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Abstract

As HIV incidence among people who inject drugs grows in the context of an escalating drug 

overdose epidemic in North America, investigating how network structure may affect vulnerability 

to rapid HIV transmission is necessary for preventing outbreaks. We compared the characteristics 

of the observed contact tracing network from the 2015 outbreak in rural Indiana with 1000 

networks generated by an agent-based network model with approximately the same number of 

individuals (n = 420) and ties between them (n = 913). We introduced an initial HIV infection into 

the simulated networks and compared the subsequent epidemic behavior (e.g., cumulative HIV 
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infections over 5 years). The model was able to produce networks with largely comparable 

characteristics and total numbers of incident HIV infections. Although the model was unable to 

produce networks with comparable cohesiveness (where the observed network had a transitivity 

value 35.7 standard deviations from the mean of the simulated networks), the structural variability 

of the simulated networks allowed for investigation into their potential facilitation of HIV 

transmission. These findings emphasize the need for continued development of injection network 

simulation studies in tandem with empirical data collection to further investigate how network 

characteristics played a role in this and future outbreaks.
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1. Introduction

Significant progress has been made in reducing HIV incidence among people who inject 

drugs (PWID) in the United States (US), with an estimated 10.7 % decrease in HIV 

incidence per year between 2008 and 2015 (Singh et al., 2018). However, these declines 

have stalled in the face of frequent rapid HIV transmission events occurring during an 

escalating drug overdose epidemic (Des Jarlais et al., 2016; Singh et al., 2018). The largest 

ever of these events among PWID in a non-urban setting in the US occurred in Scott County, 

Indiana in 2015, when nearly 200 people in a community of 25,000 individuals were newly 

diagnosed with HIV infection (Campbell et al., 2017; Peters et al., 2016). Following the 

outbreak, additional outbreaks of HIV infection attribute-able to injection drug use (IDU) 

have been identified in other states (Cranston et al., 2019; Golden et al., 2019).

Several factors have been associated with rapid HIV transmission in PWID, including a lack 

of awareness that HIV is a threat in the local setting, high frequency of needle/syringe 

sharing, inaccessibility of sterile injecting equipment, recent changes in drug usage patterns, 

and large, interconnected network structures (Des Jarlais et al., 2016). Concerning the latter, 

certain micro-network structures can further exacerbate HIV transmission and persistence of 

infection. One well-studied example is the presence of a “core” of members who are deeply 

nested in the larger network and connected to one another through numerous ties, thus 

facilitating transmission across broad spans of the network, should infection be established 

within the core (De et al., 2007; Friedman et al., 1998, 1997; Rothenberg et al., 1998). While 

instances of rapid HIV transmission are more likely in networks with these characteristics 

(Des Jarlais et al., 2016), they are not inevitable, with the potential to intervene on any of 

these factors.

Although much of the research on networks and HIV transmission has focused on sexual 

contact (Eames and Keeling, 2002; Kretzschmar and Morris, 1996; Shirley and Rushton, 

2005), a subset of this research has sought to identify the structures specific to injection 

networks and assess their relationship to transmission potential (De et al., 2007; Friedman et 

al., 1998; Rothenberg et al., 1998; Young et al., 2013). The ongoing drug overdose crisis 

makes this line of research particularly timely. The 2015 outbreak in Indiana, driven largely 
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by high-frequency injection of the prescription opioid oxymorphone, has raised concerns 

about the potential for other HIV outbreaks among PWID (Van Handel et al., 2016). 

Precariously, rural areas in the US are disproportionately affected by opioid use disorder and 

its infectious consequences, but are under-represented in terms of access to harm reduction 

services, such as syringe service programs and rapid HIV testing and linkage to care (Van 

Handel et al., 2016). An understanding of the impact of injection network structure on HIV 

transmission dynamics will be fundamental to mitigating and preventing future outbreaks 

among PWID. However, the majority of previous research in this area has been conducted in 

urban settings (Friedman et al., 1997; Klovdahl et al., 1994; Rothenberg et al., 1998), with 

limited generalizability to rural regions of the US. With few empirical studies of injection 

networks, many network models struggle to appropriately reproduce injection-specific 

network structures without explicitly demanding their formation with calibration to high-

level network statistics (Bellerose et al., 2019). As empirical network data is gradually 

collected, the continued development of injection network modeling is imperative to address 

critical knowledge gaps among public health researchers (Bellerose et al., 2019).

This study aimed to extend this body of research and provide novel insights on injection 

networks in rural settings by characterizing the observed network from the HIV outbreak in 

Scott County, Indiana. Using a previously published, discrete-time, agent-based network 

model (Goedel et al., 2019), we generated a series of stochastic networks with comparable 

numbers of individuals and ties between them to the observed network to investigate our 

model’s ability to produce the observed network structures, and how variability in these 

structures may impact HIV transmission.

2. Methods

2.1. Observational data

Our research utilizes previously published information on the observed contact tracing 

network from the 2015 outbreak in Scott County, Indiana (Campbell et al., 2017; Peters et 

al., 2016). Briefly, the investigation of the outbreak was part of an emergency response 

conducted by the Indiana State Department of Health and the Centers for Disease Control 

and Prevention. The contact tracing investigation involved disease intervention specialists 

eliciting the names of sexual and injection contacts in the past year of individuals newly 

diagnosed during the outbreak and offering HIV testing to these contacts. These processes 

were repeated for any newly diagnosed contacts. These activities were not conducted with 

individuals who tested negative. The observed network comprised 420 individuals and 913 

ties, including a large main component containing 411 individuals (Campbell et al., 2017). 

Nearly half (44.5 %) were newly diagnosed with HIV.

2.2. Simulation methods

2.2.1. Model setting—We adapted a previously published version of the TITAN model, 

an agent-based network model, to explore rapid HIV transmission in Scott County, Indiana 

(Goedel et al., 2019). Agent-based modeling is a simulation method that represents micro-

level interactions between individual entities called agents to understand the emergence of 

macro-level trends. Our model was parameterized, where possible, using published 
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information on injection and sexual behavior in Scott County and supplemented with 

estimates from the literature where necessary. The model was then calibrated to the observed 

number of incident HIV infections through the scaling of the frequency of injection acts 

(Peters et al., 2016) (see HIV Transmission for further discussion). All parameter values, key 

assumptions, and sources were previously described in detail (Goedel et al., 2019). New 

elements and calibration of the current model version are discussed here and are expanded 

upon in the Supplemental Appendix.

There were very few rural injection networks to serve as appropriate comparators to the 

observed network (West, 2019; Young et al., 2013). As we aimed to characterize and 

identify potential unique qualities of this network and their potential contribution to HIV 

transmission, we instead compared the observed Scott County network to the agent-built 

simulated networks. Comparing an empirical network to a set of simulated networks has 

been used in multiple studies when sufficient empirical comparison networks were 

unavailable (Bearman et al., 2004; Bellerose et al., 2019; Young et al., 2013). Some of these 

studies employed the Erdos-Rényi method (Rényi and Erdos, 1960), building networks 

where ties are distributed randomly. These studies have been criticized for their inability to 

reproduce hubs and “preferential treatment,” the observed phenomenon where new 

individuals tend to form ties with more connected individuals (Bellerose et al., 2019). 

Conversely, other modeling approaches, such as exponential random graph models (Robins 

et al., 2007) or advanced stochastic block models (Airoldi et al., 2008), were able to produce 

these particularities in network structure but required direct calibration to high-level target 

network statistics to do so (Bellerose et al., 2019). As the TITAN model builds a network 

through an attribute-based partnering algorithm representing individual agents’ preferences, 

we felt this simulated set of networks more accurately represented alternate, “human-built” 

Scott County networks than purely random networks, without reducing variability by 

directly demanding the recreation of specific structures observed in the empirical data.

Each iteration of the simulation models HIV transmission in a network of comparable size 

(420 agents) in discrete time-steps, each representing 1 calendar month for 5 years, the 

estimated duration of the outbreak (Campbell et al., 2017). Each iteration includes the 

initialization of the model population, the formation of the contact network, the introduction 

of HIV into the network through a randomly selected agent, and the monitoring of the 

progression of HIV throughout the population. A total of 1000 iterations were simulated.

2.2.2. Population formation—The model first initialized a virtual population. The size 

of the virtual population was allowed to vary across simulations, where the number of agents 

included in the simulated network (i.e., the number of agents with at least one tie) was 

required to be within 10 % of the number of individuals in the observed network (n = 420). 

The attributes of agents in the base population were assigned through stochastic processes to 

achieve the desired gender distribution and gender-specific prevalence of IDU (Campbell et 

al., 2017). HIV prevalence in the network was set at 0% at initialization, reflecting an 

entirely susceptible population.

2.2.3. Network formation—Following population formation, the model created ties 

between agents to build a network. The number of ties was also allowed to vary across 
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simulations, where we generated networks with a total number of ties within 10 % of the 

observed network (n = 913). This process ensured that the networks had a comparable 

average density to the observed network. These ties were distributed within the agent 

population through the following processes.

All agents were assumed to be able to participate in sexual behavior in the model and were 

assigned a target number of sexual partners based on the observed sex-specific degree 

distributions for PWID and non-PWID (Campbell et al., 2017). These degree distributions 

were represented as step functions, with each step representing a range of possible target 

numbers of sexual partners that an agent might be assigned. Each step was assigned a 

probability of occurrence, calculated from the observed sex-specific degree distributions 

(Supplemental Fig. S1). Given the low number of male-male sexual dyads reported during 

contact tracing (Campbell et al., 2017), only male-female sexual dyads were assumed 

possible in the simulated networks. Agents who injected drugs were given two additional 

target numbers, one for injection partners and the other for sexual-injection partners based 

on the observed injection-specific degree and sexual-injection-specific degree distributions, 

respectively (Campbell et al., 2017). These degree distributions were also represented with 

step functions (Supplemental Figs. S2 and S3, respectively).

The network was constructed through an iterative process. The model iterated through the 

list of agents who had not yet reached their target partner numbers, beginning with agents 

who had high target partner numbers to facilitate agents realizing their high degree. It 

created a list of eligible partners for each agent under the parameters governing partner 

compatibility (i.e., allowing only male-female sexual ties to be formed, but any combination 

for injection ties), including only agents who were also not yet at their target number of 

partners. The list of eligible partners was enumerated, a random agent selected, and the two 

agents tied together. The list was then rebuilt, and the process was repeated until each 

agent’s target partner number had been met or there were no more eligible partners for the 

given agent. This process introduced stochasticity into the structure of the set of simulated 

networks: the model provided agents target numbers based on the observed distributions 

while allowing their realized degree to differ. Further descriptions of these processes are 

included in the Supplemental Appendix.

2.2.4. Introduction of HIV infection—After the formation of the contact network, a 

single agent engaging in IDU in the main component was chosen to seroconvert 

spontaneously at the first time-step, thus introducing HIV into the network. Hereafter, we 

refer to this agent as the initial infection.

2.2.5. HIV transmission—The transmission of HIV infection throughout the network 

has been previously described (Goedel et al., 2019). Briefly, agents were assigned a target 

number of condomless vaginal intercourse acts per partner per month, drawn from a Poisson 

distribution with a mean of 13 acts per month (Crosby et al., 2012). Agents who inject drugs 

were also assigned a target number of injection acts per month from a Poisson distribution. 

On average, 34 % of these injection acts were estimated to include syringe sharing (Peters et 

al., 2016). Agents were equally likely to share injection equipment with each of their 

partners. These acts were evaluated as the number of trials in binomial distributions that 
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model HIV transmission, where the probability of success is the probability of transmission 

associated with a particular behavior (Patel et al., 2014).

After building networks with comparable distributions of ties, the mean number of incident 

HIV infections in the simulated outbreaks was higher than that actually observed (n = 183). 

To calibrate our model to produce outbreaks with comparable magnitude to the outbreak 

observed, we adjusted a scaling factor on the frequency of injection acts, a parameter around 

which there is substantial uncertainty due to self-reporting, survey methods, and high 

variability (Patel et al., 2014; Peters et al., 2016). The calibrated scaling factor resulted in a 

reduction of 150 injection acts per month to 35 (Patel et al., 2014; Peters et al., 2016). 

Additional information is provided in the Supplemental Appendix.

2.2.6. HIV testing and treatment—The natural history of HIV infection, as well as 

engagement with HIV testing and treatment, were simulated as previously described (Goedel 

et al., 2019). In 2015, an alert from the health department following 11 newly diagnosed 

infections began the contact tracing investigation and increased testing activities (Peters et 

al., 2016). To emulate the public health activities that followed recognition of the outbreak, 

after ten new diagnoses in the simulation, an agent’s probability of HIV testing increased to 

a per-month probability of 7.3 % compared to the baseline value of 1.7 %, emulating the 

contact tracing investigation practices (Peters et al., 2016).

2.3. Data analysis

We compared the observed network of Scott County to the set of simulated networks to 

investigate if the observed network structure was different from the simulated networks. We 

measured possible differences using network measures that had been previously shown to 

either facilitate or limit rapid HIV transmission (Bearman et al., 2004; Bell et al., 1999; 

Christley et al., 2005; Doreian and Woodard, 1994; Estrada, 2012; Freeman, 1978; Friedman 

et al., 1997; Khan et al., 2013; Seidman, 1983; Shirley and Rushton, 2005; Tarwater and 

Martin, 2001; Valente, 2010; Wasserman et al., 1994).

These measures included the number of components in the network (omitting isolated 

individuals), size of the largest component (referred to as main component), density of the 

main component, average betweenness centrality of the main component, betweenness 

centrality of the initial infection, average geodesic distance of the main component, geodesic 

distance of the initial infection, diameter of the main component, degree centrality of the 

initial infection, centralization of the main component, the proportion of individuals located 

in a 2-core in the main component, and transitivity in the main component. Formal 

definitions of these measures and their previously hypothesized associations with HIV 

transmission are described in detail in Table 1, with further detail in the Supplemental 

Appendix (Supplemental Table S1). The outcome measure compared across scenarios was 

the number of incident HIV infections over the simulation period. Scatterplots displaying the 

association of the network metrics with the cumulative number of incident HIV infections 

were created, and simple linear regression lines with standard error bars of 95 % confidence 

level were displayed for visualization.
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3. Results

3.1. Description of network structure

The number of agents in the simulated networks ranged from 385 to 435, with a mean of 

421 individuals (Standard Deviation [SD]: 6.6). The number of ties ranged from 821 to 

1,003, with a mean of 950 ties (SD: 38.5).

Table 2 shows the summary statistics of the network metrics as they describe the observed 

network and the set of simulated networks. The transitivity of the observed Scott County 

network was dramatically higher (by 35.7 SD) than in the simulated networks. The average 

betweenness centrality and average geodesic distance of the observed network were also 

both larger (by 5.45 and 5.11 SD, respectively) than in the simulated networks. All other 

observed network measures, including the centralization, density, diameter, number of 

connected components, proportion of agents in two-cores, and main component size were 

within three standard deviations of the mean of the simulated network set (Fig. 1).

The realized degree distributions of the simulated networks were broadly representative of 

the observed distribution (Fig. 2). The maximum degree obtained by an agent was 60 

partners. The realized, type-specific degree distributions of the simulated networks were also 

comparable to those of the observed network (Supplemental Figs. S4, S5, and S6).

3.2. Association of network structure with epidemic behavior

The number of incident HIV infections ranged from 1 to 273, with a median of 156 

infections (SD: 87.4, Supplemental Fig. S7). Although the model was unable to produce 

networks with comparable transitivity values, the average number of incident infections in 

the simulations was comparable to the number (n = 183) in the observed outbreak. Of the set 

of simulations, 23.1 % resulted in less than 20 infections. Of those that resulted in 20 

infections or more, the mean number of infections was 165. The set of simulations that 

resulted in less than 20 infections had over 50 % of their HIV-infected agents engaged in 

treatment 46.7 % of all simulated time, whereas the set of simulations that resulted in 20 

infections or more only had over 50 % of their HIV-infected agents engaged in treatment 2.9 

% of the time. Visual representations of the associations of structural network measures with 

the number of incident HIV infections can be found in Fig. 3. Higher values of density were 

associated with higher numbers of HIV infections in the model simulations. Higher values of 

average betweenness centrality, average geodesic distance, and diameter were associated 

with lower numbers of HIV infections in the model simulations.

Additionally, visual representations of the associations of characteristics of the initial 

infection with the number of incident HIV infections can be found in Fig. 4. Higher 

centrality scores of the initial infection – both betweenness and degree – were associated 

with higher numbers of HIV infections, while higher geodesic distance of the initial 

infection was associated with lower numbers of HIV infections in the model simulations.
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4. Discussion

We compared the network structure of the observed contact tracing network from the 2015 

HIV outbreak in Scott County, Indiana to 1000 simulated networks built using an agent-

based network model by measuring nine structural network characteristics. Although the 

model was unable to produce networks with comparable transitivity values, the structural 

variability of the simulated networks allowed for investigation into their potential facilitation 

of HIV transmission.

The observed network was extreme in its cohesiveness shown by the high levels of 

transitivity as compared to the simulated networks. Consistent with other studies simulating 

random networks (Bellerose et al., 2019), none of the simulated networks in the current 

study generated as large a proportion of “closed triangles” (indicating high transitivity) as 

was identified in the observed network. As the model chooses randomly from a list of 

eligible agents when partnering, the probability of closing a triad remains random, unlike in 

empirical networks. It is well-known that cohesive networks (i.e., networks with large 

numbers of closed triangles) are more vulnerable to HIV/STI transmission than non-

cohesive networks because these closed triangles make individuals vulnerable to HIV 

infection through multiple pathways (Bearman et al., 2004; Rothenberg et al., 1998). 

Increased levels of transitivity have also been observed in other rural and urban injection 

networks (Klovdahl et al., 1994; Young et al., 2013). Given the well-studied impact of 

transitivity on epidemic behavior, the discrepancy in transitivity between the observed and 

simulated networks might indicate the presence of a separate transmission mechanism that 

recreated outbreaks of similar magnitude to the observed, potentially facilitated by our 

condition of comparable density.

In future studies where transitivity is empirically measured, we propose evolving partnering 

algorithms such that potential partners have varied probabilities reflecting whether or not 

they are already connected to one or more of the “searching” agent’s partners. This 

probability distribution could be tailored to produce the number of closed triangles observed 

empirically. However, we must continue to advance methods of simulated network 

formation that generate network structures specific to injection networks that do not 

exclusively rely on high level network statistics as targets. Although other model types allow 

for the specification of network structures (Airoldi et al., 2008; Robins et al., 2007), the 

structural variability among injection networks and the limited amount of empirical data 

together challenge researchers to develop methods in which these structural characteristics 

are emergent (Bellerose et al., 2019; Zhu et al., 2020). As additional empirical data on 

injection networks is gathered, we see potential for meta-analyses on the drivers of 

variability in injection network transitivity values, such that simulated formation of closed 

triangles may be modeled as an emergent property. While further research is needed to 

determine how triadic closure could be generated within the current partnering algorithm 

and framework, there are notably other network-based transmission mechanisms known to 

have generated injection-driven outbreaks, including high rates of partner turnover due to 

incarceration (Alpren et al., 2020; Cranston et al., 2019). Continued development of network 

modeling techniques designed to represent characteristics specific to injection networks is 

needed to understand the range of mechanisms underscoring injection-driven outbreaks.
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Although the simulated networks were not wholly representative of alternative networks that 

could have been present in Scott County, their structural variability allowed for a brief 

investigation of the association of the other network properties with epidemic behavior. 

Although none of the associations were dramatic, we observed consistently intuitive trends. 

Increased density of the main connected component was associated with an increase in 

incident infections: with more ties comes more opportunity for transmission events 

(Tarwater and Martin, 2001). Low betweenness centrality can be associated with higher 

disease spread because it indicates that there are many paths for disease transmission in the 

network (Christley et al., 2005; Freeman, 1978), reducing the potential impact of the 

“firewall effect,” where HIV transmission in a network stabilizes below saturation because 

of the location of individuals with low infectiousness or engagement with treatment (Khan et 

al., 2013). Lower average geodesic distance in the main connected component indicates that 

the pairwise proximity among actors is small; therefore, that the length the disease must 

travel to saturate the component is small (Wasserman et al., 1994).

Our simulations also provided the opportunity to examine the relationship of the location of 

the initial infection with epidemic behavior. Higher values of betweenness centrality for this 

agent indicate higher network dependence on that individual’s connections for HIV 

transmission, resulting in the potential for more extreme epidemic behavior. Similarly, the 

higher the degree of this agent, the stronger its immediate influence, and larger outbreaks of 

20 or more infections occurred more frequently. Finally, a higher geodesic distance for this 

agent reflects a larger distance for HIV to travel to reach individuals in the network, and 

more opportunity for transmission to be contained in one section of the network.

A substantial number of simulations did not result in outbreaks of 20 or more infections. 

These simulations had similar distributions of network structures as those displaying 

extreme epidemic behavior, although appeared to be impacted by the location of the initial 

infection. Simulations that resulted in reduced outbreaks also differed in that their agents 

infected with HIV received a diagnosis and subsequently engaged in treatment before the 

infection was able to establish uncontrolled spread in the larger network. We hypothesize 

that high levels of centralization are partially responsible for this phenomenon, given the 

structure’s ability to either facilitate increased network-level risk for rapid HIV transmission, 

due to the ability for central actors to facilitate higher rates of HIV transmission (Valente, 

2010), or reduce disease diffusion through the “firewall effect” (Khan et al., 2013; Valente, 

2010). The relatively small effect centralization appeared to have on epidemic behavior (Fig. 

3g) reinforces the hypothesis that the characteristic can both enable or prevent disease 

transmission. These findings indicate the potential for even minimal testing and treatment 

services to have non-linear beneficial effects, particularly in highly centralized networks.

This network investigation provides insights on potential HIV intervention strategies. The 

impact that low-threshold HIV testing and treatment services can have on disease 

transmission cannot be understated. Scott County’s only proximal testing and treatment 

provider—a Planned Parenthood clinic—had been closed in 2013, likely contributing to the 

community’s vulnerability to uncontrolled disease spread (Gonsalves and Crawford, 2018; 

Rich and Adashi, 2015). The extreme centralization and degree centrality of the observed 

network likely generated potential for dramatic variability in epidemic behavior, the 
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protectiveness of which could have been capitalized on with increased rapid HIV testing and 

linkage to care. Highly centralized networks and networks with large main components have 

also been previously discussed as optimal situations for peer-delivered interventions, 

leveraging central network members as wide-reaching disseminators of harm reduction 

materials and messaging (Bellerose et al., 2019; Young et al., 2013). Notably, being centrally 

located may not indicate one’s willingness to participate in peer health advocacy (Weeks et 

al., 2002), although some studies have shown that those willing to engage in peer-to-peer 

outreach may begin to adopt harm reduction strategies themselves (Weeks et al., 2009). 

Importantly, for these effects to be realized, harm reduction services must be made 

accessible, particularly to centralized community members that can facilitate intervention 

strategies adaptive to the local drug-using environment (Weeks et al., 2009; Young et al., 

2013; Goedel et al., 2019).

Although this research extends the development of important methodological tools to 

investigate injection network structure in the context of the precipitating trend of injection-

driven outbreaks, there are limitations. We used the observed network as our source for 

parameters for modeling a complete network. However, in the contact tracing methods that 

generated the observed network data, partner elicitation activities were halted with 

individuals who tested negative for HIV infection (Peters et al., 2016). Therefore, 

connections are missing both between pairs of HIV-negative individuals within the network 

and between HIV-negative individuals within the network and their partners who were not 

contacted, thus biasing the observed degree distributions downward. However, given the 

small size of the PWID community, the tightly knitted network of high mean degree, and the 

few subsequently identified HIV cases outside of this network, the tracing method likely 

captured all or almost all of the network. Therefore, although we believe it appropriate to 

assume a closed model population for this analysis, calibrating to the biased degree 

distributions without demanding the location of HIV-negative individuals within the network 

likely distributes ties differently than in the observed. Because the contact elicitation process 

ended with HIV-negative individuals, these persons are more likely to be found on the 

outside edges of the observed network and potential ties between them and other HIV-

negative persons remain unobserved. If the HIV-negative simulated agents indeed share 

more ties between them than was measured in the observed network, we could expect to 

simulate more condensed, ball-like simulated networks given our requirement of comparable 

numbers of ties. This might explain the observed network’s outlying betweenness centrality, 

geodesic distance, and diameter values and could have resulted in our simulated networks 

being more conducive to HIV transmission.

The need for a substantial reduction in the number of injection acts per month from 150 to 

35 when calibrating to the observed number of incident infections suggests that the network 

structure of the set of simulated networks was indeed more conducive to transmission than 

the observed network structure. In addition to the above phenomenon, the assumption of a 

static network likely played a role in this phenomenon, given that in a subset of 196 contacts 

for whom information on risk behavior was collected, 54.2 % reported experiencing 

incarceration in the past year (Peters et al., 2016). The inclusion of these dynamics was 

outside the scope of this study, particularly due to the effect they would have on measuring 

structural network characteristics. However, the temporary severing of ties as individuals 
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experience incarceration has the potential to have reduced HIV transmission in the observed 

outbreak. Lastly, we note that the observed parameter value reflects total injection acts, 

including when alone or with others who were not injecting, rather than the subset of 

“partnered” injection acts (the TITAN model’s true parameter of interest). As there is always 

potential for partnered acts in the model, the calibrated reduction in injection acts likely 

accounts for injection acts without a partner (Patel et al., 2014; Peters et al., 2016).

Lastly, the setting of Scott County, Indiana was situationally unique in that the PWID 

population was isolated from outside communities; 90 % of the identified HIV infections 

were attributed to people living in Scott County, and all of those infected had contacts within 

Scott County, mainly through IDU (Peters et al., 2016). While the geographic isolation was 

also present in an analysis of the networks of people who use drugs in Perry County, 

Kentucky (Young et al., 2013), it is not a quality of all rural PWID communities in the US 

(Evans et al., 2018). The PWID population was also primarily using extended-release 

oxymorphone, a drug with pharmacokinetic properties that differentiate it from other 

opioids. The drug was associated with frequent injection events and increased injection 

equipment sharing among individuals to an extent that may be different in populations using 

other drugs (Conrad et al., 2015; Peters et al., 2016). These characteristics caution 

comparison to other PWID communities and are important to note in tandem with the 

similarities identified and discussed previously.

The HIV outbreak in Scott County is the first major injection-driven HIV outbreak in a non-

urban setting for which there is published network data. Continued investigation and 

development of network simulation models in tandem with empirical data will provide an 

opportunity to understand the vulnerability of injection networks to rapid HIV transmission 

with further nuance. Taking into account increasing HIV incidence in PWID populations 

(Singh et al., 2018) and limited harm reduction resources in many of these settings (Van 

Handel et al., 2016), injection networks are increasingly likely to be introduced to HIV 

infection. New outbreaks of rapid HIV transmission have now also been identified among 

PWID in Massachusetts and Washington (Cranston et al., 2019; Golden et al., 2019), and we 

predict more are likely to be identified in the near future should there be no changes in 

access to harm reduction services.

5. Conclusions

The predicted increase in rapid HIV transmission via injection networks encourages the 

prioritization of efforts to further develop modeling techniques that can reproduce the range 

of network-based transmission mechanisms among communities of PWID. With the cost of 

outbreaks so high for communities, we must proactively take steps to support communities 

of PWID, especially those in the absence of a policy environment that allows for legal 

implementation of syringe services programs or prioritization of public health infrastructure. 

As more empirical network data is collected, we must subsequently investigate it for 

structural patterns and opportunities for further understanding and action. Investing in 

network-based research could be the key to informing effective prevention efforts in rural 

settings that are particularly vulnerable to rapid outbreaks of infectious diseases.
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Fig. 1. Distribution of simulated and observed network measures.
Boxplots displaying the distribution of values for eight network metrics for the set of 

simulated networks (n = 1000) compared to the observed Scott County network (shown with 

a blue circle). All values have been standardized around a mean value of 0 for visualization 

purposes. Transitivity has been excluded from this plot because the observed network 

represented an extreme outlying value compared to the simulated distributions (SD = 35.7).
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Fig. 2. Comparison of observed and realized degree distributions.
Line plots of the realized degree distributions of our simulated set of networks (grey curves) 

compared to the degree distribution of the observed network (blue curve).
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Fig. 3. Association of network metrics on the cumulative number of incident HIV infections.
Association of network metrics with the cumulative number of incident HIV infections in 

the simulated networks (n = 1000) compared to the observed data (shown with a blue circle).
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Fig. 4. Association of characteristics of the initial infection with the cumulative number of 
incident HIV infections.
Association of characteristics of the initial infection with the cumulative number of incident 

HIV infections in the simulated networks (n = 1000).
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Table 1

Glossary of terms guiding the analysis of structural network characteristics.

Metric Definition Hypothesized Association with Epidemic Behavior

Number of 
Components

Number of components in the 
network, omitting isolated individuals.

The number of components helps represent the dispersion of individuals across a 
static network, as individuals in separate components cannot, by definition, 
infect one another (Bearman et al., 2004; Estrada, 2012).

Component Size Number of individuals within a 
component.

The size of the largest component in a static network represents an upper-bound 
for potential disease diffusion in the population (Estrada, 2012).

Density Number of ties in the network divided 
by the number of total possible ties in 
the network.

Network density helps determine outbreak magnitude and represents the 
“knittedness” of the component of interest (Seidman, 1983; Tarwater and Martin, 
2001).

Betweenness 
centrality

Fraction of shortest paths between all 
other pairs of individuals that pass 
through a given index individual.

A component with high average betweenness centrality is dependent on a select 
number of individuals for disease diffusion, while one with low average 
betweenness centrality likely has many routes of transmission through many 
individuals (Christley et al., 2005; Freeman, 1978).

Geodesic 
Distance

Length of the shortest path between 
two connected individuals in a 
network.

Networks with lower average geodesic distance might have multiple paths, or 
“shortcuts,” between individuals, compared to networks that form in long, chain-
like structures (Bearman et al., 2004; Estrada, 2012; Wasserman et al., 1994).

Diameter Maximum distance between a pair of 
individuals in a component.

A large diameter might indicate the network includes a long, chain-like structure, 
rather than a more condensed shape (Wasserman et al., 1994).

Degree An individual’s numbers of ties. An individual’s degree represents its potential influence on the network (Bell et 
al., 1999).

Centralization Sum of the differences of the largest 
observed degree and each of the 
individuals’ degrees, divided by the 
sum of the maximum of these 
differences.

A high centralization measure could indicate dependence on one or a few 
individuals in a hierarchical network, and it can either accelerate disease 
diffusion through these individuals acting as “broadcasters” (Valente, 2010) or 
reduce disease diffusion through a phenomenon called the “firewall effect” 
(Khan et al., 2013; Valente, 2010).

K-cores A connected group in which all 
individuals are connected to at least k 
individuals in the group.

Networks with substantial amounts of their individuals located in k-cores 
represent structures where there are tight-knit sub-groups (Doreian and Woodard, 
1994). 2-core participation specifically has been shown to be a high-risk position 
within a network (Friedman et al., 1997).

Transitivity The proportion of all triads that 
exhibit closure (i.e., a complete 
triangle).

Individuals with high transitivity are more at risk for acquiring the disease 
because they can be located in the more dense areas of the network and can be 
reached through multiple avenues. Diseases spread more readily through highly 
transitive networks (Shirley and Rushton, 2005).
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Table 2

Comparison of the observed network to the distribution of the simulated set of networks.

Metric Value for Observed 
Network

Simulated Networks (n = 1000) Number of Standard Deviations 
from Mean of Simulated NetworksMean (SD) Range

Number of connected components 4 4.1 (2.3) 1 – 16 0.02

Size of main component 411 413.7 (8.2) 380 – 431 0.33

Density 0.011 0.011 (0.0006) 0.009 – 0.014 0.58

Average betweenness centrality 0.008 0.006 (0.0002) 0.005 – 0.007 5.45

Average geodesic distance 4.1 3.6 (0.1) 3.3 – 3.9 5.11

Diameter 9 7.7 (0.61) 7.0 – 10.0 2.19

Centralization 0.126 0.110 (0.013) 0.047 – 0.140 1.22

Proportion of agents in 2-cores 0.192 0.205 (0.025) 0.124 – 0.286 0.51

Transitivity 0.166 0.025 (0.004) 0.014 – 0.039 35.7
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