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Pathway proteomics strategies measure protein expression changes
in specific cellular processes that carry out related functions. Using
targeted tandem mass tags-based sample multiplexing, hundreds of
proteins can be quantified across 10 or more samples simultaneously.
To facilitate these highly complex experiments, we introduce a strat-
egy that provides complete control over targeted sample multiplex-
ing experiments, termed Tomahto, and present its implementation
on the Orbitrap Tribrid mass spectrometer platform. Importantly, this
software monitors via the external desktop computer to the data
stream and inserts optimized MS2 and MS3 scans in real time based
on an application programming interface with the mass spectrome-
ter. Hundreds of proteins of interest from diverse biological samples
can be targeted and accurately quantified in a sensitive and high-
throughput fashion. It achieves sensitivity comparable to, if not bet-
ter than, deep fractionation and requires minimal total sample input
(∼10 μg). As a proof-of-principle experiment, we selected four path-
ways important in metabolism- and inflammation-related processes
(260 proteins/520 peptides) and measured their abundance across 90
samples (nine tissues from five old and five young mice) to explore
effects of aging. Tissue-specific aging is presented here and we high-
light the role of inflammation- and metabolism-related processes in
white adipose tissue. We validated our approach through compari-
son with a global proteome survey across the tissues, work that we
also provide as a general resource for the community.

targeted pathway proteomics | tissue-specific aging | isobaric labeling |
real-time instrument control | Tomahto

In proteomics, both targeted and untargeted approaches are
employed depending on the experiment’s goal (1). While the

untargeted approach is widely used in a discovery phase to
identify potential protein signatures that underlie cellular pro-
cesses (2), it often requires substantially more starting material,
extensive sample fractionation, and more instrument time rela-
tive to targeted approaches (3, 4). It also can suffer from lower
sampling reproducibility due to its stochastic nature. In contrast,
targeted approaches are favored if a preselected set of proteins
needs to be consistently measured across a large cohort of samples,
such as in clinical settings, or when sample amount is limited (5). To
further improve throughput and reduce quantitative variability,
two-dimensional (2D) multiplexing (i.e., multiplexing peptide tar-
gets and multiplexing samples) can be achieved via isobaric labeling
strategies, such as using tandem mass tags (TMT) (6). Although the
quantitative accuracy using isobaric tags can be distorted by
cofragmenting peptide species within the isolation window (7, 8), it
can be readily restored by using synchronous precursor selection
and MS3 scans (SPS-MS3) (9). Previously, our laboratory in-
troduced a 2D multiplexing method (triggered by offset, multi-
plexed, accurate-mass, high-resolution, and absolute quantification
—TOMAHAQ), which incorporates TMT and SPS-MS3 with
targeted proteomics. The method exploits the use of synthetic
trigger peptides, which completely obviates the need for peptide
detection prior to quantification. However, the method requires a
very cumbersome method structure, limiting its application (10, 11).

High-throughput and precise quantitation of protein pathways
is essential for systematic understanding the molecular basis for
complex physiological adaptation. This is perhaps best exempli-
fied in the case of chronic physiological changes that occur with
age. Tissue aging is characterized by a homeostatic decline in a
variety of physiological and psychological functions and is a
major risk factor in many diseases. There has been a continuous
effort to understand the underlying cellular and molecular causes, and
various hypotheses exist (12). Changes in the genome, epige-
nome, and transcriptome have all been observed and, as a result,
genome instability, gene methylation levels, and transcriptional
changes have all been implicated in aging (13–15). In addition,
metabolism remodeling, inflammatory response, and the homeo-
stasis of multiple organelles were frequently implicated (16, 17).
However, little work has been done to investigate proteome changes
(18, 19) and, surprisingly, only a minimal disturbance was reported in
the tissues studied (20). In addition to a lack of proteomic charac-
terization in aging organisms, current knowledge suggests different
tissues in an organism share common altered pathways due to aging
but also have their own unique responses which necessitate tissue-
specific investigation (21, 22). For example, Christensen et al. found
strikingly different gene methylation profiles in multiple human tissues
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(21) and Hudgins et al. reported highly variable expression of
senescence biomarkers in age- and tissue-specific manners (23).
In this paper we present an application programming interface

(API)-based algorithm, termed Tomahto, which enables real-
time instrument control and decision making. Tomahto pro-
vides an array of functionalities including MS1 peak detection,
MS2 real-time peak matching (RTPM), MS2 fragmentation
pattern match, SPS ion purity filter, MS3 automatic gain control,
MS3 quant scan insertion, and target peptide closeout. Re-
markably, the only required input from a user is a list of peptide
targets, greatly simplifying the experimental setup. We first
benchmarked the technology with three well-established human
cell lines by targeting 154 peptides corresponding to 77 kinases.
Next, to enable targeted protein profiling of age-related meta-
bolic and inflammatory changes, we created a large Tomahto
assay (520 peptides corresponding to 260 proteins). The assay can
be readily adopted by any TMT-based targeted analysis in murine
systems. We demonstrate that white adipose tissue (WAT) was by
far the most affected tissue by aging in terms of protein expression,
showing alterations in lipid metabolism, central carbon metabolism,
electron transport chain complexes, and inflammation. Finally, we
went on to collect proteome-wide measurements on these same
tissues validating the Tomahto findings and providing a resource for
understanding aging in mice.

Results
Overview of the Real-Time Monitoring Software, Tomahto. Tomahto
was written in C# in the .NET Framework (v4.6.2). As originally
reported, spiked-in trigger peptides are used as an alternative to
traditional retention time scheduling to ensure correct sampling
of target peptides (10). The trigger peptides are labeled with
TMT superheavy (TMTsh) reagent to create a mass offset rel-
ative to their standard TMT10-labeled endogenous counterparts.
In contrast to requiring priming runs with pure trigger peptides
and manually curating cumbersome methods (10), Tomahto
takes a list of peptides and autopopulates all of the information.
During a TOMAHAQ liquid chromatography–mass spectrome-
try (LC-MS) experiment, Tomahto monitors MS1 scans on the
fly and detects precursors that are potentially trigger peptides
(Fig. 1B and SI Appendix, Fig. S1). Upon detection, Tomahto
may insert as many as four new scans to the instrument. 1) A
custom MS2 scan is inserted and used to confirm the trigger
peptide’s sequence by RTPM. The presence of a trigger peptide
signals the concomitant coelution of all 10 target endogenous
peptides regardless of the detection of their precursor peaks
(Fig. 1 B and C). 2) Tomahto then triggers an MS2 scan at an
offset m/z value to verify that the target peptide is present and
detectable. This scan is measured in the Orbitrap at high reso-
lution. Peaks are matched within a tight mass accuracy tolerance,
and the fragmentation pattern must match the trigger peptide’s
pattern. Interference-free SPS precursor ions are selected from
this scan. 3) Once verified, a quick MS3 prescan (collected in the
ion trap) ensures accurate injection time scaling for the time-
consuming MS3 Orbitrap quantification scan (SI Appendix, Figs.
S1 and S3). 4) A highly optimized SPS-MS3 scan is inserted to
quantify the abundance of the peptide across the 10 samples with
selected SPS ions. This MS3 scan is remarkably sensitive since it
can accumulate ions for as long as 5 s, if needed, to improve TMT
reporter ion signal. This entire four-scan process can be repeated
such that many MS3 scans are inserted as the peak elutes until a
threshold is met, as can be specified by the close-out option (SI
Appendix, Fig. S1). Once the threshold is met (i.e., number of
quantified scans, total summed signal-to-noise ratio), the peptide is
excluded from triggering any further scan events.

Benchmarking the Tomahto-Based Assay in Common Human Cell
Lines. The Tomahto method was initially benchmarked and val-
idated using three human cell line proteomes and a set of

peptides to measure kinase levels across these lines (Fig. 2A). A
TMT10plex was created consisting of biological triplicates of
HCT116 and MCF7 and quadruplicates of HEK293T cells.
Synthetic peptides were readily available for 77 kinases (154
peptides; see Dataset S1) that could be used in a Tomahto assay
to quantify kinase levels across these three cell lines. The sen-
sitivity of Tomahto was exemplified by peptide FADIVSILDK
from EPHA1 (Fig. 2B). The trigger peptide was readily detected
and its sequence confirmed in real time by peak matching,
whereas the precursor of its endogenous counterpart was un-
detectable in MS1 scans. However, Tomahto allowed extensive
yet specific accumulation of signals (>800 ms) to confirm its
presence by an Orbitrap MS2 spectrum which resulted in a
subsequent successful quantification event. Seventy-one of the 77
targeted kinases were detected and quantified from a 2-h gra-
dient of the unfractionated mixture (2 h total) (Fig. 2C). The
average coefficient of variation for replicates from the three cell
lines was 3.7 ± 2.9% when signal-to-noise ratios from individual
scans were summed for respective targets.
To validate the method’s accuracy orthogonally, we also per-

formed a proteome-wide analysis of the same experiment. This
required basic pH peptide separation (24 fractions) and analysis
of 12 fractions via a standard data-dependent acquisition
(DDA)-SPS-MS3 method (3 × 12 h = 36 h). More than 8,000
proteins were quantified across all 10 samples including 283 ki-
nases, out of which 68 were also targets of Tomahto. Examining
the overlap with our targeted set resulted in 62 kinases quanti-
fied in both experiments (Fig. 2C). An excellent correlation was
found between the two approaches (Pearson R = 0.93; Fig. 2 D
and F) even though Tomahto dealt with a much more complex
mixture (∼24×), lower sample amounts (∼24×), and a shorter
analysis time (∼18×).

Tissue-Specific Metabolic and Inflammatory Alteration Revealed by
Tomahto. Following benchmarking with human cell lines, we
next sought to apply the method to a large-scale analysis across
dozens of samples (Fig. 3). Metabolism and inflammation have
long been implicated in aging (17, 24). Thus, we synthesized a set
of 520 peptides targeting 260 proteins spanning lipid metabo-
lism, central carbon metabolism, electron transport chain, and
inflammation (Dataset S2). Ten mice, five “young” (aged 16 wk)
and five “old” (aged 80 wk), were killed. Nine tissues from each
animal were harvested and processed, including brown adipose
tissue (BAT), brain (Brn ), heart (Hrt), kidney (Kid), liver (Liv),
lung (Lun), skeletal muscle (SkM), spleen (Spl), and WAT.
Resulting peptides were labeled with TMT10 reagents while
spike-in trigger peptides were labeled with TMTsh. Including
multiple charge states, more than 1,000 precursors were
constantly monitored.
Overall, we profiled protein expression levels for 260 proteins

across nine tissues from 10 animals in ∼1 d with single shots.
More than half (54%) of the resulting MS3 scans met the ion
injection time maximum of 5 s, suggesting they were present at
low levels (SI Appendix, Fig. S3F). Student’s t tests on each
quantified protein were corrected for multiple hypothesis testing,
and we observed tissue-specific responses to age even in different
fat tissues (BAT and WAT) (Fig. 3B). Although most tissues
presented minimal changes at the individual protein level (q <
0.05) (SI Appendix, Fig. S4), which corroborates previous reports
(20), WAT had 59 proteins that were significantly changed (q <
0.05) (Fig. 3C). Although traditionally thought as a specialized
tissue for energy storage, the appreciation for WAT as a highly
influential driver in the regulation of systemic metabolic ho-
meostasis has expanded greatly in recent years (25, 26). Dys-
functional WAT is linked to insulin resistance, inflammation,
and other metabolic disorders (26), all of which are, interest-
ingly, also implicated in aging (17, 27). Therefore, it prompted us
to think that WAT could be critical in an organism’s adaptation
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and response to aging. In WAT, we found that proteins involved
in fatty acid/lipid biogenesis (e.g., Fasn, Acaca, and Acacb), lipid
catabolism (e.g., Abhd6, Abhd12, and Abhd14b), and fatty acid
beta-oxidation (e.g., Echs1) were significantly altered (Fig. 3D).
Similarly, proteins involved in glycolysis (e.g., Hk2, Hk3, Pdhb,
and Pgk1), amino acid metabolism (e.g., Bcat1, Dhfr, Gls, and

Gpt2) were altered to various extents (Fig. 3D). Interestingly,
consistent up-regulation of inflammatory proteins was observed,
reflecting a general chronic inflammation, which is one of the
hallmarks of aging (17) (Fig. 3D).
In contrast to higher expression levels of inflammatory proteins,

subunits of electron transfer chain (ETC) complexes presented a

Fig. 1. Multiplexed targeted pathway proteomics assisted by Tomahto with real-time instrument control. (A) TOMAHAQ enables 2D multiplexed targeted
pathway proteomics. Constructing an assay starts with selecting protein targets and generating synthetic peptides for pathways of interest. These synthetic trigger
peptides are labeled with TMTsh reagent, whereas peptides from biological samples are labeled with regular TMT reagents (e.g., TMT10 or TMT11), creating a mass
difference of 6 Da. (B) A fully automated API-based algorithm, termed Tomahto, is presented in this work. Tomahto eliminates the need for a priming run and
constructing elaborate method files while also enabling implementation of several advanced data acquisition options. The sophisticated data acquisition is handled
by Tomahto such that the instrument method contains only MS1 scans. Tomahto monitors the elution of synthetic trigger peptides throughout an LC-MS run. When
one is detected, Tomahto prompts the insertion of up to four custom scans in order to 1) sequence verify the trigger peptide, 2) sequence verify the target peptide,
3) optimize the quantification scan, and 4) collect the optimized quantificationMS3 scan using only b- and y-type ions that exceed a purity filter. MS3 quantification
scans contain the released TMT reporter ions. The final result is one or more pathways profiled for protein expression differences across all samples.
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universal decrease in WAT (Fig. 3E). Accumulating evidence has
suggested a causative link between mitochondrial dysfunctional de-
terioration andmajor phenotypes associated with aging (28). Although
not statistically significant (q < 0.05) as individual proteins after

correction for multiple hypothesis testing, ETC subunits, as a group,
also presented a significant and similar underrepresentation in five
other tissues explored (Brn, Hrt, Kid, Liv, and Lun) (Fig. 3F), implying
that ETC functions were impacted to various extents with age.

Fig. 2. Benchmarking Tomahto by measuring protein levels for 77 kinases across three human cell lines. (A) Lysates from biological triplicates of HCT116 and
MCF7 and quadruplicates of HEK293T were processed and labeled with TMT10 reagents. The Tomahto assay was performed with 154 spiked-in trigger
peptides corresponding to 77 kinases and a 2-h single-shot method. In addition, shotgun analysis was performed on the same samples after fractionation.
Twelve fractions were analyzed with 3-h gradients using the standard DDA-SPS-MS3 method (36 h total). (B) Representative trigger and target MS2s. These
are used to confirm the identity of both the trigger and the target precursor peaks. The target MS2 is often of very low abundance and requires long in-
jections times (812 ms here). Note that all labeled fragment masses differ by 6 Da between plots due to the TMTsh labeling on both termini. (C) Overlap for
the kinases quantified by both methods. (D) Correlation between standard DDA-SPS-MS3 (fractionated, 36-h analysis) and Tomahto (unfractionated, 2-h
analysis). (E) Hierarchical clustering of kinases quantified by Tomahto. Replicates perfectly clustered and many signature up- or down-regulated kinases were
identified. (F) Bar plots of example proteins, EGFR, MAPK3, SRC, and EPHA2.
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Comparing Tomahto to the Proteome-Wide, SPS-MS3 Method. Tar-
geted protein quantification boosts sensitivity and reproducibility
while reducing analysis time as well as starting material. Two-
dimensional multiplexing (sample and analyte) facilitated by the
Tomahto software makes these advantages even more pronounced.

For example, 2D multiplexing relies on mixtures of low starting
amounts (∼10 μg total material) as opposed to hundreds of mi-
crograms of starting material needed to perform a deep fraction-
ation shotgun experiment. As a reference, we also conducted a
shotgun proteomics experiment. For each tissue, TMT10-labeled

Fig. 3. A targeted Tomahto assay to profile proteome changes in metabolism and inflammation applied to aging mouse tissues. (A) Five “young” (16-wk-old)
and five “old” (80-wk-old) mice were killed, and nine tissues from each animal were obtained and processed. Resulting tryptic peptides were labeled with
TMT10 reagents. For the targeted assay, synthetic trigger peptides targeting four different panels of proteins (i.e., lipid metabolism, electron transport chain,
central carbon metabolism, and inflammation), totaling 260 proteins and 520 peptides, were labeled with TMTsh reagent and spiked into multiplexed en-
dogenous proteomes. (B) Examples of protein expression differences from the TOMAHAQ pathway analysis in brown compared to WAT (BAT vs. WAT). t tests
(n = 5; old vs. young mice) were performed for each target protein with FDR correction. t values for each quantified protein are plotted and proteins passing a
q value of 0.05 are labeled. BAT did not exhibit any change with q < 0.05, whereas WAT was the most affected tissue by aging with 59 proteins changed
significantly by the same standard. See also SI Appendix, Fig. S4A. (C) Number of significantly changed (q < 0.05) protein targets in nine tissues. (D) Relative
abundance of significantly changed (q < 0.05) proteins from WAT. Proteins are colored according to primary pathway. Bars represent mean ± SEM. (E)
Quantification of targeted ETC complex proteins from WAT. Many ETC complex subunits (24) in WAT exhibited statistically significant (q < 0.05) decreases in
old mice and most of the other complex members exhibited a decreasing trend. Color scale represents the log2-transformed ratio of protein abundance
relative to young mice. Nodes with q value < 0.05 are circled with a black border. (F) Distribution of mean relative abundance of quantified ETC complex
subunits in nine tissues. Relative abundance in old mice was normalized to mean young mice values (n = 5). Each point represents mean relative abundance of
a quantified protein. t tests were used to detect differences between young and old mice using the mean relative abundances of quantified ETC proteins. In
addition to WAT, ETC complexes as a group (but not alone) showed significant decreases in five tissues (P < 0.05). See also SI Appendix, Fig. S4B.
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peptides were fractionated and consolidated into 12 fractions, each
of which was analyzed with a 2-h LC-MS method with the
DDA-SPS-MS3 method but assisted by our real-time search algo-
rithm termed Orbiter (29) (see Fig. 5A). This strategy improves the
data acquisition process (29, 30). Overall, 10,784 proteins were
quantified including all tissues with a protein false discovery rate
(FDR) <1% (see Fig. 5B). Fig. 4A shows that a greater number of
the targeted proteins were consistently quantified using Tomahto
(mean 200 ± 22 vs. 179 ± 14). Yet, the quantification results were
remarkably well correlated (R = 0.90) with the highly fractionated
and carefully optimized DDA-SPS-MS3 method (Fig. 4 B and D).
Moreover, the coefficient of variation (percent) among five bi-
ological replicates was virtually the same between Tomahto (mean
= 14.9) and DDA-RTS (mean = 15.1) (Fig. 4C). Besides compa-
rable accuracy and precision, Tomahto can show remarkable sen-
sitivity due to obviating the need for MS1 detection of peptides. To
highlight this, we examined MS1 precursor intensity for each
quantified MS3. In one representative 3-h Tomahto experiment,
1,097 MS3 scans were collected and met our quantification
thresholds. More than half (668) of these had precursors that were
not detected in the preceding MS1 scan (Fig. 4E, gray circles).
These would be impossible to quantify if the method relied on
detection of precursor peaks.

Untargeted Quantitative Characterization of Tissue-Specific Changes
between Young and Old Mice. In addition to characterizing tar-
geted proteins with Tomahto, the shotgun proteomics experi-
ment allowed us to gain a general picture of nine aging tissues
(Fig. 5B). For the 10,784 quantified proteins in nine tissues, we
performed t tests and adjusted the resulting P values to account
for multiple hypothesis testing (31). Strikingly, with the excep-
tion of WAT (608 proteins with q < 0.05), we observed few
proteins that met statistical significance criteria between the two
age groups (Fig. 5B). While this may in part be due to limited
power of the n = 5 experiment, we note that the majority of
measured proteins had small fold changes (Fig. 5C). For exam-
ple, among all proteins with P values <0.05, the majority only
presented ∼20% change in old mice (SI Appendix, Fig. S5A).
When fold changes were considered to find proteins affected by
aging, fewer than 1% of all proteins had q < 0.2 and a fold

change ≥2 in each tissue except for WAT (2.6%) (Fig. 5B).Thus,
in the comparison of the two age groups presented here we did
not observe large, consistent rewiring of the murine tissue pro-
teomes. Unsupervised hierarchical clustering with commonly
quantified proteins showed no clear pattern of changes across all
tissues (Fig. 5D), indicating tissue-specific alterations in aged
mice. Among commonly quantified proteins, a few did present
consistent changes across tissues, including Hist1h1b and Mvp
(Fig. 5E and SI Appendix, Fig. S5B). Other example proteins
included Ppt1, Ctsd, which indicated involvement of lysosome,
Igkc, Fkbp4, and Abcf1 (SI Appendix, Fig. S5).
Beyond individual proteins, the overall abundance of ribo-

some complex was down-regulated in old mouse tissues (Fig. 5 F
and G). WAT, as an example, had 94 cytoplasmic and mito-
chondrial ribosome proteins quantified, out of which 90 de-
creased in old mice, with 9 reaching statistical significance (q <
0.05) (Fig. 5F). Gene set enrichment analysis (GSEA) identified
global decreases in ribosome abundance across tissues (Fig. 5G).
With aging, tissues may undertake a decline in ribosome health
and translational capacity (19, 32, 33).

Tissue-Specific Changes Revealed by Global Proteomics. Overall the
proteome-wide shotgun approach quantified 10,784 proteins,
providing a resource covering nine major tissues in aging mice.
We first asked if young and old mice can be distinguished from a
global perspective. Principle component analysis (PCA) revealed
that some tissues (e.g., WAT, Liv) could be well separated with
major components such as PC1 and PC2 (Fig. 6A and SI Appendix,
Fig. S6A). Once again, WAT stood out as the most affected tissue
by having 608 proteins with q < 0.05 and 151 proteins with q < 0.2
and fold changes ≥2. Considering the set of proteins targeted by
our Tomahto assay, very similar results were obtained (Fig. 6B).
Further confirmation came from additional proteins in the same
pathways which also showed consistent changes.
Gene set enrichment analysis (GSEA) was performed to

highlight differentially changed pathways in WAT. After FDR
filtering, 34 gene sets remained. For example, lysosome, phag-
osome, and several inflammation-related pathways were up-
regulated in old mice, whereas oxidative phosphorylation, TCA
cycle, spliceosome, ribosome, and lipolysis were down-regulated

Fig. 4. Comparison of TMT-based measurements made using the targeted vs. untargeted approach. (A) Number of quantified target proteins by Tomahto
and Standard DDA-SPS-MS3. Tomahto achieved better coverage quantifying target proteins compared to Standard MS3 and consumed much less starting
material and instrument time. (B) Pearson correlation was calculated for all target proteins in nine tissues (r = 0.90). (C) The coefficient of variation (CV)
among biological replicates for each protein within each tissue, commonly quantified by Standard MS3 and Tomahto, was calculated and assessed for re-
producibility. (D) Example bar charts for protein quantifications using both methods. Bars represent mean ± SEM (n = 5). (E) Most peptides are quantified
even in the absence of a visible MS1 feature. Array plot of precursor intensity for a representative Tomahto experiment. Each dot represents the MS1
precursor intensity of an inserted MS3 quantification scan. Dot color scale represents MS1 intensity and gray dot indicates absence of any peak within the
elution window.

9728 | www.pnas.org/cgi/doi/10.1073/pnas.1919410117 Yu et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919410117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919410117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919410117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919410117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919410117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1919410117


(34, 35). Strikingly, all regulated lysosomal and phagosomal proteins
(q < 0.05) (Fig. 6C and SI Appendix, Fig. S6B) showed over-
expression. Functionally associating lysosomal proteins revealed

tightly connected protein complexes, examples including homo-
typic fusion and vacuole protein sorting complex (HOPS), cargo
selection complex (CSC), and V-ATPase complex (Fig. 6C).

Fig. 5. Tissue-specific proteome profiling and common alterations of the proteome in old mice. (A) For proteome-wide quantitative analysis, each of the
TMT10-labeled tissue samples was fractionated by basic pH reversed-phase high-performance LC, and 12 fractions were then analyzed with an established
analytical pipeline that included a real-time database search (29). Including all nine tissues (216 h of analysis), 10,784 proteins were quantified. (B) Untargeted
dataset overview. FC: fold change. (C) Density distributions for log-transformed old-to-young ratios in nine tissues. (D) Unsupervised hierarchical clustering
using commonly quantified proteins in nine tissues. (E) Example bar plots of suggested aging marker proteins. Bars represent mean ± SEM. (F) Volcano plot of
quantified proteins in WAT. Yellow dots indicate quantified members (n = 94) of cytoplasmic and mitochondrial ribosome complexes. Dotted line indicates q
= 0.05. (G) GSEA analysis of ribosome proteins comparing old and young mice for nine tissues. Normalized enrichment scores (NES) are plotted for each tissue.
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Fig. 6. Tissue-specific changes in old mice revealed by proteome-wide profiling. (A) Principal component analysis (PCA) of WAT from 10 mice. (B) Example bar
plots of proteins (n = 5, q < 0.05) that also have a minimum 2-fold change in WAT. Bars are colored according to primary pathway. Genes in green were also
quantified by Tomahto. Bars represent mean ± SEM. (C) Network of significantly changed (n = 5, q < 0.05) lysosomal proteins in WAT. All genes were up-
regulated in old mice. (D) Significantly enriched terms (q < 0.05) from GSEA analysis using all quantified WAT proteins (n = 5,797). (E) GSEA analysis for
peroxisome gene set. NES and log2 ratio distribution are plotted for each tissue. (F) GSEA analysis result for the lysosome. NES and log2 ratio distribution are
plotted for each tissue. (G) GSEA analysis result of positive regulation of immune system process. NES and log2 ratio distribution are plotted for each tissue.
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Similarly, phagosomal proteins included members of major his-
tocompatibility complex (MHC) and transporter associated with
antigen processing protein (TAP) complex (SI Appendix, Fig.
S6B), suggesting involvement of immune response.
In addition to WAT, all other tissues were investigated with

GSEA, resulting in some with differential regulation. For ex-
ample, the categories for “peroxisome,” “lysosome,” and “posi-
tive regulation of immune system process” are shown in Fig. 6 E
and F. It is clear that while changes on a per-protein basis did not
often reach significance many gene sets as a whole were
differentially regulated.

Discussion
Sample multiplexing represents a powerful approach to both in-
crease sample throughput and to introduce stable isotope labeling
for accurate quantification. Recently, the plexing scale for TMT
proteomcs was increased to support up to 16 different samples (36).
Combining sample multiplexing with targeted analysis of hundreds
of samples in a single run increases the throughput even more. To
enable the full repertoire of possibilities, software controlling the
instrument from the external desktop computer was created
(termed Tomahto). Tomahto realizes real-time instrument control
based on an API. Importantly, the only scan performed by the in-
strument method is the MS1 scan. Based on monitoring the elution
of TMTsh-labeled trigger peptides in these MS1 scans, Tomahto
inserts up to four new scans, including a highly optimized MS3 scan
that measures differences in reporter ions across all samples. In the
current study, the method was first benchmarked for sensitivity,
precision, and accuracy against a fully fractionated, proteome-wide
dataset (Fig. 2). The software is freely available (Materials and
Methods) and requires an API license from Thermo Fisher Scien-
tific. The same API can be used on any tribrid instrument, including
the Fusion, Fusion Lumos, and Eclipse platforms.
In the in-depth pathway proteomics study of aging, we monitored

520 peptides and 1,040 precursors, which was four times the
number of peptide targets compared to our original publication
(10), and we have tested a higher number by targeting 1,000 pep-
tides (2,000 precursors) from JPT Peptide Technology (catalog no.
SPT-ABRF-POOL-L) (SI Appendix, Fig. S8). This was by no means
a hard limit. It is possible that future work could target a higher
number. For example, the current implementation simply requires
that the trigger peptide be eluting but makes no attempt to catch
the peak at its apex. Since the target and trigger peaks perfectly
coelute, this could further increase the sensitivity while also in-
creasing the number of potential targets in a single analysis.
Aging is associated with a wide spectrum of diseases. Yet,

several reports described only minimal perturbation at the pro-
teome level (19, 20). Studies on the genome and transcriptome
levels also indicated that each tissue should be analyzed sepa-
rately as they may respond to aging via distinct mechanisms (21,
22). Tomahto revealed WAT to be the most affected tissue with
almost a quarter of all targets significantly (q < 0.05) regulated,
including down-regulation of fatty acid synthesis-related proteins
and up-regulation of inflammatory proteins, whereas other tis-
sues, as expected, showed minimal change of individual targeted
proteins. Our investigation generated a comprehensive resource
covering proteome modulations in nine major tissues from aged
mice and underscores that each tissue may possess its distinct
mechanism. One limitation of the current study lies in the lim-
ited resolution within each tissue, given that certain reports have
claimed particular regions (37) or cell subpopulations (18) may
contribute distinctively to tissue aging or aging-related diseases.
In addition, we believe adding more age groups could be of fu-
ture interest and potentially improve temporal resolution and be
beneficial in investigating correlations between transcription and
translation, given the corresponding transcriptome study has just
become available (38).

In the aging experiments, only a few proteins exhibited tissue-
wide changes between the two investigated age groups. For exam-
ple, the linker histone H1 binds to the DNA entering and exiting
the nucleosomal core particle and has an important role in estab-
lishing and maintaining higher-order chromatin structures as well as
regulating transcription activity. Previous studies reported trans-
lational down-regulation of Hist1h1b in microglia (39), SkM (40),
and transcriptional down-regulation in mouse retinae (41) due to
aging. Our measurement confirmed that Hist1h1b presented a
decreasing trend in nine tissues with SkM having the most dramatic
change (more than twofold) (Fig. 4E). Another example was major
vault protein (Mvp). Mvp is the main component contributing most
of the particle mass for the cellular ribonucleoprotein particle
known as the vault, which also consists of vault poly(ADP ribose)
polymerase (VPARP) and telomerase-associated protein-1 (TEP1)
and small untranslated RNA (42). The vault is implicated in mul-
tiple cellular processes, including nucleocytoplasmic transport, sig-
naling transduction, cellular differentiation, cell survival, and
immune responses (42–44). Ryu et al. (44) demonstrated increased
expression of Mvp in aged human diploid fibroblasts and multiple
mouse organs and connected its expression level with cellular
sensitivity to apoptosis. Similarly, our data suggested Mvp amount
increased in all nine tissues. Mvp’s suppressive role in low-grade
chronic inflammation ameliorates high-fat-diet–induced obesity,
insulin resistance, hepatic steatosis and atherosclerosis in mice (43).
The highest up-regulation levels for Mvp observed in WAT were
correlated with significantly overexpressed inflammatory proteins as
measured by Tomahto.
While outside of WAT few proteins were observed to have

substantially altered levels in old vs. young mice, many pathways
—when taken as a whole—were detected as altered in our
shotgun proteomics experiments. Peroxisomal proteins, as just
one example, were significantly up-regulated in Liv and SkM,
whereas the opposite was observed in Brn, Kid, and WAT. Ac-
cumulating evidence suggests that peroxisomal function declines
with aging, linking oxidative stress and dysregulated lipid me-
tabolism to diseases including Alzheimer’s disease, diabetes, and
cancer (45). Specifically, peroxisomal biogenesis factors (Pex)
are essential for the formation of functional peroxisomes and
transport of peroxisomal matrix proteins after synthesis in cyto-
sol (46). We observed Pex3, Pex10, and Pex11a down-regulation
in WAT and up-regulation in Liv (SI Appendix, Fig. S6C).
Moreover, ATP-binding cassette subfamily d (Abcd) trans-
porters are responsible for transporting different subtypes of
acyl-CoA and therefore critical in lipid and fatty acid metabolism
(47). Abcd2 and Abcd3 increased in BAT and Liv and decreased
in Brn and WAT, in accordance with overall peroxisomal protein
changes revealed by GSEA (SI Appendix, Fig. S6C).
In conclusion, we report a strategy which supports extensive

multiplexing at both the sample and the analyte levels. More
than 500 peptides were targeted in a TMT 10plex environment
using the free Tomahto software with instrument control via an
API. Future improvements will include 1) adaptation of this
method to the new 16plex TMTPro reagents (36), 2) apex trig-
gering to increase sensitivity, and 3) combining the method with
high-field asymmetric waveform (48, 49) ion mobility spec-
trometry to separate coeluting peptides.

Materials and Methods
Tomahto was written in C# in the .NET Framework (v4.6.2). It has three
modules, namely data acquisition, real-time data visualization, and data
analysis. Kinase peptides for cellular experiments were obtained from
Thermo Fisher Scientific and peptides for experiments in aging mouse tissues
were synthesized by Cell Signaling Technologies. Samples were analyzed
with an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific).
Descriptions of additional experimental procedures can be found in
SI Appendix.

All animal-related experiments were approved by Institutional Animal
Care and Use Committee of the Beth Israel Deaconess Medical Center.
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Data Availability. All MS raw files haven been deposited to the PRIDE archive
(https://www.ebi.ac.uk/pride/archive) with the identifier PXD017385. The
software is freely available at https://gygi.med.harvard.edu/software (also
smarttmt.org). The use of Tomahto requires an API license (https://github.
com/thermofisherlsms/iapi) from Thermo Fisher Scientific.

ACKNOWLEDGMENTS. We thank members of the S.P.G. laboratory for
helpful discussions and Derek Bailey, Philip Remes, Graeme McAlister, Jesse
Canterbury, and Shannon Eliuk at Thermo Scientific for technical assistance
and advice. This work was funded in part by NIH grant GM67945 (S.P.G.), the
Claudia Adams Barr Program (E.T.C. and M.P.J.), the National Cancer Center
(H.X.), and Mexican Council for Science and Technology grant 289937 (J.N.-P.).

1. L. C. Gillet, A. Leitner, R. Aebersold, Mass spectrometry applied to bottom-up pro-
teomics: Entering the high-throughput Era for hypothesis testing. Annu. Rev. Anal.
Chem. (Palo Alto, Calif.) 9, 449–472 (2016).

2. B. Di Stefano et al., Reduced MEK inhibition preserves genomic stability in naive
human embryonic stem cells. Nat. Methods 15, 732–740 (2018).

3. J. Navarrete-Perea, Q. Yu, S. P. Gygi, J. A. Paulo, Streamlined tandem mass tag
(SL-TMT) protocol: An efficient strategy for quantitative (Phospho)proteome profiling
using tandem mass tag-synchronous precursor selection-MS3. J. Proteome Res. 17,
2226–2236 (2018).

4. D. B. Bekker-Jensen et al., An optimized shotgun strategy for the rapid generation of
comprehensive human proteomes. Cell Syst. 4, 587–599.e4 (2017).

5. E. Song et al., Targeted proteomic assays for quantitation of proteins identified by
proteogenomic analysis of ovarian cancer. Sci. Data 4, 170091 (2017).

6. A. Thompson et al., Tandem mass tags: A novel quantification strategy for compar-
ative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904
(2003).

7. L. Ting, R. Rad, S. P. Gygi, W. Haas, MS3 eliminates ratio distortion in isobaric multi-
plexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

8. C. D. Wenger et al., Gas-phase purification enables accurate, multiplexed proteome
quantification with isobaric tagging. Nat. Methods 8, 933–935 (2011).

9. G. C. McAlister et al., MultiNotch MS3 enables accurate, sensitive, and multiplexed
detection of differential expression across cancer cell line proteomes. Anal. Chem. 86,
7150–7158 (2014).

10. B. K. Erickson et al., A strategy to combine sample multiplexing with targeted pro-
teomics assays for high-throughput protein signature characterization. Mol. Cell 65,
361–370 (2017).

11. C. M. Rose et al., TomahaqCompanion: A tool for the creation and analysis of isobaric
label based multiplexed targeted assays. J. Proteome Res. 18, 594–605 (2019).

12. C. J. Kenyon, The genetics of ageing. Nature 464, 504–512 (2010).
13. P. Sen, P. P. Shah, R. Nativio, S. L. Berger, Epigenetic mechanisms of longevity and

aging. Cell 166, 822–839 (2016).
14. S. Zou, S. Meadows, L. Sharp, L. Y. Jan, Y. N. Jan, Genome-wide study of aging and

oxidative stress response in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 97,
13726–13731 (2000).

15. K. Davie et al., A single-cell transcriptome atlas of the aging Drosophila brain. Cell
174, 982–998.e20 (2018).

16. C. López-Otín, L. Galluzzi, J. M. P. Freije, F. Madeo, G. Kroemer, Metabolic control of
longevity. Cell 166, 802–821 (2016).

17. L. Ferrucci, E. Fabbri, Inflammageing: Chronic inflammation in ageing, cardiovascular
disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

18. I. Angelidis et al., An atlas of the aging lung mapped by single cell transcriptomics and
deep tissue proteomics. Nat. Commun. 10, 963 (2019).

19. A. Ori et al., Integrated transcriptome and proteome analyses reveal organ-specific
proteome deterioration in old rats. Cell Syst. 1, 224–237 (2015).

20. D. M. Walther, M. Mann, Accurate quantification of more than 4000 mouse tissue
proteins reveals minimal proteome changes during aging. Mol. Cell. Proteomics 10,
M110.004523 (2011).

21. B. C. Christensen et al., Aging and environmental exposures alter tissue-specific DNA
methylation dependent upon CpG island context. PLoS Genet. 5, e1000602 (2009).

22. J. C. Kimmel et al., A murine aging cell atlas reveals cell identity and tissue-specific
trajectories of aging. bioRxiv:10.1101/657726 (6 June 2019).

23. A. D. Hudgins et al., Age- and tissue-specific expression of senescence biomarkers in
mice. Front. Genet. 9, 59 (2018).

24. T. Finkel, The metabolic regulation of aging. Nat. Med. 21, 1416–1423 (2015).
25. S. S. Choe, J. Y. Huh, I. J. Hwang, J. I. Kim, J. B. Kim, Adipose tissue remodeling: Its role

in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne) 7, 30
(2016).

26. J. H. Stern, J. M. Rutkowski, P. E. Scherer, Adiponectin, leptin, and fatty acids in the
maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab.
23, 770–784 (2016).

27. R. I. Fink, O. G. Kolterman, J. Griffin, J. M. Olefsky, Mechanisms of insulin resistance in
aging. J. Clin. Invest. 71, 1523–1535 (1983).

28. N. Sun, R. J. Youle, T. Finkel, The mitochondrial basis of aging. Mol. Cell 61, 654–666
(2016).

29. D. K. Schweppe et al., Full-featured, real-time database searching platform enables
fast and accurate multiplexed quantitative proteomics. bioRxiv:10.1101/668533 (12
June 2019).

30. B. K. Erickson et al., Active instrument engagement combined with a real-time da-
tabase search for improved performance of sample multiplexing workflows.
J. Proteome Res. 18, 1299–1306 (2019).

31. K. Strimmer, fdrtool: A versatile R package for estimating local and tail area-based
false discovery rates. Bioinformatics 24, 1461–1462 (2008).

32. D. I. Kurtz, A decrease in the number of active mouse liver ribosomes during aging.
Exp. Gerontol. 13, 397–402 (1978).

33. A. Cellerino, A. Ori, What have we learned on aging from omics studies? Semin. Cell
Dev. Biol. 70, 177–189 (2017).

34. J. P. de Magalhães, J. Curado, G. M. Church, Meta-analysis of age-related gene ex-
pression profiles identifies common signatures of aging. Bioinformatics 25, 875–881
(2009).

35. D. Carmona-Gutierrez, A. L. Hughes, F. Madeo, C. Ruckenstuhl, The crucial impact of
lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).

36. A. Thompson et al., TMTpro: Design, synthesis, and initial evaluation of a proline-
based isobaric 16-plex tandem mass tag reagent set. Anal. Chem. 91, 15941–15950
(2019).

37. B. C. Carlyle et al., A multiregional proteomic survey of the postnatal human brain.
Nat. Neurosci. 20, 1787–1795 (2017).

38. N. Schaum et al., The murine transcriptome reveals global aging nodes with organ-
specific phase and amplitude. bioRxiv:10.1101/662254 (7 June 2019).

39. A. Flowers, H. Bell-Temin, A. Jalloh, S. M. Stevens, Jr, P. C. Bickford, Proteomic anaysis
of aged microglia: Shifts in transcription, bioenergetics, and nutrient response.
J. Neuroinflammation 14, 96 (2017).

40. A. A. Cutler et al., Biochemical isolation of myonuclei employed to define changes to
the myonuclear proteome that occur with aging. Aging Cell 16, 738–749 (2017).

41. A. R. Banday et al., Replication-dependent histone genes are actively transcribed in
differentiating and aging retinal neurons. Cell Cycle 13, 2526–2541 (2014).

42. W. Berger, E. Steiner, M. Grusch, L. Elbling, M. Micksche, Vaults and the major vault
protein: Novel roles in signal pathway regulation and immunity. Cell. Mol. Life Sci. 66,
43–61 (2009).

43. J. Ben et al., Major vault protein suppresses obesity and atherosclerosis through in-
hibiting IKK-NF-κB signaling mediated inflammation. Nat. Commun. 10, 1801 (2019).

44. S. J. Ryu et al., On the role of major vault protein in the resistance of senescent human
diploid fibroblasts to apoptosis. Cell Death Differ. 15, 1673–1680 (2008).

45. C. M. Cipolla, I. J. Lodhi, Peroxisomal dysfunction in age-related diseases. Trends
Endocrinol. Metab. 28, 297–308 (2017).

46. H. R. Waterham, M. S. Ebberink, Genetics and molecular basis of human peroxisome
biogenesis disorders. Biochim. Biophys. Acta 1822, 1430–1441 (2012).

47. A. Baker et al., Peroxisomal ABC transporters: Functions and mechanism. Biochem.
Soc. Trans. 43, 959–965 (2015).

48. D. K. Schweppe et al., Characterization and optimization of multiplexed quantitative
analyses using high-field asymmetric-waveform ion mobility mass spectrometry. Anal.
Chem. 91, 4010–4016 (2019).

49. A. S. Hebert et al., Comprehensive single-shot proteomics with FAIMS on a hybrid
orbitrap mass spectrometer. Anal. Chem. 90, 9529–9537 (2018).

9732 | www.pnas.org/cgi/doi/10.1073/pnas.1919410117 Yu et al.

https://www.ebi.ac.uk/pride/archive
https://gygi.med.harvard.edu/software
http://smarttmt.org
https://github.com/thermofisherlsms/iapi
https://github.com/thermofisherlsms/iapi
https://www.pnas.org/cgi/doi/10.1073/pnas.1919410117

