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Abstract
Background: Cardiovascular disease (CVD) is the first cause of world death, and myocardial 
infarction (MI) is one of the five primary disorders of CVDs which the patient electrocardiogram (ECG) 
analysis plays a dominant role in MI diagnosis. This research aims to evaluate some extracted 
features of ECG data to diagnose MI. Methods: In this paper, we used the Physikalisch‑Technische 
Bundesanstalt database and extracted some morphological features, such as total integral of ECG, 
integral of the T‑wave section, integral of the QRS complex, and J‑point elevation from a cycle of 
normal and abnormal ECG waveforms. Since the morphology of healthy and abnormal ECG signals is 
different, we applied integral to different ECG cycles and intervals. We executed 100 of iterations on a 
10‑fold and 5‑fold cross‑validation method and calculated the average of statistical parameters to show 
the performance and stability of four classifiers, namely logistic regression (LR), simple decision tree, 
weighted K‑nearest neighbor, and linear support vector machine. Furthermore, different combinations 
of proposed features were employed as a feature selection procedure based on classifier’s performance 
using the aforementioned trained classifiers. Results: The results of our proposed method to diagnose 
MI utilizing all the proposed features with an LR classifier include 90.37%, 94.87%, and 86.44% for 
accuracy, sensitivity, specificity, respectively. Also, we calculated the standard deviation value for the 
accuracy of 0.006. Conclusion: Our proposed classification‑based method successfully classified and 
diagnosed MI using different combinations of presented features. Consequently, all proposed features 
are valuable in MI diagnosis and are praiseworthy for future works.

Keywords: Biological signal processing, classification, cross‑validation, electrocardiography, 
feature selection, linear support vector machine, myocardial infarction, simple tree, weighted 
K‑nearest neighbor
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Introduction
Myocardial infarction

The first cause of world death is 
cardiovascular disease (CVD), which causes 
more death than other diseases annually. In 
2015, about 17.7 million people died from 
CVD, accounting for 31% of the world’s 
total deaths, of which about 7.4 million 
people died from the stroke and 7.6 million 
deaths were because of coronary heart 
disease. Myocardial infarction (MI) is one 
of the five main complications of CVDs, 
which include persistent angina, unstable 
angina, heart failure, MI, and sudden 
death.[1,2] Consequently, early diagnosis 
of MI has critical importance in medical 

applications for the effective treatment of 
patients.

MI or “heart attack” occurs when one of 
the coronary arteries is completely blocked. 
A region of the myocardium fed by the 
coronary artery dies, and loses its blood 
and deprives of oxygen and other nutrients. 
The sudden and total occlusion of the 
artery, which precipitates the infarction, 
is usually due to coronary artery spasm 
or superimposed thrombosis.[3] As the 
ST‑segment is the most widely used feature 
for MI detection, the onset of MI can be 
distinguished into two kinds of MI, namely 
an ST‑segment elevation MI, which is 
caused by the blockage of an artery from 
the heart, and a non‑ST‑segment elevation 
MI, which depends on T‑inversion or ST 
depression.[4‑7]
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Usually, in most cases of infarction, electrocardiogram 
(ECG) signal processing based on the investigation 
of the morphology of multi‑lead ECG results in 
precise diagnosis.[8] Early ECG variations and specific 
electrocardiographic changes associated with MI occurred 
with the onset of myocardial dysfunctions.[3,7]

During acute MI, the ECG evolves through three stages:
1. T‑wave peaking followed by T‑wave inversion
2. ST‑segment elevation
3. Emergence of a new Q‑wave.

However, during an acute infarction, commonly, all three 
states can appear in the ECG, but it is possible to have any 
of these conditions without another one. For example, it 
is not unusual at all that the ST‑segment elevation occurs 
without T‑wave inversion. Considering all the three states, 
we can predict MI with the least error.[3,9] Some of these 
methods introduced are as follows:
a. If the T‑wave peaks and then reverses, it represents 

myocardial ischemia. In addition, if an acute MI occurs, 
then T‑wave can remain reverse about more than a few 
months to several years

b. If the ST‑segment raises and joins with the T‑wave, 
then it indicates a myocardial injury. Furthermore, the 
ST‑segment usually recovers to baseline within a few 
hours when infarction happens

c. If a new Q‑wave appears within hours to days, then it 
signifies MI. In most cases, the Q‑wave persists for the 
rest of the patient life.[3]

The localization of infarction is essential since its 
prognostic and therapeutic effects are in the heart regions, 
which are already dead. Infarctions categorized into several 
general anatomic categories. These are inferior infarctions, 
lateral infarctions, anterior infarctions, and posterior 
infarctions. Combinations can also be realized, such as 
anterolateral infarctions, which are very common.[3]

1. Inferior infarction: The structural electrocardiographic 
changes of infarction reveal in the inferior leads such as 
II, III, and AVF

2. Lateral infarction: In this infarction, the occlusion of 
the left circumflex artery leading to changes in the left 
lateral leads AVL, І, V5, and V6

3. Anterior infarction: This infarction marked by specific 
changes in the precordial leads (V1–V6)

4. Posterior infarction: In this infarction, since there 
are no leads overlying the posterior wall of the heart, 
therefore, the anterior leads, especially V1, are needed 
to investigate for reciprocal changes, which are indeed 
essential to diagnose posterior MI.

Research background

According to all studies, MI diagnosing generally 
constitutes four major phases, including signal 
preprocessing step, ECG wave segmentation, feature 
extraction, and classification. In general, signal features 

extracted from the time‑domain, the frequency‑domain, and 
the transform‑domain.[5,10] The importance of an efficient 
feature selection method is undeniable and affects the 
overall performance of classification methods.

There are several automated, semi‑automated, or manual 
signal segmentation approaches for signal feature 
extraction. For example, Al Touma et al. proposed a system 
which utilized two algorithms, and the first algorithm could 
detect the critical points on the ECG waveforms and the 
second algorithm could detect possible MI based on the 
analysis of the aforementioned critical points.[4] Further, 
Gupta and Kundu applied a statistical index, namely 
dissimilarity factor “D” to classify normal and inferior 
MI data, without the need for any direct clinical feature 
extraction. Accordingly, the T‑wave and the QRS sections 
of inferior MI datasets were automatically extracted 
from the leads II, III, and aVF and then compared with 
corresponding segments of healthy patients using the 
Physikalisch‑Technische Bundesanstalt (PTB) database.[11]

Some research analyzes and investigates the effects and 
arrangements of each MI feature. Carley presented that the 
location of leads V1–V6 depends on historical convention, 
and there is clear evidence that ST‑elevation, indicative of 
acute MI, exists outside of the standard 12‑lead ECG.[12] 
Accordingly, we consider it as an essential factor to detect 
and localize MI in the current study. Besides, Muhammad 
Arif et al. employed time‑domain features of each beat in 
the ECG signal, including T‑wave amplitude, Q‑wave, and 
ST‑elevation using K‑nearest neighbor (KNN) classifier 
in an automated scheme for diagnosis and localization 
of MI.[13] Similarly, Safdarian et al. applied two new 
time‑domain features including total integral and T‑wave 
integral as morphological signal features to detect and 
localize the MI in the left ventricle of the heart.[14]

On the other hand, some researches focused on the 
features in the frequency domain or the transform domain 
of the ECG signal. As an example, Nidhyananthan et al. 
proposed a wavelet‑based method, which applied for 
detecting MI along with user‑identity using a support 
vector machine (SVM) classifier to classify the normal 
and abnormal cases in these signals. In addition, the RR 
interval utilized to authenticate the ECG signal.[15] In 
addition, Sharma et al. represented a novel technique on 
multiscale energy and Eigen space approach to detect and 
localize MI from multi‑lead ECG. Moreover, the nearest 
neighbor (KNN), and the SVM, along with both linear and 
radial basis function kernels applied as classifiers.[16]

Moreover, Noorian et al. proposed the radial basis function 
neural networks classifier with wavelet coefficient as 
features extracted from frank lead to diagnose and localize 
MI.[17] Moreover, Tripathy et al. proposed the multiscale 
convolutional neural network for automatic MI localization 
using the Fourier‑Bessel (FB) series expansion‑based 
empirical wavelet transform (EWT) for signal segmentation 
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and feature extraction.[8] Concerning the use of neural 
networks, similarly, Zhang et al. proposed a multi‑lead 
bidirectional‑gated recurrent unit neural network, and 
their results show that the algorithm has higher sensitivity, 
positive predictivity, accuracy, and universality.[7]

In this study, we focused on the feature selection section 
as an essential part of a successful MI diagnosing and 
classification. We presented a classification‑based feature 
selection method to analyze the worthiness of the extracted 
ECG morphological features and to tackle the problem of 
feature selection.

Objectives

The main objective of our study is to evaluate the efficiency 
of the proposed extracted morphological features from 
ECG data in MI diagnosis and not necessarily diagnosing 
MI only. The higher the quality of ECG extracted features, 
the better the results in the early diagnosis of MI.

Materials and Methods
Signal acquisition

In this study, we proposed a classification‑based feature 
selection procedure to evaluate the ECG morphological 
features for diagnosing MI. At this point, we collect our 
ECG data from PhysioNet. In the PTB database, the ECGs 
were derived from patients with various heart diseases and 
healthy volunteers.[18]

In our research, we have assigned two diagnostic classes, 
including 148 MI subjects and 52 standard control subjects, 
since we investigated MI types. Consequently, the sum of 
59 healthy ECG records alongside 156 MI records forms 
the complete database of 215 signal records.

Signal preprocessing and feature extraction from 
electrocardiogram signals

The raw ECG records contain various artifacts such as 
muscle noise, power line interference noise, and baseline 
wander.[4,10] In this article, we implemented two filters, 
namely the band‑pass FIR filter (ECG band 0.5–150 Hz) 
and IIR notch filter (55 Hz) to remove noise from ECG 
signals. The notch filter removes the power line interference 
noise of 50–60 Hz. Moreover, the band‑pass FIR filter is 
designed using a minimum order Kaiser window for the 
removal of ECG baseline wander. We utilized MATLAB 
filter design application and the design configuration 
summary of each filter presented and also, the Bode plot 
for the filters and also, signal optimization are shown in 
Figures 1 and 2.

IIR notch filter
• Filter order: 2
• Sampling frequency: 1000
• Notch Bandwidth: 10 Hz
• Passband ripple (Apass): 0.1 dB

FIR band‑pass filter

• Filter order: 124
• Sampling frequency: 1000
• Window: Kaiser
• End of the first stopband (Fstop1): 0.5 Hz
• Beginning of the passband (Fpass1): 10 Hz
• End of the passband (Fpass2): 100 Hz
• Beginning of the second stopband (Fstop2): 150 Hz
• Passband ripple (Apass): 0.1 dB
• Stopband attenuation for both stopbands (Astop1, 

Astop2): 40 dB.

In this review, we focused on ECG features and identified 
fundamental characteristics to extract, classify, and 
eventually determine exact MI types, which are presented 
below:
1. Peaking of the T‑wave (hyperacute T‑wave) followed by 

inversion of the T‑wave
2. Elevation of the ST segment.

The idea is to integrate the ECG signal and extract the above 
features. Accordingly, we compute definite integrals of 
“ECG cycle,” “QRS complex,” and “T‑wave” using “trapz” 
function in MATLAB (R2016b) software. As a result, we 
can extract morphology variations and hyperacute T‑wave 
features of ECG signal in MI as well. Furthermore, we use 
ECG J‑point elevation value to estimate ST‑elevation and 
also extract it as a feature from three ECG leads, namely 
lead І, lead II, and lead V2.

According to the MATLAB software, the “trapz” operates 
numerical integration via the trapezoidal method, which 
can divide the area down into trapezoidal segments to 
approximate the integration over an interval. Therefore, the 
approximation is as follows:
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Thus, we obtain a general “features matrix” with 215 
rows and 11 columns, which include features and labels. 
Consequently, the features extraction process of ECG 
signals accomplishes. The final features matrix arrays 
contain {F1, F2, F3, F4, F5, F6, F7}; features accompany 
with two class and four class labels.
• F1: Integral of a complete ECG cycle
• F2: Integral of ORS complex
• F3: Integral of T‑wave
• F4: ST elevation in lead I
• F5: ST elevation in lead II
• F6: ST elevation in lead V2
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• F7: T‑wave inversion (0 for no inversion and 1 for 
inversion).

The laptop we used had Windows 8.1 as the operating 
system, a Core i7 CPU, and 12 GB of RAM.

In this study, initially, we create a database from 
ECG‑extracted features. Subsequently, we can classify 

MI and obtain the results using a 5‑fold cross‑validation 
technique to detect MI from ECG data. The 5‑fold 
cross‑validation divides the ECG data into four training 
datasets and a validation dataset as the inputs of four 
classifiers, namely the fine decision tree, the linear 
SVM (L‑SVM), the weighted KNN, and the logistic 
regression (LR). We suggest the diagnosis of MI by 

Figure 1: (a) Notch filter magnitude response (dB) and phase response; (b) FIR band‑pass Filter magnitude response (dB) and phase response
b

a

Figure 2: (a) Raw electrocardiogram signal, (b) electrocardiogram baseline wander correction, (c) filtered electrocardiogram signal, (d) final smoothed 
filtered electrocardiogram signal, (e) raw electrocardiogram periodogram power spectral density estimate, and (f) optimized electrocardiogram periodogram 
power spectral density estimate

dc

b

f

a

e
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evaluating ECG data using two procedures, including the 
two‑class and the four‑class classification. The dataset in the 
two‑class classification method contains healthful records 
and MI records, however; in the four‑class classification 
procedure, we have healthful records, inferior, anterior, and 
posterior MI records.

Statistical analysis

Statistical analyses to investigate the relationship between 
the features

To test the normality of the data (features extracted from 
the ECG signals), the test of the normality of the following 
features was performed in SPSS software (Version 20, IBM 
Corp. Released 2011. IBM SPSS Statistics for Windows, 
Version 20.0. Armonk, NY: IBM Corp.).

Features include F1, F2, F3, F4, F5, F6, and F7; Table 1 
shows the test results for the above features.

As shown in Table 1, and according to P value and the 
skewness results for all seven sets of extracted features, 
it indicates that the features are abnormal. Furthermore, 
Table 1 represents the comparison of variance status 
and skewness values of all three groups of the above 
characteristics.

Since the data of all seven groups of features do not have 
a normal distribution, parametric tests (such as t‑test or 
ANOVA test) cannot be used to analyze these features. 
Therefore, we must use nonparametric analyses to investigate 

the independence of features. We then examine whether there 
is a significant difference between the seven sets of extracted 
features using the Friedman nonparametric test.

The results of Friedman nonparametric test show that 
there is a significant difference between the seven groups 
of different features due to the P < 0.01. In other words, 
the Chi‑square value of Friedman’s test is confirmed with 
an error of <1% and a confidence level of 99%. According 
to Tables 2 and 3, because of the significant difference 
between the different groups of extracted features, we can 
use them to enter classification algorithms. Finally, let us 
look at the accuracy, sensitivity, and specificity values used 
by classifying algorithms on these data.

Statistical analysis to examine the relationship between 
data sets of extracted features from healthy and myocardial 
infarction classes

To test the normality of the data (extracted features from 
ECG signals of healthy and patient data), the following test 
of the normality of the following features was performed 
in SPSS software (Version 20). Review classes are given 
below.
• Healthy
• Patients with MI.

Moreover, the features examined in the above have seven 
independent classes including F1, F2, F3, F4, F5, F6, 
and F7.

In the previous section, the normality test was examined. At 
this stage, since the two healthy and MI classes represent 
two completely independent nonparametric groups, we use 
Mann–Whitney and Kolmogorov–Smirnov tests.

First, the tests above are performed on all seven features 
for two class labels (only healthy and only MI). Table 4 
shows the results of the above two tests and reveals 
that all the features extracted from healthy ECG and MI 
samples (except for feature 4) in both groups (with label 
1 for healthy and label 2 for MI, respectively) have a 
P < 0.05 value for both tests, which means that there 
is a significant difference between the data of healthy 
individuals and MI for these extracted features (except for 
the feature number 4, of course).

Table 1: Tests of normality of the features
Features Kolmogorov‑Smirnova Shapiro‑Wilk

Statistic df P Statistic df P
F1 0.094 215 0.000 0.879 215 0.000
F2 0.056 215 0.093 0.981 215 0.006
F3 0.051 215 0.200* 0.975 215 0.001
F4 0.513 215 0.000 0.424 215 0.000
F5 0.435 215 0.000 0.585 215 0.000
F6 0.402 215 0.000 0.616 215 0.000
F7 0.442 215 0.000 0.577 215 0.000
*This is a lower bound of the true significance, aLilliefors 
significance correction

Table 2: Statistical analysis for the features
Statistics F1 F2 F3 F4 F5 F6 F7
Valid (n) 215 215 215 215 215 215 215
Missing (n) 0 0 0 0 0 0 0
Mean 0.0001 0.0056 0.0063 0.1488 0.3163 0.3814 0.3023
SD 0.00050 0.01447 0.01238 0.35676 0.46611 0.48686 0.46034
Variance 0.000 0.000 0.000 0.127 0.217 0.237 0.212
Skewness 0.816 0.186 −.428 1.987 0.796 0.492 0.867
SE of skewness 0.166 0.166 0.166 0.166 0.166 0.166 0.166
Kurtosis 10.122 1.281 2.195 1.967 −1.380 −1.775 −1.260
SE of kurtosis 0.330 0.330 0.330 0.330 0.330 0.330 0.330
SE – Standard error; SD – Standard deviation
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Then, analyses are performed on all seven features for 
four class labels (healthy samples and three types of MI 
patient samples). At this stage, since one healthy class and 
three patient classes represent four completely independent 
groups, we use Kruskal–Wallis and median tests because 
these tests can be performed on more than two independent 
nonparametric groups.

In Table 5, the results of the above two tests indicate that 
all the extracted features from the ECG signals of healthy 
and patient samples (except for F4 in the Kruskal–Wallis 
test, and F2 and F4 in the median test for all four healthy 
and patient classes, label 1, label 2, label 3, and label 4, 
respectively) have valued P < 0.05 for both tests. It means 
that there is a significant difference between the data 
of healthy people and MI patients for all the extracted 
features, except for the two features mentioned above. 
Therefore, choosing these features to distinguish between 
healthy data and three MI patient groups is rational and 
performs acceptable discrimination between the classes as 
well.

According to Table 5, the significant difference between 
the different classes of extracted features is noticeable, and 
we can use them to enter classification algorithms.

Classification

In this section, we compute integral of filtered ECG 
signal to extract aforementioned features, and next, we 
choose J‑point elevation value in mv unit manually for 
215 data samples and use these characteristics to create 

Table 4: Mann‑Whitney and Kolmogorov‑Smirnov test
Mann‑Whitney test F1 F2 F3 F4 F5 F6 F7

Mann‑Whitney test statisticsa

Mann‑Whitney U 3066.000 3102.000 1058.000 4303.000 3563.500 3365.500 2792.000
Wilcoxon W 15312.000 15348.000 13304.000 6073.000 5333.500 5135.500 4562.000
Z −3.774 −3.685 −8.707 −1.192 −3.168 −3.611 −5.590
Asymptotic P (two‑tailed) 0.000 0.000 0.000 0.233 0.002 0.000 0.000

Two‑sample Kolmogorov‑Smirnov test statisticsa

Most extreme differences, absolute 0.330 0.294 0.655 0.065 0.226 0.269 0.393
Positive 0.330 0.294 0.655 0.000 0.000 0.000 0.000
Negative −0.024 −0.013 0.000 −0.065 −0.226 −0.269 −0.393
Kolmogorov‑Smirnov Z 2.156 1.923 4.284 0.425 1.476 1.758 2.573
Asymptotic P (two‑tailed) 0.000 0.001 0.000 0.994 0.026 0.004 0.000
aGrouping variable: Label_2_class

Table 3: Friedman test
Ranks Mean rank
F1 3.47
F2 4.09
F3 4.42
F4 3.52
F5 4.17
F6 4.47
F7 3.87
Test statisticsa

n 215
χ2 49.306
df 6
Asymptotic P 0.000

aFriedman test

Table 5: Kruskal‑Wallis and median tests
F1 F2 F3 F4 F5 F6 F7

Kruskal‑Wallis test statisticsa

χ2 45.620 13.594 82.702 2.374 11.126 59.767 36.221
df 3 3 3 3 3 3 3
Asymptotic P 0.000 0.004 0.000 0.499 0.011 0.000 0.000

Median test statisticsa

n 215 215 215 215 215 215 215
Median 0.0001 0.0049 0.0057 0.0000 0.0000 0.0000 0.0000
χ2 35.824b 4.324b 70.553b 2.385c 11.178d 60.047e 36.390f

df 3 3 3 3 3 3 3
Asymptotic P 0.000 0.229 0.000 0.496 0.011 0.000 0.000
aGrouping variable: Label_4_Class, b2 cells (25.0%) have expected frequencies <5. The minimum expected cell frequency is 2.5, c2 cells 
(25.0%) have expected frequencies <5. The minimum expected cell frequency is 0.7, d2 cells (25.0%) have expected frequencies <5. The 
minimum expected cell frequency is 1.6, e2 cells (25.0%) have expected frequencies <5. The minimum expected cell frequency is 1.9., f2 
cells (25.0%) have expected frequencies <5. The minimum expected cell frequency is 1.5
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feature matrix. Furthermore, we apply 5‑fold and 10‑fold 
cross‑validation for each of the classifiers and calculate 
the sensitivity and specificity using these two formulas 
below.[7,10,19,20]

TPSensitivity
TP FN

=
+

 (2)

TNSpecificity
TN FP

=
+

 (3)

   ( ) TPPositive predictivevalue PPV
TP FP

=
+

 (4)

   ( ) TNNegative predictivevalue NPV
TN FN

=
+

 (5)

Moreover, we executed 100 iterations for 5‑fold and 10‑fold 
cross‑validation on the 2‑class and 4‑class classification to 
show the stability of the proposed models.

K‑fold cross‑validation

The cross‑validation estimate of accuracy equals the overall 
number of correct classifications divided by the number 
of samples in the dataset. Accordingly, assume that the 
inducer 𝓘 maps a given dataset into a classifier and D (i) is 
the test set that includes sample xi = (vi, yi). Note that δ 
is the mean square error function, then the cross‑validation 
estimate of accuracy is:[21]
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1 ( ( / , ), )
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n

δ
∈
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Logistic regression

LR is used to describe the data and explain the relationship 
between a dependent binary variable and one or more 
independent variables.[22,23] The regression analysis uses 
the log odds to compute output Y. Further, it tackles the 
problem of probabilities limitation and uses a cost function 
to compute the individual cost of each observation Yp. The 
LR equation is:

β = A0+A1(x) (7)

Further,
( )( ) 

( ) 
1 ( )

log P x
Log Odds

P x
β = =

−
 (8)

We define a cost function threshold of 0.5 for 
decision‑making, so we have:

if Y ≥ 0.5: cost = ‑Log(Yp) (9)

if Y ≤ 0.5: cost = ‑Log(1‑Yp) (10)

Where β is the log odds and A0 and A1 are logistic 
coefficients with initial values determined by optimization, 
which must minimize the cost function. Hence, the 
probability Y using a sigmoid function is:

1 
1

Y
e β−=

+
 (11)

Linear support vector machine

In machine learning, the SVMs include supervised learning 
models, which are a set of points in the n‑dimensional data 
that specify the boundaries of the classes to classify the 
data. Consider a collection of training samples that each 
sample belongs to one or the other of two classes, the SVM 
finds the optimal hyperplane, which splits all data points of 
one class from those of the other class.[10,24]

This discussion follows Hastie et al.[24] and Cristianini 
and Shawe‑Taylor.[25] The training data define as a set of 
points (vectors) xi along with their groups yi. For some 
dimension d, the xi ∊ Rd, and the yi = ±1. The equation of 
a hyperplane is:

f(x) = βx' + b  (12)

Where β ∊ Rd and b is a real number.

The following problem defines the optimal separating 
hyperplane (i.e., the decision boundary). Find β and b, 
which minimize ||β|| such that for all data points (xi,yi), yjf 
(xj) ≥ 1–ξi. Hence, for i ∊ {1,…, n}, we define ξi = max 
(0, 1–yjf (xj)). The support vectors are the xi on the 
boundary for those which yjf (xj) = 1. For mathematical 
ease, the problem is usually assumed as the equivalent 
problem of minimizing ||β||.[24,26] In our work and according 
to MATLAB, the length of beta is equal to the number of 
predictors used to train the model so for more information 
check MATLAB help. Finally, we have:

2

1

1 ( ) min( ( ))
2

N

j

C yjf xj β
=

+∑  (13)

Where if C grows too large, the algorithm will reduce ||β||, 
leading to a hyperplane that classifies each training sample 
correctly. Conversely, if C becomes too small, then the 
algorithm increases ||β|| causing large training error.[26]

Decision tree

The decision tree learning is one of the predictive modeling 
methods applied in statistics, which maps observations 
about an item (presented in the branches) to conclude on 
the target value of the item (shown in the leaf). In tree 
classification, the target variable can accept a limited set 
of values; in these tree structures, leaves and branches, 
respectively, represent class labels and a combination of 
features, which leads to those class labels.[10,27]

K‑nearest neighbors’ algorithm

One of the nonparametric methods in pattern recognition 
is the KNN algorithm utilized for classification, which the 
term nearest is the foundation of the KNN so that each new 
instance compares to all prior cases and then assigns to the 
group with closer samples to each other. Since the KNN 
output is a class membership, therefore, the KNN assigns 
the sample to the class most common among its k nearest 
neighbors (k is a positive integer, typically small). The 
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sample assigns to a class of that single nearest neighbor if 
k = 1.[10,22]

In the weighted KNN classifier, we assign a weight 1/k to 
the k nearest neighbors and all others a weight zero. That 
is, where the ith nearest neighbor assigns a weight ωni with 

1

1
n

ni
i=

ω =∑ .[23]

Let nn
nCω  denotes the weighted nearest classifier 

with weights } 1{ n
ni i=ω . With regard to regularity 

conditions on class distributions, the excess 

risk has the following asymptotic expansions 
( ) ( )nn 2 2

1 2( ){1 (1)},Bayes
n n nC C s t oω − = β +β +     

for constants β1 and β2, where 2 2
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=
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=
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The optimal weighting scheme }*

1
{

n

ni i=
ω , which moderates the 

two terms in the aforementioned above, is given as follows: 

set 
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for i = 1,2,…,k* and * 0niω =  for i = k* + 1ˎ…ˎn.[19]

Results
According to Table 6, in two‑class classification, the LR 
represents optimal accuracy, sensitivity, and specificity 
considering the standard deviation (SD) value and is more 
reliable caparisoning the other classifiers to diagnose MI. 
The comprehensive analysis of two‑class classification 
reveals that the LR with 90.37% of precision has a 
better performance in comparison with the others. In the 
four‑class classification, we should estimate sensitivity 
and specificity for each class individually. Therefore, in 
Table 7, we only report accuracy and related SD values 
for the models. The true‑positive rate (TPR) (sensitivity), 
the false‑negative rate (FNR), the positive predictive 
value (PPV), and the false predictive rate (FPR) for each 
classifier are determined in Figures 3‑6.

Discussion
There are representative performance schematics of 
all classifiers and their confusion matrices, as shown 
in Figures 3‑6. Let us define each class to analyze the 
two‑class and four‑class classifications.
• Two‑class classification
 Class 1: healthy records, Class 2: MI records.
• Four‑class classification
 Class 1: healthy records, Class 2: anterior MI records, 

Class 3: inferior MI records, and Class 4: posterior MI 
records.

For example, in Figure 3a, the left‑sided image represents 
the number of observations for the LR classifier. 
Moreover, the middle schematic indicates PPV and FPR. 
Furthermore, the right‑sided schematic shows the TPR and 
FNR for each class in the two‑class classification using 
10‑fold cross‑validation. According to the aforementioned 
right‑sided image, TPR for the first class is 81%, declaring 
that 81% of normal records correctly classified as healthy 
ECG, and FNR for the first class is 19%, demonstrating that 
19% of healthy ECG records misclassified and predicted as 
MI records. Accordingly, the same comprehension analytic 
procedure can be applied for the four‑class classification in 
Figures 4‑6 for different classifiers.

According to Tables and Figures, the performance of 
L‑SVM with 73.44% of accuracy is considerable in 
four‑class classification. Note that all classifiers failed 
to predict the fourth class successfully just because of 
minimal sample volume.

As our main objective is to show how valuable is the 
strength of extracted features in the successful diagnosis 
of the MI, it is more satisfying to choose a different 
combination of signal features as an efficient method 
to observe how the accuracy of each classifier changes. 
According to the feature matrix, it consists of seven 
key features, namely F1, F2, F3, F4, F5, F6, and F7. 
In the proposed method, three signal features remain 
as default. Since F1, F2, and F3 extracted from lead II, 
we consider them as homogenous features and should 
always persist.

Table 6: 5‑fold and 10‑fold cross‑validation for two‑class classification using different classifiers
Method Classifier Mean accuracy SD Sensitivity Specificity FPR NPV PPV
5‑fold cross validation 
for two‑class 
classification

Logistic regression 90.344 0.00793 94.872 86.441 13.55 86.44 94.87
Linear SVM 88.809 0.00980 95.59 78.407 21.59 87.05 92.13
Weighted KNN 85.772 0.01041 94.231 69.492 30.50 82 89.09
Simple tree 82.772 0.02041 98.718 83.051 16.94 96.07 93.90

10‑fold cross 
validation for two‑class 
classification

Logistic regression 90.372 0.00618 94.872 86.441 13.559 86.441 94.872
Linear SVM 89.06 0.00769 95.622 78.407 21.593 87.142 92.133
Weighted KNN 86.181 0.00823 94.231 69.492 30.508 82 89.091
Simple tree 83.823 0.01455 98.718 83.051 16.949 96.078 93.902

SD – Standard deviation; PPV – Positive predictive value; NPV – Negative predictive value; FPR – False predictive rate; SVM – Support 
vector machine; KNN – K‑nearest neighbor
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Table 7: 5‑fold and 10‑fold cross‑validation for four‑class 
classification using different classifiers

Method Classifier Mean accuracy SD
5‑fold cross validation 
for four‑class 
classification

Simple tree 63.96 0.0243
Linear SVM 73.09 0.0115
Weighted KNN 68.07 0.0172

10‑fold cross 
validation for 
four‑class classification

Simple tree 63.93 0.0210
Linear SVM 73.44 0.0072
Weighted KNN 68.32 0.0116

SD – Standard deviation; SVM – Support vector machine; 
KNN – K‑nearest neighbor

Based on Table 8, the precision of all classifiers with 
the set of {F1, F2, F3, F5, F6, F7} is more reliable in 
comparison with other sets of selected features in two‑class 
classification. Furthermore, the F4, which is the set of 
J‑point elevation values of ECG signals of lead І in mv, 
decreases the accuracy of classifiers. On the other hand, 
it seems that ignoring F4 from all features leads to a 
significant increase in the precision of classifiers.

As noted in the Statistical Analysis section, in the two‑class 
analysis, the F4 feature did not differ significantly between 

Figure 3: Two‑class classification confusion matrices using 10‑fold cross‑validation for (a) logistic regression, (b) linear support vector machine, 
(c) weighted K‑nearest neighbor, and (d) simple tree classifiers

d

c

b

a
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healthy and MI samples. According to Tables 4 and 5, 
in four‑class analysis, the same F4 feature did not make 
a significant difference between healthy and three MI 
samples, which confirms the best results of all the classifiers 

in distinguishing between extracted features. Note that other 
extracted features ({F1, F2, F3, F5, F6, F7}), following 
statistical analysis, and the results of the accuracy of all 
the classifiers presented in this article, have a significant 

Table 8: 10‑fold cross‑validation for two‑class and four‑class classification with different classifiers and also various 
combinations of selected features

Method 10‑fold cross‑validation
Four‑class 
classification

Feature 
selection

F1             
F2             
F3             
F4     ‑ ‑   ‑  ‑ ‑ 
F5    ‑  ‑ ‑  ‑ ‑   ‑
F6   ‑    ‑ ‑ ‑ ‑  ‑ 
F7  ‑      ‑  ‑ ‑  ‑

Classifier 
accuracy

Simple tree (%) 64.7 64.7 63.7 64.7 64.7 64.7 63.7 63.7 63.7 63.7 64.7 63.7 64.7
Linear SVM (%) 73.0 72.6 59.1 70.2 74.0 70.7 64.2 60.5 61.4 63.7 73.5 61.9 70.7
Weighted KNN (%) 67.9 66.0 54.9 69.8 69.8 70.7 58.1 53.0 57.2 58.1 69.8 59.5 68.8

Two‑class 
classification

Feature 
selection

F1             
F2             
F3             
F4     ‑ ‑   ‑  ‑ ‑ 
F5    ‑  ‑ ‑  ‑ ‑   ‑
F6   ‑    ‑ ‑ ‑ ‑  ‑ 
F7  ‑      ‑  ‑ ‑  ‑

Classifier 
accuracy

Simple tree (%) 83.7 83.7 82.8 83.7 83.7 83.7 82.8 82.8 82.8 82.8 83.7 84.7 83.7
Linear SVM (%) 89.8 89.8 84.7 89.3 89.8 89.3 81.9 84.2 82.3 81.9 89.3 80.9 88.8
Weighted KNN (%) 87.9 87.0 86.0 87.0 88.8 88.8 84.2 87.0 83.7 84.7 86.5 85.1 87.4
Logistic regression (%) 90.7 90.2 84.2 89.3 91.2 89.3 83.3 85.1 81.9 82.3 91.2 82.8 90.2

SD – Standard deviation; SVM – Support vector machine; KNN – K‑nearest neighbor

Figure 4: Four‑class classification confusion matrices using 10‑fold 
cross‑validation for linear support vector machine classifier

Figure 5: Four‑class classification confusion matrices using 10‑fold 
cross‑validation for weighted K‑nearest neighbor classifier
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difference, both in two‑class labeling and in four‑class 
labeling.

In MI diagnosis studies, various approaches applied 
including using wavelet, applying a similarity factor 
between normal, MI record‑keeping, employing eigenvalue, 
and the energy of ECG signal as extracted features. 
Since our method applied mentioned classifiers, a similar 
approach should be compared to our work to achieve a 
reasonable assessment. Accordingly, Table 9 presents a 
comparison of our results to other research works. In the 
proposed method, it is clear that in 10‑fold cross‑validation 
with the LR classifier, the accuracy, sensitivity, and 
specificity achieved an acceptable result in comparison 
with the others. According to Tables 6‑9, we executed 
100 iterations for 5‑fold and 10‑fold cross‑validation and 
calculating the statistical average and SD on the two‑class 
and four‑class classification to show that the proposed 
method along with the “Statistical Analysis” section has 

Table 9: The comparative analysis of the proposed method with other methods for two‑class classification
Two‑class classification of MI

Methods Extracted features Classifier Accuracy (%) Sensitivity (%) Specificity (%)
Proposed method Integral of ECG and J‑point value Weighted KNN 87.9 94 73

Linear SVM 89.8 95 76
Logistic regression 90.37 94 83

L. N. Sharma et al.[16] Multiscale wavelet energies and eigenvalues 
of multiscale covariance matrices

KNN 82.28 81.98 82.32
Linear SVM 88.02 87.23 88.53

S. Selva Nidhyananthan 
et al.[15]

Multiscale wavelet energies and eigenvalues 
of multiscale covariance matrices

Linear SVM 90.42 89 87

Naser Safdarian et al.[14] Integral of ECG and T‑wave KNN 89.47 NA NA
SVM – Support vector machine; KNN – K‑nearest neighbor; MI – Myocardial infarction

acceptable and reliable results and the compatibility of both 
results is not accidental.

Conclusion
In this study, we examined different extracted features from ECG 
data in a classification‑based feature selection method, and the results 
show that they are more efficient in the two‑class classification 
in comparison with the four‑class. The ECG J‑point belonging to 
all leads is a valuable feature, but in case of better accuracy, it is 
recommended to extract it by precise automatic algorithms. In 
addition, the results show that eliminating the F4 feature, which 
consists of the values of J‑point in lead I, approximately increases 
the precision of all classifiers in the proposed combination of 
features space. It is essential to point out the more accurate extraction 
algorithms, the better classification, and results. Finally, the proposed 
features are valuable for the diagnosis and localization of MI and 
are recommended for future works.

Suggestions and future studies

There are several suggestions for future studies. To improve 
the performance of classifiers, the accuracy of the feature 
extraction technique should increase. As a whole, these are 
our suggestions for future research:
1. A robust and precise algorithm to detect all parts of 

ECG correctly
2. Detect pathologic Q wave and extract it as a feature
3. Using other classifiers and especially the nonlinear 

classifiers.
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