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Chemical contamination of natural and agricultural habitats is an increasing global

problem and a major threat to sustainability and human health. Organophosphorus

(OP) compounds are one major class of contaminant and can undergo microbial

degradation, however, no studies have applied system-wide ecogenomic tools to

investigate OP degradation or use metagenomics to understand the underlying

mechanisms of biodegradation in situ and predict degradation potential. Thus, there is

a lack of knowledge regarding the functional genes and genomic potential underpinning

degradation and community responses to contamination. Here we address this

knowledge gap by performing shotgun sequencing of community DNA from agricultural

soils with a history of pesticide usage and profiling shifts in functional genes and

microbial taxa abundance. Our results showed two distinct groups of soils defined by

differing functional and taxonomic profiles. Degradation assays suggested that these

groups corresponded to the organophosphorus degradation potential of soils, with

the fastest degrading community being defined by increases in transport and nutrient

cycling pathways and enzymes potentially involved in phosphorus metabolism. This was

against a backdrop of taxonomic community shifts potentially related to contamination

adaptation and reflecting the legacy of exposure. Overall our results highlight the value

of using holistic system-wide metagenomic approaches as a tool to predict microbial

degradation in the context of the ecology of contaminated habitats.

Keywords: metagenomics, bioremediation, pesticides, soil microbiology, biodegradation, environmental

INTRODUCTION

Environmental contamination by toxic compounds has emerged as amajor threat to environmental
and human health globally (Singh and Naidu, 2012). With chemical production increasing
dramatically each year (Vitousek et al., 1997), much of which is toxic, this threat is likely to worsen
unless action is taken to remediate the several million contaminated sites occurring globally, less
than 1% of which are currently remediated. Indeed, large-scale chemical contamination has been
identified as a “planetary boundary” alongside climate change, ocean acidification, eutrophication,
species loss and shifts in nutrient cycling (Rockström et al., 2009).
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Efforts to address this problem, and remediate contaminated
sites using the metabolic activities of microbes and plants
to degrade contaminants in situ (Bioremediation), have been
hampered by the lack of a holistic system-wide understanding
of the complex interactions between degrading organisms and
genes, the wider metabolic network of the microbial community,
and the environmental variability in each specific habitat (de
Lorenzo, 2008). Microbial biodegradation is a complex process,
which interacts with nutrient cycling and stress response
metabolisms and is dependent on the microbial diversity
within each habitat (de Lorenzo, 2008). Thus, there is a need
to understand the relationship between microbial community
composition and degradation potential and to elucidate which
chemical variables and microbial diversity metrics can predict
chemical degradation.

As microbes are the primary pollutant degraders in
contaminated habitats, understanding microbial processes
in individual sites is essential for predicting the best strategy
for bioremediation. Degradation may occur via three strategies:
natural attenuation, where the community has the metabolic
ability to degrade contaminants in situ without intervention;
biostimulation, where the capability for biodegradation is present
but the relevant organisms are at a low abundance or activity
and stimulation via amendments such as nutrients or oxygen
are required; and Bioaugmentation, where specific cultured
microorganisms with the ability to degrade compounds need to
be added to the system to ensure degradation (Boopathy, 2000).
Currently there is no tool available to aid practitioners in making
the decision of which is the optimal strategy for remediation,
thus the development of a predictive approach informed by
an understanding of microbial composition and metabolic
potential is a key goal of bioremediation. Only recently have the
ecogenomic tools emerged to allow for this information to be
profiled directly in the environment via next-generation DNA
sequencing supported by tools such as network analysis which
allow the interactions between microbial taxonomy, function
and environmental variables to be visualized at the metabolic
level (Fuhrman and Steele, 2008; Hugenholtz and Tyson, 2008;
Fuhrman, 2009).

Organophosphorus pesticides (OP) are among the most
widely used classes of chemicals in the agriculture and chemical
manufacturing industries (Singh and Walker, 2006; Whitacre,
2012). Globally 4.6 million tons of chemical pesticides are
annually sprayed into the environment (Zhang et al., 2011), 38%
of which are organophosphorus compounds (Singh and Walker,
2006). With the world’s population expected to grow from 6.8
billion today to 9.1 billion by 2050 with limited croplands
(Alexandratos and Bruinsma, 2012), further intensification of
the use of pesticide to increase crop production in order
to ensure food security is likely (Tilman et al., 2001; Zhang
et al., 2007, 2008). Despite there being negative effects of
pesticide use (described below), they are currently essential for
sustaining agriculture and are a critical factor in global food
security, particularly in developing countries (Carvalho, 2006).
The success of these compounds is a result of their high toxicity
for insects and target organisms however they also can poison
non-target organisms. OP pesticides have high mammalian

toxicity and are responsible for several million poisonings
and 300,000 deaths annually (Singh, 2009), which are often a
result of both accidental and intentional release of agricultural
pesticides. Organophosphorus compounds are also common
chemical weapon agents, of which∼200,000 tones remain stored
(Singh, 2009) and which potentially will require disposal and
decontamination under the Chemical Weapons Convention
1993, in addition to the vast amount of agricultural stockpiles and
contaminated storage vessels that require eventual remediation.

As they are prone to rapid degradation in some environments
(Singh and Walker, 2006), understanding the factors that
facilitate their short term effective use, but prevent long-
term contamination, is an essential element of sustaining
agriculture. Organophosphorus compounds are considered
highly biodegradable, and several phylogenetically distinct taxa
have been isolated that are capable of degrading them via
a series of enzymatic pathways mediated by phosphoesterase
enzymes (Singh, 2009); however, how this process takes place
in situ and in the context of the overall metabolic network of
environmental samples is unknown. Understanding how this
occurs in specific soils and predicting which sites are particularly
prone to microbial degradation can save millions of dollars for
both farmers and pesticide companies, and can ensure the correct
timeframe for use if applied in a sustainable fashion.

To address these knowledge gaps, and to integrate
ecogenomic tools and degradation studies in the field to
predict biodegradation efficiency and support the remediation
strategy decision making process, we have used metagenome
sequencing to profile the functional potential and taxonomic
community composition of soils with a history of OP pesticide
exposure. We hypothesized that a system-wide profile of
microbial metabolism can be linked to OP pesticide degradation
rates in soils despite differing exposure histories.

MATERIALS AND METHODS

Site Selection and Soil Sampling
Soil was collected from five sugarcane farms in Queensland
Australia. Three of the sites (sites 1, 2, and 4) were from the
Burdekin region, Site 3 was from the Mackay region and Site 5
was from the Tully region (Supplementary Table 3, Rayu et al.,
2017). All sites have some history of agricultural pesticide usage
with the application of the organophosphate chlorpyrifos (CP).
Sites from Burdekin and Tully (1, 2, 4, 5) had been exposed to
CP annually; however, 13 years ago developed a loss of pest-
control efficacy in controlling target pests potentially due to
high field rates of degradation necessitating the shift to a non-
organophosphorus pesticide. TheMackay sampling site (3) is still
exposed occasionally to CP as an effective tool to control pests. At
each site sampling was undertaken within two plots: one several
rows within the crops that had been exposed to pesticide directly
(termed R in our analysis) and one that was located several meters
from the crop and that had received indirect contamination from
runoff and wind (termed H in our analysis). These two plots
were chosen to encompass a gradient of pesticide input to better
capture the variety of states in which pesticide persists in the
environment. Triplicate samples were collected at each subplot
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(H or R) and each of these replicates consisted of three pooled
random cores. Fresh soil was sieved through 2mm to separate
vegetation and coarse particles from the sample at stored at
either −20◦C for DNA extraction or 4◦C for degradation assays.
Soils directly from the field were used for shotgun sequencing as
described below.

Soil DNA Extraction and Shotgun
Sequencing
DNA was extracted from 10 g homogenized soil using bead
beating and chemical lysis (PowerMax R© soil DNA Isolation Kit
Mobio, USA) following the manufacturer’s protocol. Genomic
DNA concentration was quantified using a Qubit 2.0 fluorometer
(Invitrogen). A shotgun metagenomic library was generated
and sequenced using Illumina R© HiSeqTM at the Hawkesbury
Institute for Environment NGS research center utilizing TruSeq
library preparation.

Metagenome Processing, Annotation, and
Statistical Analysis
Reads were adapter filtered and quality trimmed to remove
regions with a quality score of <Q25 using SeqPrep
(https://github.com/jstjohn/SeqPrep). Following QC we used
564,033,668 forward reads for analysis with an average read
length 0 f 150 bp. This totaled ∼84 GBp of data, with an average
of 3.5 GBp per sample. These unassembled reads were annotated
using the FOCUS pipeline (Silva et al., 2014) to determine
taxonomy and the SUPER-FOCUS pipeline (Silva et al., 2016)
to determine metabolic potential in both cases using the SEED
database as a reference (Overbeek et al., 2014). Both of these
tools utilize K-mer frequencies and non-negative least squares
to optimize database query efficiency. SUPER-FOCUS utilized
the RAPSearch2 algorithm (Zhao et al., 2012) for database
comparison with outputs being normalized by sequencing
effort. Taxonomic and metabolic profiles consisting of relative
abundances at each hierarchical level of the SEED database
were imported into the PRIMER software package (Clarke,
1993; Clarke and Gorley, 2006) and square root transformed.
The Bray-Curtis similarity between profiles was ordinated
using non-metric MultiDimensional Scaling (MDS) with the
significance of groupings assessed using ANOSIM with 999
random permutations (visualized in Figures 1A, 2A). Additional
statistical analysis and visualization was conducted using the
STatitstical Aanalysis of Metagenomes (STAMP) package (Parks
et al., 2014) using the heatmap function with UMPGA clustering
to produce dendrograms. In these plots (Figures 1B, 2B) the
relative color specifies the abundance of individual categories
with the dendrogram displaying the beta-diversity patterns
between samples based on these variables. The significance
of abundance differences between clusters was determined
using Welch’s t-test, which is optimized version of the Student’s
t-test for samples with unequal variance, with the output of
these tests visualized as extended error bar plots (CI = Welch’s
inverted 95%) or box-plots within STAMP which display the
t-test result and variance of the data (Figures 3B,C, 4A). In
the extended error bar plots the relative abundance of each

category is specified for both sample groupings as bars, with the
difference in proportions with 95% confidence interval error
bars, are displayed for each category on the right of the plot
(Figures 1C, 2C). Additionally specific pathways potentially
relating to phosphorus metabolism and membrane transport
were directly visualized as bar charts (Figures 3D, 4B) with the
relative abundance of pathways and standard deviation values
being extracted from the STAMP output statistics table.

To explore the system-wide interactions between variables we
applied network analysis. Interactions were determined using
the Maximal Information-based Non-paramteric Exploration
(MINE) algorithm (Reshef et al., 2011). MINE calculates the
strength of the relationship between each individual variable
(MIC score) in addition to descriptors of the relationship such as
linearity and regression. Only variables with values for >50% of
samples were included and the dataset was filtered to include only
significant (p< 0.05) correlations. All samples in the dataset were
included in the analysis. Results were visualized with Cytoscape
V3 (Shannon et al., 2003) with variable interactions displayed in
Figure 5.

Alpha-Diversity
The alpha-diversity (Shannon Index) of metagenomic profiles
was calculated on biom formatted output tables from
FOCUS/SUPERFOCUS using the QIIME software package
(Caporaso et al., 2010).

Microbial Abundance
Overall bacterial abundance was determined by amplifying 16S
rRNA gene on a rotor-type thermocycler (Corbett Research;
Splex) using primer pair Eub338F (5’ACTCCTACGGGAGGC
AGCAG 3’) and Eub518R (5’ATTACCGCGGCTGCTGG 3’)
(Fierer et al., 2005). This primer set targets and amplifies the
16S rRNA gene present in all the soil bacterial groups. Reactions
were performed in 20 µl volumes usingTM SYBR R© No-ROX
Kit (Bioline Reagents Ltd.) as described with changes in PCR
conditions. After initial denaturation at 95◦C for 3min, PCR
conditions were as follows: 40 cycles of 10 s at 95◦C, 20 s at 53◦C
and 20 s at 72◦C. An additional 15 s reading step at 83◦C was
added at the end of each cycle.

Organophosphorus Degradation Assays
To determine the organophosphorus pesticide degradation
potential of soils, a commercial formulation of chlorpyrifos 500
EC (500 g/L, Nufarm) was applied to 250 g of soil from all
sites in plastic jars and mixed to a final concentration of 10
mg/kg (Rayu et al., 2017). The water holding capacity of the soil
was adjusted to 40% and was maintained by regular addition
of Milli Q water. Each treatment was performed in triplicate.
The screw cap plastic jars containing the treated soil were
incubated and maintained under aerobic conditions, in the dark
at room temperature. All the soil-pesticide combinations were
sampled periodically up to 105 days to determine the microbial
properties and degradation of pesticides. After 45 days, or when
more than 75% of the initial concentration of the pesticides
disappeared, another spike of CP was applied to the soil at final
concentration of 10 mg/kg. The soils were retreated with the
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FIGURE 1 | Functional metagenome profiles: (A) non-Metric Multidimensional Scaling (MDS) plot of metagenome functional profile similarity (Bray-Curtis), (B)

Heatmap of functional pathway abundance with samples grouped by similarity (UMPGA clustering) and pathways ranked by mean abundance, (C) extended error bar

plot of pathways differentially abundant between sample clusters (>0.05% difference in abundance, p < 0.05, Welch’s t-test). Color of circles and dendrogram bar

denotes sample grouping (Red, slow degrading; Black, rapid degrading).

third application of pesticide (10 mg/kg) 50 days after the second
treatment, when maximum degradation of pesticide took place.
These second and third additions of CP were added to assess
if the soil microbial community was still able to degrade the
compound following repeated exposures and if the degradation
rate would increase as a result of metabolic adaptation. Further
details of this degradation kinetics experiment are provided in
Rayu et al. (2017). In addition to this, soil samples (25 g) treated
with antibacterial and antifungal agents, chloramphenicol and
cycloheximide (1ml each; 5 mg/ml in water), respectively (Singh
et al., 2003) were also maintained as controls.

Following incubation, chlorpyrifos and it’s metabolites were
extracted from soil (2.5 g) by mixing with acetonitrile:water
(90:10, 5ml) in McCartney glass vials. The vials were vortexed
and pesticide extraction was conducted by shaking themix for 1 h
on a shaker (130 rpm). The samples were centrifuged for 5min
at 15,000 rpm and the supernatant was filter sterilized through
a 0.22µm nylon syringe filter for High Performance Liquid
Chromatography (HPLC) analysis using an Agilent 1,260 Infinity
HPLC system. CP and IC were separated on Agilent Poroshell
120 column (4.6 × 50mm, 2.7µm) with Agilent ZORBAX
Eclipse Plus-C18 guard column (4.6 × 12.5mm, 5µm) (Singh
et al., 2003). The injection volume was 10µl and themobile phase

was acetonitrile:water (75:25), acidified with 1% phosphoric acid.
The analytes were eluted at 40◦C with isocratic mobile phase
flow rate of 0.8 ml/min for 4.5min. The pesticides were detected
spectrophotometrically at 230 nm. Pesticide degradation was
ascribed by the first-order function (Ct = Co × e-kt). The half-
lives of the pesticides were obtained by function t1/2 = ln2/k.
Each value is a mean of three technical replicates (n = 3). The
half-lives were displayed as bar plots (Figure 3A).

RESULTS

Overall we profiled the metagenomes of two sub-plots from five
sugarcane farms with differing histories of pesticide application.
To determine the influence of the different legacy of pesticide
exposure on contemporary microbial composition and to predict
degradation potential, we profiled the metagenomic potential of
the soils from these sites.

Functional Analysis of Metagenomic
Profiles
Ordination of functional profiles based on the relative abundance
of metabolic pathways (SEED level 2, Figure 1A) demonstrated
that samples formed two distinct clusters; one consisting of soils
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FIGURE 2 | Taxonomic metagenome profiles: (A) non-Metric Multidimensional Scaling (MDS) plot of taxonomic profile similarity (Bray-Curtis), (B) Heatmap of genera

abundance with samples grouped by similarity (UMPGA clustering) and taxa ranked by mean abundance, (C) extended error bar plot of genera differentially abundant

between sample clusters (>1% difference in abundance, p < 0.05, Welch’s t-test). Color of circles and dendrogram bar denotes sample grouping (Red, slow

degrading; Black, rapid degrading).

from the two Mackay fields (3H and 3R) and a field from Tully
(5H), and a second cluster consisting of the remaining samples.
As the cluster containing soils from 3H, and 3R was largely
composed of soils with historically effective control of pests in
the field (with the exception of 5H), this cluster was termed
“slow degradation” with the other cluster (sites 1H, 1R, 2H,
2R, 4H, 4R, 5R) termed “rapid degradation,” which has had no
exposure to OP pesticides for several decades due to a loss of
pest-control efficiency. These clusters were strongly supported
by ANoSIM analysis (Global R = 0.94, Sig. = 0.1%) indicating
that the grouping was highly significant. With the exception of
the samples fromMackay (Site 3), no evidence of a geographic or
spatial pattern in ordination was evident.

This clustering was consistent with the sample grouping
dendrogram of high level metabolic pathway abundance (SEED
level 1, Figure 1B), which showed that all samples were
dominated by core housekeeping genes such as amino acid
and carbohydrate metabolism. Resistance to antibiotics and
toxic compounds was also abundant and showed differences

in magnitude between samples and clusters, as did many
less abundant metabolisms (Figure 1B). To further identify
which metabolic pathways were differentially abundant between
sample clusters we conducted Welsh’s t-test to compare the
mean abundance of metabolic pathways (Figure 1C). The slow
degradation cluster had significantly higher abundances of
virulence genes as well as housekeeping pathways such as
carbohydrate and fatty acid metabolism and respiration. The
rapid degradation cluster had more abundant genes belonging
to phage and transposable elements as well pathways for
membrane transport, stress response, motility and chemotaxis
and key nutrient cycles such as phosphorus, nitrogen and iron
metabolism.

At level 2 of the SEED database hierarchy, 116 out of 194
metabolic pathways were significantly (p< 0.05) overrepresented
in one of the two clusters (Supplementary Table 1). This equates
to 60% of the metabolic pathways indicating a wholesale shift
in microbial metabolic potential between these two groups of
soils. To investigate how these contributed to the dissimilarity
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FIGURE 3 | Chlorpyrifos (CP) degradation potential. (A) Mean half-life of CP after the third application of pesticide to each soil in samples forming clusters in

metagenomic ordinations, boxplots of metabolic function abundance for (B) phosphorus metabolism, (C) phosphate metabolism (p < 0.05), and (D) relative

abundance of phosphodiesterase enzymes in clusters (t-test of differences in abundance p < 0.05). Error bars = SD and red represents slow degrading cluster, black

represents rapid degrading cluster. Phosphodiesterase 1a and 1b, diguanylate_cyclase/phosphodiesterase_(GGDEF_&_EAL_domains_with_PAS/PAC_sensor(s); 2,

Glycerophosphotyl_diester_phosphodiesterase_[EC_3.1.4.46); 3, 2’,3’-cyclic-nucleotide_2’_phosphodiesterase_[ec_3.14.16]; 4,

Alkaline_phosphodiesterase_1_[EC_3.1.4.1__Nucleotide_pyrophosphatase_(ec_3.6.1.9).

FIGURE 4 | (A) boxplot of metabolic function abundance for membrane transport and (B) abundance of phosphorus transport pathways (>0.01% abundance, t-test

of differences in abundance p < 0.05). Error bars = SD and red represents slow degrading cluster, black represents rapid degrading cluster.

between clusters (Figure 1A) we conducted SIMPER analysis
(Clarke, 1993). For metabolic pathways, the top 10 drivers
were responsible for 35% of the overall dissimilarity between
samples (Table 1). Similarly to the t-tests conducted at higher

level metabolic groupings (SEED Level 1), these pathways came
from a variety of core and adaptive metabolisms with the slow
degradation cluster being defined by an increase in genes for
sugar acquisition, carbon fixation and resistance to antibiotics
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FIGURE 5 | Network analysis of variable interactions with top drivers of taxonomic and functional dissimilarity. All edges are statistically significant (p < 0.05) based on

Maximal Information Coefficient (MIC) score. Pink nodes, metabolic category; dark pink nodes, metabolic categories found to be top drivers of clustering (t-test); gray

nodes, taxa (genus); green circles, genera found to be top drivers of clustering (t-test). Black edges, positive interactions; blue, negative interactions.

and toxic compounds. The rapid degradation cluster had an
increase in genes involved in transport and phage.

Taxonomic Analysis of Metagenomic
Profiles
The sample grouping observed for functional profiles (Figure 1)
was also strongly reflected in the taxonomic profile of soil
metagenomes (Figure 2A) that showed an even stronger sample
partitioning (ANOSIM Global R = 9.97, Sig. = 0.1%) indicating
that taxonomic and metabolic profiles were tightly coupled in
these soils. As for metabolism, this clustering was consistent with
the sample grouping dendrogram of taxa abundance (Figure 2B),
which showed that samples were dominated by Koribacter,
Hyphomicrobium, and Burkholderia, particularly those samples
in the rapid degradation group, with Solibacter showing a high
abundance in soils from the slow degradation group. Overall,
bacterial genera were variable in abundance between samples
and clusters (Figure 2B). To further identify which taxa were
differentially abundant between sample clusters we conducted
Welsh’s t-test to compare the mean abundance of genera
(Figure 2C). Overall, 86 out of 194 genera were significantly (p<

0.05) overrepresented in one of the two clusters (Supplementary
Table 2). This equates to 43% of these taxa indicating a strong
shift in community composition between two these groups of
soils. Of the taxa that differed most in abundance between
the clusters (Figure 2C), abundant bacteria such as Solibacter,
Singulisphaera, and Desulfomonile were higher in the slow
degrading cluster. In the rapid degradation cluster the abundant
Koribacter and Acidomicrobium as well as Bradyrhizobium and
Burkholderia most differed in abundance compared to the slow
degrading cluster. With the exception of Singulisphaera and
Bradyrhizobium, these taxa were among the top drivers of
the clustering between samples (Figure 2A) as identified using

SIMPER analysis, the top 10 genera of which were responsible
for 22% of the overall dissimilarity between groups (Table 1).

Organophosphorus Degradation Potential
Given the varying legacy of pesticide exposure and community
dissimilarity between soils, we conducted microcosm
experiments to determine the contemporary microbial
degradation kinetics of a model organophosphorus pesticide,
chlorpyrifos, in each soil (Figure 3A). The half-life of
chlorpyrifos in soils ranged from 3 to 17 days with the mean
half-life of contemporary degradation being significantly higher
in the three soils which form the discrete “slow degradation
cluster” for both functional and metabolic profiles (3H, 3R, and
5H, Figures 1, 2). Surprisingly, sample 5H, which comes from
a site with a reported loss of pesticide efficacy, clustered with
3H and 3R which also showed a slow rate of degradation and
on which chloropyrifos is still applied. The soils that formed the
“rapid degradation cluster” of the ordinations showed a higher
contemporary rate of pesticide degradation.

To further investigate the genes involved in phosphorus
metabolism, we mined the metabolic profiles for functional
pathways and genes potentially involved in degradation.
Metabolic pathways for phosphorus metabolism (SEED
level 1) and phosphate metabolism (SEED Level 2) were
both significantly higher in samples forming the enhanced
degradation cluster, than the slow degradation cluster (p < 0.05,
Figures 3B,C). Rapid degradation soils also showed a higher
abundance of genes encoding phosphodiesterase enzymes (p <

0.05, Figure 3D) which cleave phosphodiester bonds present in
organophosphorus and play a major role in pesticide degradation
(Singh and Walker, 2006) among other functions. Additionally,
the potential for membrane transport generally (Figure 4A) and
phosphate transport specifically, for the majority of the most
abundant transport genes (Figure 4B) is higher in soils which
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TABLE 1 | SIMilarity PERcentage (SIMPER) analysis of the 10 most significant

drivers of clustering between soil clusters.

Abundance

group one

(%)

Abundance

group two

(%)

Contribution to

dissimilarity

(%)

FUNCTIONAL PATHWAY (SEED LEVEL 2)

Bacteriophage structural

proteins

0.18 1.56 17.57

Tricarboxylate transporter 0.06 0.15 3.07

Resistance to antibiotics

and toxic compounds

4.08 3.50 2.97

Di- and oligosaccharides 2.16 1.88 2.02

Protein and nucleoprotein

secretion system, Type IV

0.15 0.23 1.78

Electron donating reactions 2.66 2.43 1.52

Cytochrome biogenesis 0.52 0.41 1.51

Uni- Sym- and Antiporters 0.06 0.10 1.50

Phages, Prophages 0.12 0.17 1.46

CO2 fixation 0.77 0.66 1.39

GENUS

Candid atus_Solibacter 6.40 0.12 3.65

Frankia 3.69 0.01 3.06

Acidimicrobium 0.23 4.28 2.65

Desulfomonile 2.50 0.01 2.45

Planctomyces 1.90 0.00 2.24

Sphaerobacter 1.19 2.66 1.67

Renibacterium 2.56 0.36 1.67

Syntrophobacter 0.92 0.01 1.55

Moorella 1.19 0.03 1.52

Chelativorans 0.81 0.00 1.50

Features higher in the “slow degradation cluster” in red font, features higher in “rapid

degradation cluster” in black font.

form the rapid degradation cluster, indicating an overall shift
in this community to favor the transport and metabolism of
phosphorus compounds within their lifestyle.

Overall, metagenome alpha diversity showed a negative
relationship to degradation rates, with more diverse samples
having longer half-lives of chloropyrifos, and microbial
abundance, assayed using 16S rDNA concentration, showed
a positive relationship with degradation rates of samples
(Supplementary Figures 1, 2) supporting the view that microbial
community composition plays a major role in the dynamics of
chloropyrifos in these soils.

Network Analysis
To investigate the interactions and co-occurrence patterns
between metabolic and taxonomic variables we conducted a
network analysis (Figure 5, Supplementary Figures 2, 3). Overall
there was strong connectivity between functional categories
and taxonomic groups (Supplementary Figure 2). In particular,
variables that were the most elevated in the rapid degrading
cluster (Figures 1C, 2C) were strongly associated with each other,

and highly interconnected to diverse taxa and metabolisms,
showing highly similar co-occurrence patterns (Figure 5).

Overall, soils that were found to have higher degradation
rates of CP were found to have similar overall metabolic and
taxonomic metagenome profiles different from those soils that
retained CP longer. This was a result of abundance shifts in
diverse taxa and metabolic categories including those potentially
involved in organophosphorus degradation.

DISCUSSION

Whilst many studies have analyzed individual catabolic genes
involved in degradation of contaminants (de Lorenzo, 2008;
Ufarté et al., 2015) including pesticides (Li et al., 2008;
Singh, 2009; Imfeld and Vuilleumier, 2012), and have applied
metagenomics to assess the influence of contamination on
functional potential (Hemme et al., 2010; Mason et al., 2012;
Smith et al., 2013), this is the first study to use metagenomics
to demonstrate that system-wide responses in the context of the
degradation potential of the soils demonstrated experimentally.
This has provided key insights into the ability of differential
microbial profiles to predict the degradation potential of
organophosphorus compounds in different soils, within the
context of the wider metabolic potential of communities and
adaptation to local conditions and contaminants.

Functional Metabolic Potential
We observed that soils with a higher degradation potential
support a differing metabolic potential to those in which
organophosphorus is retained for longer. Overall differences
in the relative abundance of high-level metabolic categories
suggested that microbes in more rapidly degrading soils had
a higher functional capacity in terms of nutrient cycling, with
an increased abundance in pathways for nitrogen, phosphorus
and iron metabolism coupled to increased transport and
stress response genes. Overall this indicated a more adaptive
community better able to sustain nutrient cycling and microbial
activity, potentially enabling the increased degradation potential
of these soils. In particular, the increased ability tometabolize and
transport phosphorus and phosphate compounds could enhance
the catabolism of OP compounds in these soils and provide direct
nutritional benefits to soil microbiota. Hydrolytic cleavage of
phosphate ester bonds in OP compounds has been suggested as a
nutrient acquisition strategy in many environments (Chen et al.,
1990; Singh and Walker, 2006; White and Metcalf, 2007; Hirota
et al., 2010) and is supported here by an increased abundance
in phosphoesterase enzymes in soils with increased degrading
potential.

Phosphodiesterase enzymes are directly involved in some
organophosphorus degradation (Singh and Walker, 2006) and
have been isolated from diverse degrading organisms (Singh,
2009). Whilst they also play a role in other cellular processes
such as nucleic acid and cAMP metabolism, their increased
abundance here indicates increased potential for OPmetabolism.
Other enzymes potentially involved in OP degradation, such
as phosphotriesterase were not abundant presumably due to
their rarity in the environment generally, meaning they were
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potentially overlooked at this level of sequencing depth and
their relative scarcity in sequence databases. In addition to
genes directly involved in OP compound degradation, metabolic
pathways potentially involved in enhancing the ability of
microbes to access and transport OP compounds were found
to display abundance shifts. For example, an increase in genes
related to motility and chemotaxis may also play a role in the
increased degradation potential in rapid degradation soils as the
success of the microbial degradation of pollutants is often limited
by the inability of the bacteria to access contaminant molecules
(Fernández-Luqueño et al., 2011; Niti et al., 2013) which act
as chemoattractants in contaminated habitats (Samanta et al.,
2002; Parales, 2004; Kato et al., 2008; Ahemad and Khan, 2011).
Therefore, bacterial chemotaxis provides a distinct advantage to
the motile bacteria in finding their substrate and degrading them
at higher rates (Pandey and Jain, 2002).

Interestingly, the most overrepresented functional category
in rapid degradation soils was phage genes, including both
structural and lateral gene transfer related pathways. Whilst
little work has been conducted regarding the role of viruses in
contamination response and degradation, metagenomics studies
in other habitats have demonstrated that phage carry diverse
accessory genes enabling microbial communities to be more
metabolically variable and adaptive to environmental change
(Dinsdale et al., 2008). Additionally, phage genes have been
found in high abundances during hydrocarbon bioremediation
and have been implicated in controlling the microbial loop via
lysis (Rosenberg et al., 2010). Overall, network analysis revealed
that many of these functions found to be overrepresented in
the rapid degradation cluster were highly connected to other
diverse metabolisms and genera. This indicates that a shift in the
abundance of these variables may have far reaching metabolic
consequences throughout the community and vice versa that
shifts in microbial diversity will influence the ability of the
community to degrade contaminants.

The high abundance of core house-keeping genes in the
soils with slow degradation of OP is consistent with the
high abundance of these genes in the majority of habitats
(Dinsdale et al., 2008; Hewson et al., 2009; Smith et al.,
2012; Tout et al., 2014) and could indicate a less adaptive
community with less abundant specialized metabolic processes.
By contrast, a higher abundance of more adaptive genes
in group two soils is consistent with a higher genomic
flexibility and abundance of specialist metabolic accessory genes
documented in other stressed or contaminated environments
(Ford, 2000; Paul et al., 2005; Ahmed and Holmström,
2014).

Based on the microbial degradation results, when pesticide
was introduced into soils rapid degradation was observed in soils
corresponding to one metagenome cluster but not the other even
after repeated application. Such predictive knowledge is critical
to develop effective decision support for efficient bioremediation
and to predict the type of bioremediation strategy which would
be most efficient. For example, soils which form the “rapid
degradation” cluster could be self-remediated in situ (natural
attenuation) without intervention; however, those in the “slow
degradation” cluster, which had a metabolic profile less well

suited to degradation, may benefit form a bio-augmentation or
bio-stimulation approach to expedite site remediation.

Taxonomic Community Composition
Microbial community responses to pesticide contamination
have been studied previously (Baxter and Cummings, 2008;
Wang et al., 2008; Floch et al., 2011; Imfeld and Vuilleumier,
2012; Zabaloy et al., 2012) with potential patterns representing
microbial adaptation to contamination; however, few studies
have employed metagenomics for this purpose (Imfeld
and Vuilleumier, 2012). We found several key taxa to be
overrepresented in the group two soils able to degrade OP
more efficiently indicating a linkage between community
composition and pesticide degradation and tolerance. One of
the most abundant taxa that were overrepresented in cluster
two was the genera candidatus Koribacter that is a common
versatile heterotrophic soil bacterium first isolated in Australian
agricultural soils (Davis et al., 2005). Genomic studies suggest
that these can metabolize complex carbon substrates, have a
high ability for membrane transport and play a role in the
carbon, iron and nitrogen cycles (Ward et al., 2009). These
traits, coupled to the ability for desiccation, motility, biofilm
formation and the ability to survive under nutrient limitation
(Ward et al., 2009; Hartmann et al., 2015) indicate a potential
role in sustaining nutrient cycling in these contaminated soils
which potentially could support degradation by specialists.
The increase in Bradyrhizobium in rapid degradation cluster
soils provides a potential mechanism for the increased rate
of pesticide degradation as this lineage has been shown to
encode phosphodiesterate and phosphotriesterase enzymes
and to potentially play an important role in organophosporus
degradation (Abd-Alla, 1994). Burkholderia has similarly been
shown to contain organophosphorus degrading genes (Singh,
2009) and was higher in the rapid degrading cluster. Network
analysis indicated that many of the taxonomic groups which
were elevated in abundance in the rapid degradation cluster were
associated with genes such as nutrient cycling and phosphorus
metabolism indicating their key role in the community and
potential support for degradation. However, to confirm these
arguments, more key OP degrading taxa need to be isolated and
their genomic and biogeochemical attributes examined.

Implications for Pesticide Efficiency and
Agricultural Use
As well as being supported by the shifts in functional potential
and microbial community composition, the differences in
potential degradation rates reflected the legacy impact of
pesticide usage at these sites. The soils demonstrating increased
contemporary rates of in vitro CP degradation were soils
that historically had developed lower pest control efficiency
resulting in a switch to a different, non-OP, pesticide 15 years
ago. Surprisingly, samples from site 5H clustered with slower
degrading soils from the Mackay site (3) which have not
developed high rates of field degradation and on which the
OP chlorpyrifos is still applied. Although adjacent samples
from the same region at this site showed rapid degradation
historically, soils from the site 5H indeed showed slow rates
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of degradation in laboratory experiments, providing support
to the findings of clustering analysis using metagenomic
data.

Generally, our analyses suggest a legacy effect whereby
the rapid degradation of pesticide was maintained even after
its discontinued use 13 years ago, and the development of a
microbial community able to adapt to and degrade OP that
is still reflected in community function and contemporary
OP degradation in the lab. This highlights the long term
consequences of pesticide application on soil microbial
communities (Singh, 2009; Imfeld and Vuilleumier, 2012) and is
contrary to earlier literature suggesting that pesticide application
has only a transient effect on community composition (Gevao
et al., 2000; Kalam et al., 2004; Imfeld and Vuilleumier, 2012).
Such findings are relevant to farmers and the pesticide industry
and can aid decisions to select the most efficient pesticide for a
given site.

CONCLUSION

A System-Wide Approach to Investigating
Microbial Degradation
Bioremediation studies have traditionally focused on individual
organisms and degrading pathways in isolation; however,
the use of micro-organisms for bioremediation requires an
understanding of all physiological, microbiological, ecological,
biochemical and molecular aspects involved in pollutant
transformation (Iranzo et al., 2001; Singh and Walker, 2006; de
Lorenzo, 2008). Indeed there is a growing understanding that
complex microbial communities act as a multispecies metabolic
network of “pan enzymes” that collectively allow catabolic
breakdown of contaminants within the wider community
ecology of the site (de Lorenzo, 2008). By profiling microbial
metabolic potential, which includes both genes potentially

involved in OP degradation and key soil functions, in pesticide
exposed soils we have shown the value of using a system-
wide approach and demonstrated that metagenomic profiles
can potentially predict the breakdown of chemical compounds.
By using metagenome signatures as indicators of degradation
potential in exposed habitats and to aid decision support systems
for determining the optimum remediation strategy (attenuation,
stimulation, augmentation), we provide a conceptual framework
for bioremediation that when replicated in situ can begin to
fully harness emerging ecogenomic tools to improve remediation
efficancy.
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