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Despite advances in the treatment of coronary diseases, acute coronary syndrome
(ACS) remains the leading cause of death worldwide. ACS is associated with metabolic
abnormalities of lipid oxidation stress. In this study, based on liquid chromatograph
mass spectrometry technique, we conducted the metabolic profiling analysis of serum
samples from stable plaques (SPs) and vulnerable plaques (VPs) in ACS patients for
exploring the potential biomarkers of plaque stability. The results showed that four
differential metabolites were identified between the SPs and VPs, including betaine,
acetylcarnitine, 1-heptadecanoyl-sn-glycero-3-phosphocholine, and isoundecylic acid.
Meanwhile, the diagnostic model was identified using stepwise logistic regression and
internally validated with 10-fold cross-validation. We analyzed the correlations between
serum metabolic perturbations and plaque stability, and the serum betaine and ejection
fraction-based model was established with a good diagnostic efficacy [area under the
curve (AUC) = 0.808, sensitivity = 70.6%, and specificity = 80.0%]. In summary, we
firstly illustrate the comprehensive serum metabolic profiles in ACS patients, suggesting
that the combined model of serum betaine and ejection fraction seems to be used as
the potential diagnostic biomarker for the vulnerability of plaque stability.

Keywords: serum, metabolomics, biomarkers, acute coronary syndrome, liquid chromatography, mass
spectrometry

INTRODUCTION

Coronary artery disease (CAD), one of the metabolic disorder diseases, causes the most serious
cardiovascular death events in the world (Terashima et al., 2000). Acute coronary syndrome
(ACS), a severe category of CAD, is usually associated with the rupture of unstable plaques (VPs),
formation of thrombosis, and occurrence of acute myocardial ischemia (Goodacre et al., 2009).
Clinically, ACS can be distinguished into unstable angina (UA) and acute myocardial infarction
(AMI). Early detection of VPs is critical to receive suitable timely therapy and inhibit the happening
of AMI and heart failure (Reihani et al., 2018).
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Previous studies suggested that atherosclerosis is a chronic
inflammatory arterial disease and led by an imbalanced lipid
metabolism, and subsequent impaired immune response in
developing over decades, though a number of biomarkers
related to the peripheral or coronary diseases have been
found to be associated with lipid metabolism and might be
useful in predicating ACS (Ridker, 2007; Wang et al., 2007;
Antoniades et al., 2009). However, most of the studies on
biomarkers of coronary diseases were based on retrospective
study, and the predictive sensitivity and specificity of
biomarkers remain to be nonconforming and inconclusive.
Thus, exploration of novel circulatory biomarkers capable
of predicting cardiovascular events induced by VPs is still a
major challenge.

Metabolomics, a newly developed discipline, is considered
to allow qualitative and quantitation analysis of low-molecular-
weight metabolites or endogenous metabolic substances in
physiological or pathological conditions (Calderon-Santiago
et al., 2017). Metabolomics is widely used in diagnosing a
variety of metabolic diseases, such as gastritis (Chen et al.,
2019), liver fibrosis (Fang et al., 2017), diabetes (Klein and
Shearer, 2016), and cancers (Huang et al., 2013; Chan et al.,
2014; O’Keefe et al., 2015). Simultaneously, the application of
metabolomics in cardiovascular diseases like hyperlipidemia (Sun
et al., 2017), atherosclerosis (Wishart, 2016), and hypertension
(Au et al., 2017) has also gradually attracted much more
attention. However, the metabolomics change of ACS is
not well known and the risk stratification role of serum
metabolic biomarkers on ACS and stable CAD need to be
further explored.

In the present study, we explored the metabolomics on
serum samples of stable plaques (SPs) and VPs in ACS
patients to analyze the metabolomics correlations between SPs
and VPs and to find and identify specific metabolites that
may be potentially conducted as risk stratification biomarkers
of ACS patients.

MATERIALS AND METHODS

Patients’ Characteristics and Sample
Selection
In this study, we reviewed and identified patients with newly
diagnosed ACS who were treated between November 2016
and February 2019 at the Tungwah Hospital of Sun Yat-sen
University. We recruited 252 adult patients who present with
acute chest pain and age >20 years old in the emergency
department of the Tungwah Hospital of Sun Yat-sen University.
Exclusion criteria are as follows: patients with severe liver or
kidney diseases, marrow and hematological system diseases, chest
pain caused by trauma, malignancy, or previously diagnosed with
coronary disease in 2 months and/or were treated accordingly.
All participants with ACS were enrolled based upon typical
clinical features, electrocardiogram (ECG) examination, elevated
cardiac troponin I (cTnI), coronary angiography (CAG), and
intravenous ultrasound (IVUS) that met the criteria of ACS
from guideline recommendations. This study was approved

TABLE 1 | Characteristics of the population in untargeted metabolomics
analysis groups.

Characteristics SPs (n = 33) VPs (n = 32) P

Age, y 56.58 (10.52) 60.19 (10.49) 0.252

Male Sex, n (%) 22 (66.7) 23 (71.9) 0.629

Height, cm 162.88 (8.24) 161.69 (7.60) 0.832

Weight, kg 68.33 (12.27) 62.97 (9.45) 0.165

Smoking, n (%) 9(27.3) 13 (40.6) 0.512

Drinking, n (%) 2 (6.1) 4 (12.5) 0.668

Hypertension, n (%) 20 (60.6) 24 (75.0) 0.463

Diabetes, n (%) 8 (24.2) 9 (28.1) 0.918

CREA µmol/L 77.48 (17.61) 92.06 (32.70) 0.064

URIC µmol/L 385.27 (90.27) 405.91 (135.69) 0.48

TCHO mmol/L 4.40 (0.90) 4.40 (1.10) 0.734

TG mmol/L 1.80 (1.28) 1.81 (1.15) 0.5

HDLC mmol/L 1.14 (0.36) 1.11 (0.24) 0.773

LDLC mmol/L 3.00 (1.52) 3.06 (0.86) 0.734

EF (%) 63.27 (7.87) 64.66 (6.52) 0.42

Plaque (%) <0.001

0 33 (100.0) 0 (0.0)

1 0 (0.0) 32 (100.0)

NA 0 (0.0) 0 (0.0)

Lesion (%) <0.001

0 2 (6.1) 6 (18.8)

1 23 (69.7) 18 (56.2)

2 4 (12.1) 5 (15.6)

3 4 (12.1) 3 (9.4)

NA 0 (0.0) 0 (0.0)

SP, stable plaque; VP, vulnerable plaque; HC, healthy control; CREA, creatinine;
URIC, uric acid; TCHO, total cholesterol; TG, triglyceride; HDLC, high-density
lipoprotein cholesterol; LDLC; low-density lipoprotein cholesterol; EF, ejection
fraction. Continuous variables are presented as mean (SD). Categorical variables
are presented as n (%). The bold values of Plaque (%) and lesion (%) mean the
plaque and lesion are only two different factors in SP and VP groups.

by the ethics committee of Tungwah Hospital of Sun Yat-
sen University. Informed consent was obtained from all
subjects before enrollment in the study. Fresh serum samples
(around 800 µl) were collected after enrollment, according
to the manufacturer’s protocol of Longseegen storage kit
(Longsee Biomedical Corporation, Guangzhou, China), and
stored at −80◦C.

Chemicals
Liquid chromatograph mass spectrometer (LC-MS) grade
acetonitrile, methanol, and ultrapure water were purchased
from Thermo Fisher Scientific (Waltham, MA, United States).
Ammonium acetate and formic acid were purchased from
CNW (Shanghai, China). 1-Heptadecanoyl-sn-glycero-
3-phosphocholine and betaine were from ChromaBio
(Chengdu, China). Acetylcarnitine was purchased from EFFBIO
(Shanghai, China).

Sample Preparation
Blood samples from ACS patients were collected and
homogenized. Serum sample was collected, which was
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FIGURE 1 | Study design for the development of metabolite-based model.
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FIGURE 2 | Typical mass spectra of the SPs group (A) and VPs group (B). SPs, stable plaque groups; VPs, vulnerable plaque groups.

added with 800 µl methanol/acetonitrile. Then, the sample
was vibrated, subjected to ultrasound, and incubated at
−20◦C to promote protein mixture precipitation. The serum
mixtures were centrifuged, and the supernatants were collected,
vacuum-dried, and re-dissolved. Lastly, the supernatants were
conducted to metabolomics profiling by liquid chromatography
mass spectrometry.

Untargeted Metabolomics and
Measurement of Metabolites
Ninety-eight serum samples from ACS patients were assigned to
detect untargeted metabolomics. After the samples were screened
by propensity score matching, 65 serum samples (SPs, n = 33;
VPs, n = 32) were included to perform untargeted metabolomics.
Followed by previous protocols with modifications (Chen
et al., 2016, 2017; Shivanna et al., 2016; Zhang et al., 2019),

after serum sample preparation, metabolite preprocessing and
statistical analysis were performed with a Waters AcquityTM

Ultra Performance.
The process was as follows: 95% A (a acetonitrile solution) and

5% B (a water solution) from 0 to 0.5 min, 90% A and 10% B from
0.5 to 2 min, 40% A and 60% B from 2 to 10 min, 5% A and 95% B
from 10 to 14 min, 5% A and 95% B from 14 to 16 min, 95% A and
5% B from 16 to 18 min and 95% A and 5% B from 18 to 20 min.

Targeted Metabolomics and
Measurement of Serum Biomarkers
One hundred fifty-four serum samples from ACS patients were
assigned to detect targeted metabolomics. After the samples
were screened by propensity score matching, 101 serum samples
(SPs, n = 51; VPs, n = 50) were included to perform targeted
metabolomics. The process was as follows: flow rate was kept at
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FIGURE 3 | Partial least squares discriminant analysis (PLS-DA) of serum metabolomics data. Serum metabolomics data for quality control (A). Serum metabolites
distinguished SPs group and VPs group (B). ACS, acute coronary syndrome; HC, healthy controls; VPs, vulnerable plaque groups; SPs, stable plaque groups; QC,
quality control.

TABLE 2 | List of Metabolite identified in combining untargeted and targeted
metabolomics approaches.

Metabolite Rt (min) M/Z Formula HMDB ID

Betaine 0.87 118.09 C5H11NO2 HMDB0000043

Acetylcarnitine 0.97 204.12 C9H7NO HMDB0000201

1-
heptadecanoyl-
sn-glycero-3-
phosphocholine

12.91 510.36 C16H30N6O4S1 HMDB0012108

Isoundecylic
acid

12.07 213.19 C13H26O2 –

0.5 ml/min with a 3-min run by isocratic elution. All samples
were analyzed in positive mode. The parameters of ion spray
voltage, source temperature, and the MS1 scan range and
the MS2 are the same as untargeted metabolomics and the
measurement of metabolites.

Metabolites Identification
As the protocol was described by the reported procedure (Zhao
et al., 2012, 2013), the metabolite was analyzed. Based on
the molecular mass data of metabolite, all putative identities
were confirmed by matching with entries in the METLIN1, the
HMDB database2, and KEGG database3. The metabolite would
be identified on the condition that the mass difference between
the observed value and the database value was <0.025 Da.

1https://metlin.scripps.edu
2http://www.hmdb.ca
3http://www.genome.jp/kegg

Metabolomics Data Analysis
Untargeted metabolomics datasets were analyzed by R with
packages MetaboAnalyst. To reduce the metabolite concentration
differences between samples and make the skewed distributions
more symmetric, the data were normalized and non-linear
conversed by log transformations.

Statistical Analysis
For univariate analysis, the statistical significance of features was
analyzed between the VPs group and the SPs group using t-test.
For multivariate analysis, partial-least-squares discrimination
analysis (PLS-DA) was applied to reduce the effect of inter-subject
variability and identify differential metabolites that significantly
contributed to plaque stability. To ensure the quality of the
multivariate model and avoid the risk of over-fitting, according
to the variable importance in the projection (VIP) scores, the
metabolites were further ranked based on the PLS-DA model.
Metabolites with VIP scores >1.0 are considered as the significant
contributors. *P < 0.05 and **P < 0.01 were considered to be
statistically significant.

Stepwise logistic regression on dichotomized
(positive/negative) data in SAS was used to narrow the number
of metabolites. Based on the results of this logistic regression,
the diagnostic accuracy was further performed based on the area
under the curve (AUC). Models were internally validated using
10-fold cross-validation, meaning that the data were split into
10 equally sized datasets. The AUC was then calculated using
each of the 10 datasets for validation in turn and the remaining 9
datasets for training. The average of the 10 results (i.e., average of
the AUC calculated from the 10 validation subsets) is reported as
a value for the 10-fold cross-validation.
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FIGURE 4 | The four selected metabolites detected by untargeted LC/MS analysis. (A–D) Boxplots showed the relative abundance of the four metabolites in serum
including betaine (A), acetylcarnitine (B), 1-heptadecanoyl-sn-glycero-3-phosphocholine (C), and isoundecylic acid (D). (E–H) Analysis of PLS-DA-based ROC
curves of betaine (E), acetylcarnitine (F), 1-heptadecanoyl-sn-glycero-3-phosphocholine (G), and isoundecylic acid (H) in VPs and SPs groups. VP, vulnerable
plaque groups; SP, stable plaque groups.

FIGURE 5 | The three metabolites detected by target LC/MS analysis. (A–C) Boxplots showed the concentration of betaine (A), acetylcarnitine (B), and
1-heptadecanoyl-sn-glycero-3-phosphocholine (C). (D–F) Analysis of PLS-DA-based ROC curves of betaine (D), acetylcarnitine (E), and
1-heptadecanoyl-sn-glycero-3-phosphocholine (F) in VPs and SPs groups. VPs, vulnerable plaque groups; SPs, stable plaque groups.
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TABLE 3 | Characteristics of the population in targeted metabolomics
analysis groups.

Characteristics SP (n = 51) VP (n = 50) P

Age, y 57.10 (11.47) 59.46 (11.65) 0.446

Male Sex, n (%) 34 (66.7) 36 (72) 0.576

Height, cm 162.86 (8.11) 162.60 (7.71) 0.968

Weight, kg 67.53 (12.44) 65.28 (10.36) 0.582

Smoking, n (%) 17 (33.3) 19 (38.0) 0.867

Drinking, n (%) 3 (5.9) 7 (14.0) 0.394

Hypertension, n (%) 30 (58.8) 29 (58.0) 0.969

Diabetes, n (%) 12 (23.5) 15 (30.0) 0.831

CREA µmol/L 84.23 (29.22) 86.71 (30.58) 0.064

URIC µmol/L 388.39 (102.33) 390.32 (125.20) 0.852

TCHO mmol/L 4.42 (1.02) 4.33 (1.16) 0.773

TG mmol/L 1.98 (1.94) 1.74 (1.12) 0.269

HDLC mmol/L 1.22 (0.54) 1.11 (0.26) 0.366

LDLC mmol/L 2.94 (1.44) 3.03 (0.89) 0.615

EF (%) 63.10 (7.92) 65.38 (6.44) 0.295

Plaque (%) <0.001

0 51 (100.0) 0 (0.0)

1 0 (0.0) 50 (100.0)

NA 0 (0.0) 0 (0.0)

Lesion (%) <0.001

0 3 (5.9) 8 (16.0)

1 32 (69.7) 26 (52.0)

2 9 (17.6) 10 (20.0)

3 7 (13.7) 6 (12.0)

NA 0 (0.0) 0 (0.0)

SP, Stable plaque; VP, vulnerable plaque; HC, healthy control; CREA, creatinine;
URIC, uric acid; TCHO, total cholesterol; TG, triglyceride; HDLC, high-density
lipoprotein cholesterol; LDLC, low-density lipoprotein cholesterol; EF, ejection
fraction. Continuous variables are presented as mean (SD). Categorical variables
are presented as n (%). The bold values of Plaque (%) and lesion (%) mean the
plaque and lesion are only two different factors in SP and VP groups.

RESULTS

Demographic Characteristics of the
Study Population
The populations are diagnosed as ACS by ECG, cTnI, and CAG.
The stability of atherosclerotic plaques is detected by intravenous
ultrasound (IVUS). The general clinical and demographic data
on ACS patients are presented in Table 1. Atherosclerotic
plaque and lesion were significantly associated with ACS.
There were no significant differences in age, gender, height,
weight, smoking, drinking, hypertension, diabetes, and blood
biochemistry between the VPs group and SPs group by Student’s
t-test. The flow diagram of the overview of study design was
depicted in Figure 1.

Metabolomics Analysis of Serum
Samples by Untargeted LC/MS
Representative mass spectrum images of SPs and VPs patients
were shown in Figures 2A,B. Using untargeted LC/MS, we
detected the variables positive ion mode and negative ion mode.
Three thousand sixty-nine molecular metabolites were obtained

and then subjected to statistical analysis using MetaboAnalyst
(Supplementary Table S1). PLS-DA analysis found that HCs
and ACS patients, especially in SPs and VPs patients, showed
differential distributions with Q2 of 0.820 and R2 of 0.973,
which means that the model was not only overlifting but also
reliable (Figures 3A,B).

To explore the clinical metabolites, we screened the
differential metabolites in VPs and SPs by receiver operating
characteristic curve (ROC) >0.6. The four metabolites are
presented in Table 2. Four metabolites including betaine,
acetylcarnitine, 1-heptadecanoyl-sn-glycero-3-phosphocholine,
and isoundecylic acid were significantly associated with the
clinical plaque stability of ACS patients (Figures 4A–D). The
curve values (AUC) of the four metabolites in VPs vs. SPs groups
were 0.884, 0.689, 0.655, and 0.782, the sensitivity were 78.8,
66.7, 69.7, and 78.8%, and the specificity were 87.5, 71.9, 65.6,
and 78.1% (Figures 4E–H). These results indicated that the four
metabolites played important roles in the stability of plaques
in ACS patients.

Metabolomics Analysis of Serum
Samples by Targeted LC/MS
To further detect the value of candidate metabolites, we
detected them by targeted LC/MS analysis. As shown in
Table 3, the clinical characteristics of VPs and SPs groups were
matched. As isoundecylic acid was not found in the human
metabolome database (HMDB), we systematically analyzed
three metabolites’ (betaine, acetylcarnitine, 1-heptadecanoyl-
sn-glycero-3-phosphocholine) relative concentration and found
that betaine was significantly upregulated in VPs, which
was consistent with the expression of betaine in untargeted
LC/MS analysis (Figures 5A–C) and indicated that betaine was
significantly related to the plaque stability of ACS patients. The
AUC values of the three metabolites in VPs vs. SPs groups
were 0.793, 0.568, 0.518, the sensitivity in two groups were
72.5%, 72.5%, 45.1% and the specificity were 74.0, 48.0, 65.6,
and 74.0% (Figures 5D–F). These results indicated that the three
metabolites, especially betaine, may predict the plaque stability.

Development of a Metabolite-Based
Model
To construct a diagnostic model that could be used to identify
the stability of plaque with ACS patients, the sensitivity
and specificity values of the betaine, acetylcarnitine, and 1-
heptadecanoyl-sn-glycero-3-phosphocholine in the diagnosis of
ACS and risk stratification of plaque stability were explored by
logistic regression statistical analysis. However, the metabolite-
based model in VPs vs. SPs groups was developed and the AUC
values of VPs vs. SPs groups were 0.793, with the corresponding
sensitivity of 78.4% and specificity of 70.0% (Figure 6A).

To improve the diagnostic performance of plaque stability,
step-wise backward selection analysis was further performed to
determine the best model in subgroups shown in Figure 6B.
The model was presented as follows: logit (P = VPs vs.
SPs) = 0.029*betaine + 0.051*EF-6.137 in VPs vs. SPs group. The
AUC value was 0.808, with the corresponding sensitivity of 70.6%
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FIGURE 6 | The metabolite-based model on plaque stability. ROC curve analysis of the three metabolite-based diagnostic models in VPs vs. SPs groups (A). ROC
curve analysis of the metabolite-based diagnostic model in distinguishing VPs and SPs groups from controls in the ACS patients (B). VPs, vulnerable plaque groups;
SPs, stable plaque groups.

and specificity of 80.0%. These results demonstrated that the
combined model was reliable and could be applied to differentiate
the stability of plaque.

DISCUSSION

In this study, we systematically and comprehensively analyzed the
serum metabolomics change on atherosclerotic plaque stability.
The metabolite profiles of serum samples allowed classification of
SPs and VPs patients. Four metabolites were significantly altered
in ACS patients. Compared to SPs, betaine, acetylcarnitine,
1-heptadecanoyl-sn-glycero-3-phosphocholine, and isoundecylic
acid were perturbed in VPs patients. Furthermore, the combined
model of serum betaine and EF could be used as the
potential diagnostic biomarker for distinguishing VPs patients
from SPs.

Our study was firstly to identify the combination of betaine
and clinical indicators that could be used for the detection of
plaque stability. Betaine, a natural compound that exists in many
organisms, can not only regulate cells against water osmotic or
retention (Craig, 2004) but also increase energy metabolism by
acting as a methyl donor (Alirezaei et al., 2012). Betaine also
plays a potential antioxidant role in animals by increasing plasma
glutathione peroxidase (Alirezaei et al., 2015). Oxidative stress is
an important pathological process of atherosclerosis. Jiang et al.
found that betaine played an important role on diabetic-induced
oxidative stress-mediated p38 MAPK pathways (Jiang et al.,
2019). Saeed et al. (2017) also identified that betaine could act
as a natural anti-heat stress agent. Our results found that betaine

was significantly upregulated in VPs patients and indicated that
betaine played an important role on plaque stability, which was
consistent with the protective role of betaine on organisms.

Acetylcarnitine, an index of energy substrate oxidation, could
increase transportation of acetyl-CoA into the mitochondria
during fatty acid oxidation. Pouralijan Amiri et al. found that
acetylcarnitine was up-regulated in UA (Pouralijan Amiri
et al., 2019). 1-heptadecanoyl-sn-glycero-3-phosphocholine,
a lysophospholipid (LyP), originating from hydrolysis of
phosphatidylcholine, can play an important role in the de-
acylation/re-acylation cycle and then control molecular species
composition (Lingwood and Simons, 2010). Watson identified
that lipid metabolism played a physiological importance on
atherosclerosis, diabetes, obesity, and Alzheimer’s disease
(Watson, 2006). In our study, the level of acetylcarnitine was
increased and 1-heptadecanoyl-sn-glycero-3-phosphocholine
was decreased in VPs vs. SPs patients, which indicated that
the two metabolites were involved in ACS. The more specific
role of acetylcarnitine and 1-heptadecanoyl-sn-glycero-3-
phosphocholine on the vulnerability of plaque stability needs
to be further explored. And future studies should explore this
relationship more fully, since it may lead to a non-invasive
marker that differentiates VPs from SPs.

In this study, there are also some limitations that should
be acknowledged. As isoundecylic acid was not found in
the human metabolome database (HMDB), we only detect
the three metabolites including in targeted LC/MS, and
four metabolites including betaine, 1-heptadecanoyl-sn-glycero-
3-phosphocholine, acetylcarnitine, and isoundecylic acid in
untargeted LC/MS. In addition, the metabolite-based model was
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only validated by one center, but not validated from populations
of external validation. However, the positive results from the
model suggested a possible generalization of the combined model
of serum betaine and EF in differentiating VPs from SPs.

In summary, the present study uncovered four metabolites
which can separate patients with ACS from healthy controls. The
combined model of serum betaine and EF model was proposed
for the better diagnosis of the vulnerability of plaque stability in a
non-invasive way.
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