig. 7). Indi- 
vidually, the moles of p21/cdk2 or p27/cdk2 were ~<1 when 
NIH-3T3 cells were cultured in suspension, and others 
have shown that this unit stoichiometry (1:1 CKI:cdk) is 
insufficient to inhibit kinase activity (Zhang et al., 1994; 
Harper et al., 1995). Thus, changes in the association of 
p21 or p27 alone are probably not sufficient to account for 
inhibition of cyclin E-cdk2 kinase activity in suspended 
NIH-3T3 cells. However, when the moles of p21 and p27 
were summed, we found that the ratio of CKI to cdk2 was 
<1 for the cyclin E-cdk2 complexes isolated from the cells 
in monolayer and about two for the complexes isolated 
from the cells in suspension (Fig. 7). Others have shown 
that inhibition of kinase activity does not require more 
than two CKIs per cdk2 (Harper et al., 1995). We exam- 
ined the inhibition of preformed cyclin E/cdk2 complexes 
(purified from baculovirus) by increasing doses of purified 
recombinant human p21 and human p27 and obtained es- 
sentially the same results (data not shown). 

Adhesion-dependent Phosphorylation of Rb 
in Human Fibroblasts 

The effects of cell anchorage on G1 progression were also 
analyzed in early passage explant cultures of human skin 
fibroblasts. Quiescent human fibroblasts were stimulated 
with soluble mitogens (FCS/EGF) either in monolayer or 
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suspension. Flow cytometry (not shown) indicated that the 
adherent cells first began to enter S phase after 20-22 h 
and that the suspended cells failed to enter S phase even 
after 72 h in suspension. The hyperphosphorylation of Rb 
and the expression of cyclins D1 and A were adhesion- 
dependent in human fibroblasts (Fig. 8 A). Cyclin E-asso- 
ciated kinase activity was also adhesion-dependent despite 
the fact that cyclin E and cdk2 were present at similar lev- 
els in monolayer and suspended cells (Fig. 8 B). p21 
m R N A  (not shown) and protein (Fig. 8 B) were both in- 
duced approximately twofold when human fibroblasts 
were cultured in suspension, p27 (Fig. 8 B) is present in 
quiescent human fibroblasts, its levels decrease when 
monolayer ceils are exposed to growth factors, and several 
independent experiments indicated that this decrease is 
somewhat less efficient (approximately twofold in several 

independent experiments) when cells are cultured in sus- 
pension (Fig. 8 B). The inactive cyclin E-cdk2 complexes 
harvested from mitogen-treated cells in suspension consis- 
tently contained increased amounts of both p21 and p27 
relative to complexes harvested from mitogen-treated cells 
in monolayer (Fig. 8 B). 

Overall, the phenotype of normal human fibroblasts es- 
sentially recapitulates that observed with NIH-3T3 cells 
and clearly differs from the phenotype of NRK cells. In 
turn, these results suggest that the subset of the adhesion- 
dependent events regulating the expression of cyclin D1, 
activity of cyclin E-cdk2, and phosphorylation of Rb have 
been lost in the NRK fibroblast cell line. Note that the 
small upregulation of p21 m R N A  that we observed upon 
loss of cell adhesion in NIH-3T3 cells and human fibro- 
blasts is likely to be independent of p53: suspended fibro- 

Figure 8. The adhesion- 
dependent phenotype of hu- 
man fibroblasts. G0-synchro- 
nized human skin fibroblasts 
(h-fib; A and B) or human 
skin fibroblasts overexpress- 
ing cyclin E (E/h-fib; C and 
D) were incubated with solu- 
ble mitogens (FCS/EGF) for 
0 or 20-22 h in monolayer 
(Mn) and suspension (Sp). 
Collected cells were extracted, 
and the extracts were ana- 
lyzed by immunoblotting with 
antibodies to Rb, cyclin D, 
cyclin A, cyclin E, cdk2, p21, 
and p27. Cell extracts were 
also incubated with a cyclin 
E antibody to determine the 
level of cyclin E-associated 
H1 kinase activity (B and D). 
Duplicate samples of the cy- 
din E immunoprecipitates 
were ffactionated on reducing 
SDS gels and the amounts of 
associated cdk2, p21, and p27 
were determined by immu- 
noblotting (B and D). The 
levels of total and cyclin 
E-associated proteins were 
determined with 100 and 500 
txg extract, respectively. Ap- 
proximate ECL exposure 
times: A (30 s); B (5 m for cy- 
clin E, 3 m for cdk2, 1 m for 
cyclin E-associated cdk2, 20 s 
for total and cyclin E-associ- 
ated p21); C (30 s); D (30 s). 
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blasts derived from wild-type and p53-deficient mouse em- 
bryos showed similar increases in the expression of p21 
mRNA (data not shown). 

We reasoned that the inhibitory threshold imposed by 
p21 and p27 on cyclin E-cdk2 might be overcome by in- 
creasing the expression of cyclin E, so we infected human 
fibroblasts with a cyclin E retrovirus in an attempt to res- 
cue cyclin E kinase activity in nonadherent cells. The ex- 
pression of cyclins D1 and A and the hyperphosphoryla- 
tion of Rb remained anchorage-dependent (Fig. 8 C), 
indicating that constitutive expression of cyclin E had not 
deregulated adhesion-dependent cell cycle control in gen- 
eral. Although cyclin E was overexpressed about fivefold, 
cyclin E immunoprecipitates isolated from suspended cells 
still lacked kinase activity (Fig. 8 D). As assessed by the in- 
creased electrophoretic mobility of cdk2, the cyclin E-cdk2 
complexes in the transfectants were phosphorylated by 
CAK during serum-starvation, and the activated form per- 
sisted during incubation in suspension. A modest increase 
in CAK-phosphorylated cdk2 was detected in the growth 
factor-treated monolayers (Fig. 8 D), but in general, the 
strict adhesion requirement for cyclin E kinase activity 
could not be explained by the regulation of CAK. 

Interestingly, the overexpression of cyclin E in human 
fibroblasts led to a fivefold increase in total p21, and, as a 
consequence, we could readily detect enhanced associa- 
tion of p21 in the cyclin E/cdk2 complexes harvested from 
suspended cells (Fig. 8 D). p27 levels, and its association 
with cyclin E-cdk2, were minimally affected by the overex- 
pression of cyclin E (data not shown). Thus, these normal 
human fibroblasts responded to a cyclin E challenge by in- 
creasing the steady-state levels of p21, and our inability to 
rescue kinase activity by overexpression of cyclin E is the 
likely consequence of this response. Note that nonadher- 
ent cyclin E-human fibroblasts show an increased associa- 
tion of p21 with cyclin E-cdk2 (relative to the adherent 
cells) even though total p21 levels have become anchor- 
age-independent (Fig. 8 D). 

Discussion 

Cell adhesion to substratum is required for cell cycle pro- 
gression through G1 phase, but the basis for this require- 
ment has been poorly understood. We show here that cell 
adhesion is necessary for activation of all three cyclin-cdk 
complexes required for cell cycle progression from GO to S 
phase. First, cell adhesion is required for the induction and 
translation of cyclin D1 mRNA. Second, cell adhesion reg- 
ulates the activity of cyclin E-cdk2 by determining the ex- 
tent of its association with the cdk inhibitors p21 and p27. 
Third, the expression of cyclin A mRNA and protein re- 
quires cell adhesion. We also show that these effects are 
not only causally related to the level of cyclin E-associated 
kinase activity, but also causally related to the ability of 
cells to phosphorylate Rb and progress into S phase. The 
cell cycle effects we observed by incubating cells in sus- 
pension were not changed by enriching the mitogenic 
cocktail (with I vM insulin; refer to Massagu6 et al., 1985) 
(data not shown). Moreover, mitogens do function in non- 
adherent cells as assessed by the phosphorylation of their 
receptors and receptor substrates (McNamee et al., 1993) 
and the induction of c-myc mRNA (B6hmer et al., 1996). 

We therefore conclude that the G1 cell cycle events that 
have been attributed to growth factors actually require the 
convergence of signals from growth factors and the extra- 
cellular matrix. 

Adhesion-dependent Induction and Translation 
of Cyclin D1 mRNA 

Cell adhesion controls the abundance of cyclin D1 protein 
at two levels. First, in the absence of cell adhesion, cyclin 
D1 mRNA levels are 3-5-fold lower than in adherent cells. 
c-myc has been implicated as a positive regulator of cyclin 
D1 gene expression (Daksis et al., 1994). However, at least 
in normal human fibroblasts, adhesion-dependent control 
of cyclin D1 mRNA does not appear to involve a direct ef- 
fect of c-myc because c-myc mRNA is induced by mitoge- 
nic growth factors independently of cell adhesion (B6h- 
mer et al., 1996). Second, direct measurements showed 
that synthesis, but not degradation, of cyclin D1 was also 
dependent upon cell adhesion. Adhesion-dependent syn- 
thesis of cyclin D1 may be related to the fact that the bind- 
ing of cells to substratum is required for the persistent acti- 
vation of MAP kinase (Zhu and Assoian, 1995; our 
unpublished observations), and that activation of MAP ki- 
nase in mid-G1 has the potential to selectively stimulate 
the translation of cyclin D1 mRNA by regulating the activ- 
ity of PHAS-I (Rosenwald et al., 1993; Lin et al., 1994). 
Note also that the synthesis of cyclin D1 is less affected by 
adhesion if the transcript lacks UTRs (Zhu and Assoian, 
our unpublished observations). 

Adhesion-dependent Activity of Cyclin E-cdk2 

Cell adhesion is also required for cyclin E kinase activity 
in NIH-3T3 cells and human fibroblasts. This effect is not 
related to assembly of cyclin E-cdk2 complexes nor can it 
be explained by an adhesion-dependent regulation of 
CAK. Rather, our data indicate that an increased associa- 
tion of p21 and p27 inhibits cyclin E kinase activity in sus- 
pended cells. This interpretation is supported by our sto- 
ichiometric analysis which indicates that the CKI/cdk2 
ratio changes from about one to two when NIH-3T3 cells 
are cultured in suspension. Others have shown that a 
change of this magnitude is sufficient to inhibit cyclin E ki- 
nase activity (Harper et al., 1995), and we have obtained 
similar results. 

While this manuscript was under review, Fang et al. 
(1996) reported that cell adhesion was required for cyclin 
E-cdk2 kinase activity in human fibroblastic cell lines most 
likely because the levels of total and cyclin E-associated 
p21 and p27 were increased (approximately fourfold) 
when the cells were cultured in suspension. Although 
smaller in magnitude, we have observed similar effects 
with NIH-3T3 cells and normal human fibroblasts. How- 
ever, our data also suggest that the absence of cyclin D1 
protein in nonadherent NIH-3T3 cells and human fibro- 
blasts (with the consequent lack of cyclin D-cdk4 com- 
plexes) should allow for an altered distribution between 
the total p21/27 pool and cyclin E-cdk2, and that this effect 
can contribute to the increased association of these CKIs 
with cyclin E-cdk2. (Cyclin E-cdk2 should be targeted in 
suspended fibroblasts because cyclin A and the mitotic cy- 
clins are not present in G1 cells.) This idea is supported by 
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three separate results. First, the increase in the association 
of p21 with cyclin E-cdk2 complexes in suspended NIH- 
3T3 cells is greater than the increase in total p21 levels. 
Second, there is an increased association of p21 with cyclin 
E-cdk2 complexes when cyclin E-transfected human fi- 
broblasts are cultured in suspension even though total p21 
levels are anchorage-independent. Third, the expression 
of cyclin D1, the formation of cyclin Dl-cdk4 complexes, 
the association of p21/p27, and the activity of cyclin E ki- 
nase are anchorage-independent in NRK cells. Although 
mechanistically distinguishable, a similar downregulation 
of cyclin D-cdk4 activity seems to underlie the inactivation 
of cyclin E-cdk2 complexes by p27 in TGF-13-treated cells 
(Polyak et al., 1994a,b; Hannon and Beach, 1994; Reynis- 
d6ttir et al., 1995). 

Adhesion-dependent Expression of Cyclin A mRNA 

Expression of the third cyclin necessary for S phase entry, 
cyclin A (Girard et al., 1991; Pagano et al., 1992), is also 
dependent upon cell adhesion. During a normal cell cycle, 
cyclin A expression begins after cells have accumulated 
active cyclin D- and cyclin E-cdk complexes (for a review 
see Heichman and Roberts, 1994). The cyclin A promoter 
contains E2F sites (Henglein et al., 1994) and overexpres- 
sion of E2F induces anchorage-independent growth of 
NIH-3T3 cells (Xu et al., 1995). It has therefore been sug- 
gested that cyclin A expression may be activated indirectly 
by cyclin D-cdk4 and cyclin E-cdk2, as a consequence of 
their ability to phosphorylate Rb, release E2F, and induce 
E2F-dependent gene transcription (Xu et al., 1995). We 
find that forced expression of cyclin D1 rescues Rb phos- 
phorylation and entry into S phase when G1 NIH-3T3 
cells are cultured in suspension, and this result is consis- 
tent with a role for an Rb/E2F pathway in the adhesion- 
dependent expression of cyclin A. 

However, our results with NRK fibroblasts indicate that 
other mechanisms also contribute to adhesion-dependent 
cyclin A because these cells phosphorylate Rb in suspen- 
sion but remain unable to induce cyclin A expression to a 
level that is sufficient for colony formation in soft agar 
(Guadagno et al., 1993). The cyclin A promoter contains a 
variant E2F site that seems to bind to p107/E2F4 com- 
plexes specifically (Schulze et al., 1995); this site may be 
involved in adhesion-dependent cyclin A expression. Al- 
ternatively, Fang et al. (1996) have suggested that adhe- 
sion-dependent expression of cyclin A may merely reflect 
the anchorage requirement for induction of cyclin E-cdk2 
activity. This proposal is not supported by our results 
which show that cyclin E-dependent kinase activity is 
readily detected in suspended NRK cells, even though 
they poorly express cyclin A. Moreover, the enforced ex- 
pression of cyclin A (but not cyclin E) is sufficient to stim- 
ulate soft agar growth of NRK fibroblasts (Guadagno et 
al., 1993). 

Phosphorylation of the Retinoblastoma Protein 
Reflects the Converging Actions of Mitogenic Growth 
Factors and the ExtraceUular Matrix 

Rb phosphorylation is dependent upon mitogenic growth 
factors, and phosphorylation of Rb during G1 correlates 
with the transition from the growth factor-dependent to 

the growth factor-independent portion of the cell cycle. 
Thus, Rb phosphorylation is viewed as a key molecular 
target by which growth factors control cell cycle progres- 
sion. Our results fully support the essential role of growth 
factors in regulating G1 cyclin activity and Rb phosphory- 
lation. But the data we obtained in NIH-3T3 cells and hu- 
man fibroblasts also show that phosphorylation of the Rb 
protein during the G1 phase of the cell cycle requires in- 
formation provided by both mitogenic growth factors and 
the extracellular matrix. Neither signal alone is sufficient 
for Rb phosphorylation. 

In nonadherent cells both cyclin D1 and cyclin E kinase 
are inactive, and Rb is not phosphorylated. When late G1 
cells are transferred to suspension, cyclin D1 mRNA is not 
translated and Rb is dephosphorylated. Enforced expres- 
sion of cyclin D1 protein in late G1 rescues Rb phosphory- 
lation and entry into S phase in nonadherent cells. These 
results establish a causal relationship between the control 
of cyclin D1 translation and adhesion-dependent cell cycle 
progression. On the other hand, enforced expression of cy- 
clin D1 was not sufficient to allow fully quiescent cells to 
phosphorylate Rb or activate cyclin E-cdk2 in the absence 
of adhesion, suggesting that there are additional controls 
on cyclin D1/cdk4 activity that specifically act in early G1. 
This result may also explain why the overexpression of cy- 
clin D1 in NIH-3T3 cells fails to induce colony formation 
of NIH-3T3 cells in soft agar despite its causal role in Rb 
phosphorylation (Quelle et al., 1993 and our unpublished 
observations). 

Cyclin E-cdk2 is an Rb kinase both in vitro and in vivo, 
and it is activated in vivo at a time when Rb phosphoryla- 
tion is occurring (refer to Introduction). Our results show- 
ing adhesion-dependent cyclin E-cdk2 activity indicate 
that the effect of cyclin E-cdk2 on Rb phosphorylation will 
also be dependent upon cell adhesion. Involvement of cy- 
clin E-cdk2 in Rb phosphorylation may explain the obser- 
vation that suspended NRK cells have similar lags in the 
onset of cyclin E-kinase activity and Rb hyperphosphory- 
lation (compare Figs. 2 and 5), Thus, through their com- 
plementary effects on cyclin D and E kinase activities, the 
signals generated by mitogenic growth factors and the ex- 
tracellular matrix converge, and this convergence is mani- 
fested in the phosphorylation state of the retinoblastoma 
protein and cell cycle progression through G1. 

Multistep Progression towards 
Anchorage-independent Growth 

Our data emphasize that there is redundancy in adhesion- 
dependent cell cycle control. For example, nonadherent 
NIH-3T3 weakly upregulate the protein levels of p21 in 
comparison to human fibroblasts (this report and Fang et 
al., 1996), but their adhesion-dependent expression of cy- 
clin D1 is sufficient to render them anchorage-dependent. 
NRK cells have largely lost their adhesion controls on cyclin 
D1 and E kinase activities, but adhesion control of cyclin 
A is relatively intact so these cells still appear anchorage- 
dependent. Thus, the phenotype of anchorage-indepen- 
dence reflects a multistep deregulation of adhesion-con- 
trolled cell cycle events. The variable effects of tumor 
viruses, oncogenes, and chemical mutagens in inducing an- 
chorage independence in different cell lines may well re- 
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flect the extent to which adhesion-dependent cell cycle 
controls have been lost in the host. Multistep progression 
to anchorage independence may also explain the fact that 
this phenotype is the best cell culture correlate to tumori- 
genicity in animals (Shin et al., 1975). 

The transforming effects of DNA tumor viruses, of on- 
cogenes, and of deletions and mutations in tumor suppres- 
sor genes have all been linked to the deregulated function 
of the cdk complexes (D-cdk4, E-cdk2, and A-cdk2) that 
guide cells through G1 and S phase (for review see Hunter 
and Pines, 1994). Since growth factors regulate the G1 cy- 
clins, these transforming events have typically been viewed 
in terms of escape from the requirement for growth fac- 
tors. Our results show that they must be equally viewed in 
terms of escaping the requirement for cell adhesion. 
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