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Olfactory loss affects more than 12% of the population, with prevalence increasing in aging individuals. Multiple condi-
tions can lead to a loss of smell (hyposmia or anosmia), including post-viral damage from coronavirus disease 2019 (COV-
ID-19) or influenza, head injuries, sinusitis, or neurodegenerative conditions such as Alzheimer or Parkinson disease. Al-
though treatments like surgery, anti-inflammatory medications, or olfactory training can be beneficial in certain cases, there
remains an unmet need for effective therapies addressing many common causes of olfactory dysfunction. This is particular
ly true for cases attributed to damage of olfactory neurons that fail to spontaneously recover. Regenerative medicine ap-
proaches, aimed at either stimulating the regrowth of sensory neural structures or replacing them through cell-based thera-
pies, have attracted considerable interest for treating various neurological disorders, including olfactory loss. Here, we sum-
marize the intrinsic regenerative capabilities of the peripheral olfactory system, focusing on current research strategies and
the existing barriers that must be overcome for successful translational applications. A major unmet need in this field in-
volves the establishment of reliable and widely accepted culture models for expanding and differentiating olfactory stem or
progenitor cells from rodents and humans, both for use in vitro assays and as potential material for cell-based therapies.
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INTRODUCTION

Broadly speaking, regenerative medicine approaches may exert
therapeutic effects by either delivering signals to endogenous
cells in damaged tissues to promote essential processes, such as
cell division or differentiation, which have become inhibited or
blocked; or delivering exogenous cells capable of engrafting ap-
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propriately into damaged tissues, functioning as stem or progen-
itor cells that can divide and differentiate as needed. In both sce-
narios, the organ system must be capable of correctly integrating
the newly regenerated cells. For example, newly produced olfac-
tory sensory neurons in the olfactory epithelium (OE) of the
nose must extend axons through the cribriform plate, enter the
central nervous system, and form synapses at appropriate glom-
eruli in the olfactory bulb of the brain. Because the OE continu-
ally generates new olfactory neurons from resident basal stem
cells throughout life, evidence suggests that local guidance cues
and a permissive microenvironment likely support effective tis-
sue repair [1,2].

The occurrence of adult neurogenesis, whereby olfactory neu-
rons are replaced as needed in the mammalian OE, has been rec-
ognized for decades (Fig. 1) [3]. Advances in experimental in vivo
mouse models have identified two categories of OE basal stem
cells and many mechanisms regulating their function. Globose
basal cells (GBCs) act as active stem cells; they express the c-KIT
receptor along with a cascade of neurogenic basic helix-loop-
helix transcription factors and divide as needed to replace neu-
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Fig. 1. Schematic representation of the adult olfactory epithelium.
The olfactory epithelium lines the superior-most regions of the nasal
cavity and consists of sustentacular cells (Sus; blue) at the apical
barrier surface, tuft-like and ionocyte-like microvillar cells (MV; purple),
mature olfactory sensory neurons (mOSNs; dark green), and more
basally positioned immature olfactory sensory neurons (iOSNs; light
green). Active stem cells and progenitors, termed globose basal cells
and immediate neural precursors (GBCs and INPs; yellow), and re-
serve stem cells, termed horizontal basal cells (HBCs; orange), are
located in the basal layers. The lamina propria underlying the epi-
thelium contains numerous cell types, including immune cells, Bow-
man'’s glands, and olfactory ensheathing glia. Olfactory sensory neu-
rons extend dendrites into the nasal airspace, where odor molecules
activate specific olfactory receptors on immotile neuronal cilia. Neu-
ronal axons collectively form the fibers of cranial nerve |, projecting
to the olfactory bulbs within the brain.

rons through the generation of NEUROD1* immediate neuronal
precursors [4-6]. Horizontal basal cells (HBCs), by contrast, re-
main mitotically quiescent until activated by severe disruptions
of the epithelial barrier, thus functioning as reserve stem cells
[7-9]. The transcription factor ANP63 serves as a master regulator,
controlling the quiescence versus activation of HBCs [8,10,11].
Similar to observations in other self-renewing tissues [12,13], the
characteristics of OE basal cells appear to differ between steady-
state conditions and periods of active tissue repair. Following se-
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= Decades of research have significantly advanced our under
standing of neurogenesis and stem cell capacities within the
adult mammalian olfactory epithelium.

= Limited success with olfactory stem cell culture models remains
a significant barrier to developing translational therapies for
clinical conditions associated with persistent peripheral olfac-
tory system damage.

= Research approaches leveraging recent technological advance-
ments in regenerative medicine are expected to address current
challenges, facilitating the development of novel treatments
for olfactory disorders.
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vere OE injury, evidence indicates the emergence of activated
cell states that rapidly re-establish the barrier epithelium and sub-
sequently facilitate ongoing reconstitution of sensory cell popu-
lations [14]. Notably, these stem and progenitor populations have
also been identified within aging human OE, suggesting that ther-
apeutic approaches aimed at targeting or replacing these cells
might be feasible [15].

OLFACTORY CELL CULTURE MODELS

Although in vivo rodent experiments have provided detailed in-
sights into olfactory stem cells, widely accepted culture systems
remain elusive. Initial olfactory cell culture models were reported
several decades ago [16-18]. Early success was achieved using
two-dimensional (2D) cultures derived from late embryonic ro-
dent OE explants [16]. This primary culture model reliably pro-
duced migratory ASCL1-positive neuroblast cells, a characteris-
tic marker of GBCs, which differentiated for 48 hours before de-
veloping into immature neurons. Due to its simplicity and re-
producibility, this model yielded numerous insights into GBC
regulation. Other studies reported that culturing embryonic tis-
sue in conjunction with olfactory bulb tissues promoted neuro-
nal maturation [18]. However, experiments using dissociated ep-
ithelium revealed that cells survived for only a few days, suggest-
ing that specific growth stimuli might be necessary to sustain
prolonged cell survival and proliferation. Additional assays char-
acterized the initial effects of signaling molecules such as epider
mal growth factor (EGF) and fibroblast growth factor 2 [19,20].
Complete maturation of partially dissociated neonatal rodent
epithelium, marked by olfactory marker protein-positive (OMP")
differentiation, was demonstrated using an astrocyte feeder layer,
whereas astrocyte-conditioned medium alone was insufficient to
achieve full differentiation [21,22]. Subsequent studies utilizing
embryonic primary culture models demonstrated that ASCL1-
positive GBCs and their immediate neuronal precursor progeny
respond to members of the bone morphogenetic protein family.
The molecules ActivinBB and growth differentiation factor 11
(GDF11), a ligand within the transforming growth factorbeta
(TGF-p) superfamily, were identified as critical negative-feed-
back signals acting at distinct progenitor cell stages. In the olfac-
tory sensory neuron differentiation pathway, GDF11 feedback
limits proliferation of immediate neuronal precursors, whereas
ActivinfB inhibits the expansion of earlier-stage GBCs [23].
Another approach involved attempts to generate immortal-
ized cell lines rather than rely exclusively on short-term primary
cultures. Although overall success was limited, one spontane-
ously immortalized rat basal cell-like line was reported [24,25],
along with another cell line created through oncogene activation
[26]. More recent efforts have focused on purifying rodent olfac-
tory basal cells from dissociated tissue to establish cultures de-
rived from more homogeneous, marker-defined precursor popu-
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lations [27,28]. In these studies, GBCs were isolated using dis-
tinct cell sorting techniques: one approach employed magnetic-
activated cell sorting (MACS) to enrich for adult mouse c-KIT-
positive (c-KIT") cells [2,28], while another utilized fluorescence-
activated cell sorting with the monoclonal antibody GBC-2 to
selectively isolate GBC populations [27]. Combining purified
GBCs with inhibitors of negative-feedback signals allowed the
expansion of neurogenic murine basal cells in a 2D culture model
across multiple passages [28]. Although this method successfully
supported production of olfactory neurons, full differentiation
into the OMP-positive state was not reliably achieved. This ad-
herent culture model, along with alternative floating or air-liquid
interface methods, permitted at least short-term expansion of
neurogenic basal cells, as verified by subsequent i vivo engraft-
ment assays [2,29,30].

HBCs, the normally quiescent reserve stem cells, closely re-
semble keratin-positive (KRT") and P63-positive (P63*) epitheli-
al stem cells found in other epithelia, such as skin or respiratory
epithelium. Using conventional 2D models or air-liquid interface
models adapted from established techniques for respiratory epi-
thelial culture, olfactory HBCs from rodent and human biopsy
samples have been successfully expanded in vitro. Purification
or enrichment of HBCs has been achieved based on selective
cell adhesion and continued growth under specific culture con-
ditions, or through MACS, which reduces contamination by
spindle-like cells [31,32]. Published protocols have employed
commercial airway basal media supplemented with suppressor
of mothers against decapentaplegic (SMAD) inhibitors, neural
supplements, and EGF or TGF-a [31,32]. However, robust dif-
ferentiation of HBCs into mature olfactory sensory neurons un-
der defined in vitro conditions remains unattained. The precise

conditions required to activate HBCs and direct them toward a
neurogenic differentiation program have yet to be fully elucidat-
ed. It is likely that intrinsic (epigenetic) and extrinsic (cell-cell
interactions, microenvironmental signals, signaling molecules)
cues—both positive and negative—are involved in regulating
this process.

ORGANOID MODELS

Across multiple organ systems, a significant advancement in stem
cell culture methods has been the development of organoid tech-
niques. Compared to conventional 2D cell cultures, 3D organoid
cultures offer a more physiologically relevant microenvironment,
better capturing the structural and functional complexity of na-
tive tissues. Organoids exhibit enhanced cell-cell and cell-matrix
interactions, potentially leading to more accurate cellular differ-
entiation, gene expression patterns, and tissue-specific function-
ality [33]. Initially developed for cultivating intestinal crypt stem
cells within a 3D matrix containing Wnt signaling agonists [34],
this approach has since been broadly applied to cultivate stem
cells from diverse tissues, including primary tumors and cancer
models [35]. A recent report described efforts to cultivate HBCs
in a 3D organoid model, which could facilitate advances in ma-
nipulating and differentiating this cell population [36]. Other
groups have published rodent olfactory culture assays utilizing
organoid techniques; however, it remains unclear whether these
cultures were initiated from purified basal cells [37-39]. In pre-
liminary studies, we adapted our purified adult mouse c-KIT*
GBC monolayer culture method to a 3D organoid approach
(Fig. 2). We found that GBCs purified from chemically lesioned

Fig. 2. Purified adult mouse globose basal cell three-dimensional culture model. Adult mouse globose basal cells were purified by immunose-
lection from dissociated olfactory epithelium using an antibody against c-KIT and subsequently cultured in Matrigel within organoid medium
for 1 week. Representative images depict cultures that were fixed and processed for immunofluorescence labeling of neuron-specific class Il
beta-tubulin (TUJ1; magenta) and keratin 5 (KRT5; green). Under three-dimensional culture conditions, de-differentiated keratin-positive (KRT*)
spheres emerged, accompanied by migratory neuron-like cells extending TUJ1-positive (TUJ1*) processes (arrows). Scale bar: 50 pm.



mice following methimazole injection [40] reliably produced
spheroids and process-bearing cellular outgrowths. Immunos-
taining suggests that these GBCs undergo de-differentiation into
KRT* spheres, with the outgrowth containing neuron-like cells
marked by neuron-specific class III beta-tubulin (TUJ1).

OTHER CULTURE MODELS

The term “mesenchymal stem cell (MSC)” refers to a stromal
cell population that is readily cultivated from most tissues [41].
Originally described as a bone marrow-derived stromal cell pop-
ulation, MSCs readily adhere to tissue-culture-treated plastic
surfaces and rapidly out-proliferate other cell populations in se-
rum-containing media due to their short cell-cycle durations.
MSCs lack classic hematopoietic lineage-specific markers and
are typically characterized by their capacity to differentiate into
cartilage, bone, or fat [42]. Although still debated, evidence sug-
gests that MSC cultures may originate from vascular pericytes
[43]. In the olfactory research field, confusion has arisen due to
the widespread usage of the term “olfactory stem cell” in refer-
ence to MSC-like cultures derived from nasal tissues. Careful
characterization has demonstrated that these cultures indeed
represent mesenchymal cells rather than genuine olfactory epi-
thelial basal stem cells [44], and they can be derived from non-
olfactory regions within the nasal cavity [45]. To date, there is
no evidence indicating that nasal MSCs belong to the olfactory
epithelial lineage. Although we have attempted to provide a
comprehensive overview of olfactory culture models, it is not
feasible to include all contributions to this extensive field. We
hope this brief review highlights key areas that merit further in-
vestigation.

FUTURE RESEARCH DIRECTIONS

Although recent advances have facilitated the establishment of
primary olfactory GBC or HBC cultures, their practical utility
remains limited by an inability to robustly passage cells or effi-
ciently trigger their differentiation. Additional efforts to charac-
terize and manipulate specific signaling pathways and differenti-
ation factors will be essential to overcome these challenges. In-
deed, potential cell-based therapies would require the ability to
precisely expand neurocompetent human olfactory progenitor
cells, such as GBCs or immediate neuronal precursors. The abili-
ty of engraftment-competent GBCs to contribute to functional
tissue repair has been demonstrated using a mouse genetic mod-
el of inducible hyposmia [2]. This suggests that a similar approach
could theoretically be feasible in certain clinical conditions if an
analogous cell source were available, such as an autologous re-
serve cell population capable of expansion in a GBC cell state.
In rodents, GBCs exhibit engraftment competence, whereas HBCs
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demonstrate limited engraftment ability [5]. The transcriptional
profile of engraftment-competent cell cultures has previously
been assessed [2].

An alternative approach to generate human GBCs in vitro
could involve the use of pluripotent stem cells, such as embry-
onic stem cells or induced pluripotent stem cells derived from
the reprogramming of somatic cells [46]. Given their broader
differentiation potential compared to adult tissue-specific stem
cells or MSCs, and the capability to direct pluripotent stem cells
toward specific germ-layer fates, embryonic stem cells or induced
pluripotent stem cells could theoretically produce cells of the ol-
factory neuronal lineage. Indeed, significant advancements have
been achieved in directing pluripotent stem cells to differentiate
into inner ear, retinal, and peripheral sensory structures [47-50].
However, efficient culture conditions for guiding pluripotent stem
cell differentiation specifically toward an olfactory epithelial lin-
eage have yet to be established. Nevertheless, the potential ca-
pability to generate olfactory cells autologously—similar to re-
ported advancements with other cranial sensory placode-de-
rived lineages—is an appealing aspect of cellular reprogramming
for developing cell-based therapies.

In summary, decades of research have yielded remarkable in-
sights into the regenerative capacities of adult OE. Advances in
3D cell culture techniques and cellular reprogramming for con-
trolling cell states and manipulating differentiation have proven
beneficial in numerous fields. Given the significant unmet clini-
cal need for effective olfactory disorder treatments, continued
efforts to apply regenerative medicine research advancements
remain a high priority.
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