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Abstract

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence studies

bridge the gap left from case detection, to estimate the true burden of the COVID-19 pan-

demic. While multiple anti-SARS-CoV-2 immunoassays are available, no gold standard

exists.

Methods

This serial cross-sectional study was conducted using plasma samples from 8999 healthy

blood donors between April-September 2020. Each sample was tested by four assays:

Abbott SARS-Cov-2 IgG assay, targeting nucleocapsid (Abbott-NP) and three in-house IgG

ELISA assays (targeting spike glycoprotein, receptor binding domain, and nucleocapsid).

Seroprevalence rates were compared using multiple composite reference standards and by

a series of Bayesian Latent Class Models.

Result

We found 13 unique diagnostic phenotypes; only 32 samples (0.4%) were positive by all

assays. None of the individual assays resulted in seroprevalence increasing monotonically

over time. In contrast, by using the results from all assays, the Bayesian Latent Class Model

with informative priors predicted seroprevalence increased from 0.7% (95% credible interval

(95% CrI); 0.4, 1.0%) in April/May to 0.7% (95% CrI 0.5, 1.1%) in June/July to 0.9% (95%

CrI 0.5, 1.3) in August/September. Assay characteristics varied over time. Overall Spike

had the highest sensitivity (93.5% (95% CrI 88.7, 97.3%), while the sensitivity of the Abbott-
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NP assay waned from 77.3% (95% CrI 58.7, 92.5%) in April/May to 64.4% (95% CrI 45.6,

83.0) by August/September.

Discussion

Our results confirmed very low seroprevalence after the first wave in Canada. Given the

dynamic nature of this pandemic, Bayesian Latent Class Models can be used to correct for

imperfect test characteristics and waning IgG antibody signals.

Introduction

Worldwide, more than 159 million people have been diagnosed with coronavirus disease 2019

(COVID-19), as of May 13, 2021 [1]. Yet, this is likely an underestimation of the true burden

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) given testing is primarily

used to confirm suspected infection as opposed to broad surveillance. For example, in Canada,

testing was only accessible early in the pandemic to people who had symptoms, were known

contacts of a case or had a relevant travel history [2]. This meant community transmission by

asymptomatic or mildly symptomatic individuals was likely underestimated. Determining the

proportion of individuals with evidence of an immune response to SARS-CoV-2 can provide a

more comprehensive assessment of prevalence to assist public health officials in making policy

decisions. This prompted an urgent need for seroprevalence studies and accurate anti-SARS-

CoV-2 immunoassays to estimate the true burden of disease.

While multiple commercial and in-house immunoassays to detect anti-SARS-CoV-2 anti-

bodies are available, to date no gold standard exists [3]. Furthermore, laboratorians have

described multiple examples of discordance between assays [4]. Some of this variability is in

part due to the assays which vary significantly by the isotype (i.e. IgA, IgM, IgG), viral antigens

(i.e. spike or nucleocapsid protein and whether full-length or partial), and test performance

(i.e. sensitivity/specificity). It is also known that anti-SARS-COV-2 antibodies wane over time

which can further affect the sensitivity and specificity of the assays [5–7]. Additionally, biologi-

cal differences between individuals can lead to different antibody profiles. Given these overlap-

ping challenges of estimating seroprevalence, relying on a single assay (regardless which assay

this may be) may bias results.

In the absence of a gold standard, using results from multiple assays may improve accuracy.

However, which methods are appropriate for estimating SARS-CoV-2 seroprevalence has not

been defined. One method is to use a composite reference standard (CRS); a traditional

approach used in clinical settings based on prespecified rules based on results from multiple

assays [8]. More recently, Bayesian Latent Class Analysis (BLCA) has become more main-

stream in diagnostic studies [9]. In contrast to CRS which classifies individuals as either posi-

tive or negative, BLCA uses a likelihood-based approach from multiple imperfect assays to

estimate test characteristics and prevalence. Given the uncertainty of the assay performance,

we evaluated multiple methodological approaches to estimate SARS-COV-2 seroprevalence

during the first COVID-19 wave in Canada using four unique assays.

Methods

Study design and population sampling

We conducted a serial cross-sectional study among blood donors in Canada between April

and September 2020 (prior to COVID-19 vaccine availability). Canadian Blood Services (CBS)

collects approximately 850,000 blood donations per year from a combination of fixed and

PLOS ONE SARS-CoV-2 seroprevalence navigating the absence of a gold standard

PLOS ONE | https://doi.org/10.1371/journal.pone.0257743 September 23, 2021 2 / 13

Institute (ACG), a facility supported by Canada

Foundation for Innovation funding, by the Ontarian

Government and by Genome Canada and Ontario

Genomics (OGI-139). Commercial Abbott Architect

SARS-Cov-2 IgG assay kit costs were partially

supported by Abbott Laboratories, Abbott Park,

Illinois. Abbott analyzers used at Canadian Blood

Services were provided by the COVID-19 Immunity

task Force (CITF). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: Steven J Drews has acted as

a content expert for respiratory viruses for

Johnson & Johnson (Janssen). Anne-Claude

Gingras receives funds from a research contract

with Providence Therapeutics Holdings, Inc. The

remaining authors have no conflicts of interest to

disclose. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0257743


mobile sites in all larger cities and most urban areas from all provinces in Canada except Que-

bec [10]. Blood donors (>17 years old) must meet numerous selection criteria to ensure that

they are in good health and at low risk of infectious disease. Beginning in March 2020, donors

were deferred for two weeks if they were diagnosed with SARS-CoV-2 infection or if they were

in contact with a known case. Each month 1500 deidentified samples were randomly selected

by collection site by region, age and sex to be reflective of the donor population across Canada.

Data on the collection site, birth year, sex and Forward Sortation Area (FSA) of the residential

postal code for each donor were extracted. The Research Ethics Board of the Canadian Blood

Services and Lunenfeld-Tanenbaum Research Institute (LTRI) (REB study #20-0194-E)

approved this study and exempted study-specific consent.

SARS-CoV-2 antibody testing

Retention EDTA plasma samples were aliquoted and frozen at -20˚C at the CBS laboratory in

Ottawa. Each sample was tested for SARS-CoV-2 IgG antibodies using four assays. The Abbott

Architect SARS-Cov-2 IgG assay which targets the nucleocapsid antigen (Abbott-NP),

(Abbott, Chicago IL) and three in-house IgG ELISA chemiluminescent assays recognizing dis-

tinct recombinant viral antigens: full length spike glycoprotein (Spike), spike glycoprotein

receptor binding domain (RBD), and nucleocapsid (NP), were tested at the CBS laboratory in

Ottawa and the Gingras laboratory [11, 12] at the LTRI in Toronto, respectively. Table 1 sum-

marizes each antibody assay by: platform, antigen targets and how reactivity was determined.

Analysis

We evaluated the correlation between the individual assays by kappa statistics. In the absence

of a gold standard, we examined multiple approaches to estimate seroprevalence. First, sero-

prevalence was estimated by individual assays based on pre-defined thresholds (Table 1). Then

we used a series of composite reference standards to identify a “true” positive if a sample was

reactive by a combination of two or more assays. Finally, we estimated seroprevalence using

Bayesian Latent Class Models (BLCM).

Bayesian latent class analysis

In this study the “latent” unobservable target was evidence of SARS-CoV-2 infection (based on

IgG positivity). Instead of relying on one imperfect assay, this iterative model leverages the

data from multiple imperfect assays to estimate the “true” prevalence and test characteristics

[13, 14]. Given any one of four assays could assign an individual to be positive or negative,

Table 1. Assay characteristics.

Assay Assay platform Capture Antigen (IgG) Manufacture Cut-offs (positive) Cut-off reference

Abbott-NP Chemiluminescent microparticle immunoassay Nucleocapsid Abbott �1.40 Manufacture

Spike Chemiluminescent ELISA spike Gingras Lab �0.190 3 SD + negative meana

RBD Chemiluminescent ELISA RBD Gingras Lab �0.186 3 SD + negative meana

NP Chemiluminescent ELISA Nucleocapsid Gingras Lab �0.396 3 SD + negative meana

Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid antigen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor binding

domain; NP, nucleocapsid.
a3 Standard deviations (SD) + negative mean is a standard approach to choosing cut-off thresholds for ELISA based assays. Briefly, the relative ratio values of the

negative controls from 20–22 different tests were used. Ratios are transformed on the log10-scale and then mean 3 SD determines the cutoff. Values are then

exponentiated to identify cut off listed in the table.

https://doi.org/10.1371/journal.pone.0257743.t001
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there was a maximum of 16 (24), possible diagnostic phenotypes. We assumed each assay was

independent of the others, conditional on the individual’s unknown antibody status. This

means that the probability of obtaining a given diagnostic phenotype depended on the proba-

bility that an individual had been truly infected with SARS-CoV-2 and on the outcome of each

assay given the underlying exposure status. Briefly, we estimated parameters in a Bayesian

framework using a Gibbs sampler to produce Markov chain Monte Carlo (MCMC) simula-

tions. We ran 50,000 iterations, with the first 5000 steps discarded as burn-in [15]. Given the

uncertainty of assay performance in this donor population, we compared goodness of fit

parameters using informative, weakly informative and non-informative priors. Informative

priors were based on the manufactures assumed sensitivity assumed specificity (S1 Table).

Expert opinion defined weakly informative priors (sensitivity ranging from 60%-100% and

specificity from 90%-100%, for each assay). We assumed an uniformed distribution for the

model using non-informative priors. We verified convergence of all MCMC chains. We

reported posterior means and 95% credible intervals (CrI) for all estimated parameters overall

and by two-month intervals using SAS (version 9.1, SAS Institute, Cary, NC). For more addi-

tional details on Bayesian Latent Class analysis please refer to Cheung et al, 2021 [16].

Results

Between April and September 2020, a total of 8999 healthy blood samples were assessed for

SARS-CoV-2 antibodies by four distinct assays. Most donors (96%) were between 20–69 years

old, there were slightly more male donors (52%) compared to female donors (48%) and there

was representation from all provinces across Canada except Quebec. Donor characteristics

remained consistent over the study period (S2 Table).

Individual assays

We evaluated seroprevalence rates over time by the individual assays (Fig 1a). Overall, there

was significant variability by the assays over time. The Abbott-NP assay consistently remained

lower than the ELISA-based assays. Seroprevalence based on the spike assay was 3.1% in May,

dropped to 1.2% in July and then plateaued around 3%. Rates were lower and more stable by

RBD that started at 0.8% and increased to 1.6% by September. In contrast the NP assay

increased significantly from May (1.2%) until June (3.7%). The signal to cut off ratios

remained relatively stable over time for all assays (S1 Fig). Overall, the correlation between the

assays was low (kappa score, 0.28 (95% CI 0.21, 0.34)). Given concurrent negative results the

percent agreement was highest between Abbott-NP and RBD (kappa 0.43 (95% CI 0.33, 0.51).

Composite reference standards

Given screening occurred in a low prevalence setting, to minimize false positive results, we

assumed a true positive was more likely when two or more assays were positive. A priori, rely-

ing on two pre-specified assays resulted in a range of seroprevalence estimates that ranged

from 0.2% to 0.5% in April to 0.4% to 1.4% in September (Fig 1b). Any two assays (from four)

resulted in a seroprevalence that increased significantly over time from 0.5% (95% CI 0.3%,

1.1%) in April to 1.3% (95% CI 0.8, 2.0) in September (p = 0.02) (Fig 1b).

Bayesian latent class model

From 16 possible diagnostic phenotypes, 13 were observed among the 8999 sampled (eight

phenotypes had at least 10 observations). The most frequent profile was “all negative” (95.0%

(95% CI 94.6, 95.5) followed by only positive by the individual ELISA-based assays (Spike only
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(1.8%, 95% CI 1.5, 2.0) and NP only (1.7, 95% CI 1.5, 2.1). Only 32 samples were positive for

all four assays (0.4, 95% CI 0.3, 0.5) (Table 2). Overall seroprevalence was estimated to be 0.8%

(95% CrI 0.6, 1.0%); 0.8% (95% CrI 0.6, 1.0%); 0.8% (95% CrI 0.7, 1.0%) using informative,

weakly informative and non-informative priors, respectively. Fig 2 illustrates temporal trends

in seroprevalence by BLCA comparing the various models. The model with the non-informa-

tive prior consistently was higher than the other two models, but the difference was not statisti-

cally significant. Given the uncertainty of test characteristics, we compared the observed vs

predicted values of the three BLCM and found the informative model had the best model fit

and identified the “all negative” phenotype most accurately (S3 Table).

The test characteristics (sensitivity and specificity) varied significantly by the different

assays (Table 3). Overall, the ELISA based assays had higher sensitivity than the Abbott-NP.

Abbott-NP had a sensitivity of 58.5% (95% CrI 46.3, 70.6%) and a specificity of 99.8% (95%

CrI 99.7, 99.9%). RBD had the highest specificity (99.5% (95% CrI 99.3, 99.7%)) and NP had

the lowest specificity (98.2% (95% CrI 97.9, 98.4%)). Negative predictive values of all assays

were very high (ranging from 99.4% to 99.8%). The Abbott-NP had the highest positive predic-

tive value at 87.5% (95% CrI 81.3, 93.8%) while the ELISA based assays that ranged from 21.0

to 59.8%. The ELISA-based assays did not significantly wane over the first six months of the

pandemic, the test characteristics of the Abbott assay varied more (Table 3). Sensitivity

Abbott-NP assay waned the most from 77.3% (95%CrI 58.7, 92.5) in April/May to 64.4% (95%

Fig 1. A. Seroprevalence by month over the first COVID-19 wave in Canada by individual assays. Each line represents

seroprevalence rates (summarized in table below) monthly between April and September 2020 (during the first

COVID-19 Wave) based thresholds for each assay. Abbott Architect SARS-Cov-2 IgG assay (Abbott-NP) and three in-

house IgG ELISA assays recognizing distinct recombinant viral antigens: full length spike glycoprotein (Spike), spike

glycoprotein receptor binding domain (RBD), and nucleocapsid (NP). B. Seroprevalence by month over the first

COVID-19 wave in Canada by various composite reference standards (results from four anti-SARS-CoV-2

immunoassays). Each line represents seroprevalence rates based on predefined definitions. CRS based on a

combination of reactive samples using Abbott-NP, Spike, RBD and NP. Positivity based on “any two or more” was

determined by a reactive sample from two or more assays. Since we are not comparing CRS, we did not include 95%

CI for each data point (all overlapping).

https://doi.org/10.1371/journal.pone.0257743.g001
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CrI 45.6, 83.0) in August/September. Similar trends were observed using weakly informative

and non-informative priors (S4 Table).

Overall the latent class model and CRS (using the rule> = 2 reactive assays out of four)

yielded similar results and there was no evidence of waning seroprevalence rates over time

(Fig 3). While the Abbott-NP (a common commercial assay) did wane over time.

Table 2. Diagnostic phenotypes of anti-SARS-CoV-2 immunoassay results from 8999 samples tested.

Commercial In-house ELISA Observed

Abbott-NP Spike RBD NP Number % (95% CI)

(n = 54) (n = 228) (n = 104) (n = 214)

NONE - - - - 8552 95.0 (94.6, 95.5)

ALL + + + + 32 0.4 (0.3, 0.5)

All—Abbott-NP - + + + 9 0.1 (0.1, 0.2)

NP Only - - - + 156 1.7 (1.5, 2.1)

RBD Only - - + - 39 0.4 (0.3, 0.6)

Spike Only - + - - 158 1.8 (1.5, 2.0)

Spike + RBD - + + - 15 0.2 (0.1, 0.3)

RBD + NP - - + + 7 0.1 (0.0, 0.3)

Abbott—NP Only + - - - 17 0.2 (0.1, 0.3)

Spike + Abbott-NP + + - - 2 0.0 (0.0, 0.1)

Spike + NP - + - + 9 0.1 (0.1, 0.2)

All–NP + + + - 2 0.0 (0.0, 0.1)

All–RBD + + - + 1 0.0 (0.0, 0.1)

Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid antigen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor binding

domain; NP, nucleocapsid.

https://doi.org/10.1371/journal.pone.0257743.t002

Fig 2. Seroprevalence estimates by different BLCM (informative, weakly informative and non-informative priors). Each

line represents seroprevalence rates (summarized in table below) derived from posterior means of three BLCMs (comparing

informative, weakly informative and non-informative priors) bi-monthly between April and September 2020 (during the first

COVID-19 Wave). Error bars represent 95% Credible Intervals.

https://doi.org/10.1371/journal.pone.0257743.g002
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Discussion

In the absence of a gold standard, we evaluated multiple assays and methodological approaches

to estimate SARS-CoV-2 seroprevalence in healthy Canadian blood donors. None of the indi-

vidual assays resulted in seroprevalence increasing monotonically over time. Seroprevalence

estimates were similar by either BLCM or a composite reference standard when at least two

Table 3. Seroprevalence and assay characteristics overall and bi-monthly based on the Bayesian latent class analysis with informative priors.

Overall April/May June/July August/September

Seroprevalence 0.76% (95% CrI 0.58, 0.97) 0.65% (95% CrI 0.38, 0.98) 0.74% (95% CrI 0.45, 1.11) 0.87% (95% CrI 0.53,

1.29%)

Sensitivity PPV Specificity NPV Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Spike 93.5% 27.7% 98.1% 99.8% 95.0% 98.0% 93.6% 98.8% 93.6% 97.6%

(88.7, 97.3) (23.2, 33.7) (97.9, 98.4) (99.6, 100.0) (90.1, 98.2) (97.4, 98.4) (88.0, 97.6) (98.4, 99.2) (88.0, 97.6) (97.0, 98.1)

RBD 89.1% 59.8% 99.5% 99.8% 89.3% 99.5% 89.2% 99.6% 88.7% 99.3%

(84.1, 93.5) (50.0, 71.4) (99.3, 99.7) (99.6, 99.9) (83.7, 93.8) (99.3, 99.8) (98.4, 99.2) (83.6, 93.9) (83.0, 93.4) (99.0, 99.6)

NP 78.8% 21.0% 98.2% 99.6% 79.9% 99.5% 80.5% 97.3% 78.5% 97.6%

(74.1, 83.2) (17.2, 25.3) (97.9, 98.4) (99.3, 99.7) (74.9, 84.5) (99.2, 99.7) (75.6, 84.9) (96.7, 97.9) (73.5, 83.3) (97.1, 98.1)

Abbott-NP 58.5% 87.5% 99.8% 99.4% 77.3% 99.7% 60.2% 99.8% 64.4% 99.9%

(46.3, 70.6) (81.3, 93.8) (99.7, 99.9) (99.1, 99.6) (58.7, 92.5) (99.5, 99.9) (41.2, 78.5) (99.5, 99.9) (45.6, 83.0) (99.8, 100.0)

CrI, Creditable Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value; Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid

antigen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor binding domain; NP, nucleocapsid.

https://doi.org/10.1371/journal.pone.0257743.t003

Fig 3. Summary comparison of seroprevalence rates by analytical methods. Each line represents seroprevalence rates

(summarized in table below) derived from four analytical methods bi-monthly between April and September 2020 (during

the first COVID-19 Wave).> = 2 proteins (positivity was determined by a reactive sample from two or more assays),

BLCA-Bayesian latent class analysis with informative priors, results are posterior means and error bars are 95% CrI and

Abbott-NP is a single commercial assay.

https://doi.org/10.1371/journal.pone.0257743.g003

PLOS ONE SARS-CoV-2 seroprevalence navigating the absence of a gold standard

PLOS ONE | https://doi.org/10.1371/journal.pone.0257743 September 23, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0257743.t003
https://doi.org/10.1371/journal.pone.0257743.g003
https://doi.org/10.1371/journal.pone.0257743


positive assays (out of four) were used to determine a “true” result. However, by using the

BLCM, we were able to derive time-updated test characteristics that could be used to adjust for

waning antibody signals.

Gaps in laboratory testing during the first wave, the significant proportion of asymptomatic

or pauci-symptomatic infections, as well as a continuing pandemic have prompted public

health authorities in Canada to continue to invest in serological surveys to evaluate the true

burden of SARS-CoV-2. Yet unique biological and epidemiological challenges exist when esti-

mating seroprevalence, particularly in low prevalence settings. We recently conducted a scop-

ing review and identified 33 seroprevalence studies among blood donors worldwide. From the

33 studies, 27 unique assay combinations were identified, more than half of studies used a sin-

gle assay to determine prevalence and less than a third accounted for imperfect test perfor-

mance [17]. Results from this study suggest relying on a single assay to determine prevalence

in a low prevalence setting may significantly bias results.

The variability in the number of diagnostic phenotypes may be associated with the interin-

dividual variability of the immune response. SARS-CoV-2 infects cells using a spike glycopro-

tein to bind to human angiotensin-converting enzyme 2 (ACE2) [18–20]. The receptor

binding domain attached to spike mediates both viral binding and fusion events and all pro-

teins are targets for neutralizing monoclonal antibodies [21, 22]. Biologically, it is not clear

why a person may differentially express antibodies against SARS-CoV-2, but among our sam-

ple, we found 13 distinct diagnostic phenotypes. The discordance between assays may also be a

product of imperfect test characteristics. In this study, we used one commercial assay for

which the manufacture originally reported a sensitivity of 95.9% and specificity of 99.6%. Later

real-world reports suggested the sensitivity was as low as 92.7% [23–28]. Results from this

study suggest significantly lower sensitivity. While it is customary to assume that assay perfor-

mance remains static, amid this dynamic pandemic, waning antibody signals may compromise

correct classification of prior SARS-CoV-2 exposure. We have previously shown in a longitu-

dinal study that the NP signal in the ELISA-based assay wanes faster than spike or RBD [12].

Consistent with previous reports, we found the nucleocapsid signal from the Abbott assay also

wanes faster than spike or RBD [29, 30]. This suggests that NP-based assays may be identifying

more recent exposures.

It should be noted that waning antibody signals do not necessarily mean waning cellular

mediated immunity. Indeed, recent studies suggest in the absence of detectable antibody sig-

nals there is evidence of neutralization associated with longer lasting immunity [31, 32].

Therefore, without adjusting for waning antibody signals we may be underestimating SARS--

CoV-2 seroprevalence. At this point in time, it remains unknown what the true measures or

correlates of immunity are in the Canadian population. The data presented here does not

address whether some blood donors may have mounted a cellular immune response with an

antibody response that waned by the time of serologic testing. We also note that the presence

of antibodies does not imply that those antibodies are neutralizing; although we have assessed

for spike and RBD antibodies, we have not attempted to understand the neutralizing capacity

of these donor specimens against wild type strains of SARS-CoV-2 or emerging variants in

Canada. In the next steps of our analysis we will be undertaking studies to understand the neu-

tralizing capacity of these donor specimens to SARS-CoV-2.

Our study has several strengths. First this study is nested within a large national seropreva-

lence survey which to date has tested>179,000 samples using the Abbott-NP assay since the

beginning of the pandemic in Canada. While we tested only a fraction of the samples, the sam-

ple demographic and seroprevalence rates (based on Abbott-NP) were very similar, illustrating

the generalizability of our results nationally [33].
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Given the uncertainty around the assay characteristics specifically among a donor popula-

tion, we used multiple methodological approaches to estimate seroprevalence and report all

findings. One of the strengths of the BLCA is the ability to estimate assay performance in the

absence of a gold standard. Given limited resources, it may not be feasible to evaluate seroprev-

alence using four unique assays. However, smaller nested studies with more comprehensive

antibody data within larger surveys can be used to correct for measurement errors. For exam-

ple, we used the sensitivity and specificity of the BCLA from this study to adjust for national

seroprevalence estimates recently published between May-July 2020 [33]. We reported sero-

prevalence was 0.74% (95%CI 0.68, 0.80), but after reanalyzing the data with updated sensitiv-

ity/specificity, based on the BLCM with informative priors, we found that the corrected

seroprevalence was 27% higher at 0.94% (95% CI 0.83, 1.05%). As the pandemic continues, the

proportion of recent and older infections will continue to vary over time and having an ability

to correct these time varying assay characteristics will become even more important.

Our study also has weaknesses. This study was conducted among blood donors, based on

selection criteria to be allowed to donate blood donors may be healthier than the general popu-

lation [34]. However, a recent study compared seroprevalence estimates from European blood

donors to household surveys targeting the general population and found seroprevalence rates

to be very similar [35]. In this analysis we assumed the assays were conditionally independent,

meaning there were no jointly false-positive or false-negative results between the assays. We

evaluated this assumption by assessing changes in sensitivity and specificity of each assay after

leaving one assay out. Although we found insignificant changes in test characteristics (S5

Table), it is possible this assumption does not hold, potentially biasing results. Future studies

are planned to explore different correlation structures. Assay performance is based on prede-

fined thresholds. For the Abbott assay we used the manufacturer’s�1.4 cut off, but recent

reports do suggest reducing the threshold to>0.8 to increase sensitivity and to account for

waning antibody signals. However, the sensitivity and specificity was not provided by the man-

ufacture to evaluate this alternative threshold. All four assays only probed for IgG meaning

that we did not measure IgM and IgA, which may provide some neutralizing capacity in some

individuals as anti-SARS-CoV-2 IgG titers begin to rise. In other donors, different profiles of

anti-SARS-COV-2 IgM, IgA and IgG may also provide different profiles of humoral protec-

tion. Finally, we did not assess for the SARS-CoV-2 neutralizing capacity of donor specimens

nor the avidity of the IgG antibody responses in those donors.

Conclusions

We used multiple analytical methods and assays to confirm very low seroprevalence (~1%)

among a healthy population of Canadian blood donors after the first COVID-19 wave [36].

We also found antibody signals by all the assays waned over time and this impacted seropreva-

lence rates. These findings suggest significant limitations to using a single assay to estimate

SARS-CoV-2 seroprevalence in a low prevalence setting. We recommend that seroprevalence

studies use multiple assays on either their entire sample or a representative subset to estimate

seroprevalence more accurately in the future. As seroprevalence studies enter a new era of

tracking natural and vaccine induced humoral immunity, highly sensitive methods will con-

tinue to be needed to adjust for waning antibodies and imperfect test characteristics.

Supporting information

S1 Fig. Signal to cut off ratio (S/Co) by calendar month April (4) until September (9). Red

lines represent thresholds. Abbott-NP (1.4) (n = 54 positive) based on the manufacture’s rec-

ommendations. Spike (0.190) (n = 228 positive); RBD (0.186) (n = 104 positive); and NP
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(0.396) (n = 214 positive). Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting

nucleocapsid antigen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor

binding domain; NP, nucleocapsid.

(DOCX)

S1 Table. Informative priors. 1Sensitivity and Specificity are based on manufactures, given

the uncertainty the range was based on expert opinion. Abbott-NP, Abbott Architect SARS--

Cov-2 IgG assay targeting nucleocapsid antigen; Spike, full length spike glycoprotein; RBD,

spike glycoprotein receptor binding domain; NP, nucleocapsid.

(DOCX)

S2 Table. Baseline characteristics of blood donor populations by month.

(DOCX)

S3 Table. Goodness of fit (comparing modelled results (expected) to observed data).

Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid antigen; Spike,

full length spike glycoprotein; RBD, spike glycoprotein receptor binding domain; NP, nucleo-

capsid.

(DOCX)

S4 Table. A. Assay Characteristics Overall and Bi-monthly based on the Bayesian Latent Class

Analysis with Non-Informative Priors. PPV, positive predictive value; NPV, negative predic-

tive value; Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid anti-

gen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor binding domain;

NP, nucleocapsid. B. Assay Characteristics Overall and Bi-monthly based on the Bayesian

Latent Class Analysis with Weakly-Informative Priors. PPV, positive predictive value; NPV,

negative predictive value; Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting

nucleocapsid antigen; Spike, full length spike glycoprotein; RBD, spike glycoprotein receptor

binding domain; NP, nucleocapsid.

(DOCX)

S5 Table. Overall sensitivity and specificity after leaving an assay out (informative priors).

Abbott-NP, Abbott Architect SARS-Cov-2 IgG assay targeting nucleocapsid antigen; Spike,

full length spike glycoprotein; RBD, spike glycoprotein receptor binding domain; NP, nucleo-

capsid.

(DOCX)

S1 Data.

(XLS)

S1 Code.

(DOCX)
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