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After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no
longer be a problem. However, the origin of xeno-rejection continues to be a controversial
topic, including small amounts of antibodies and subsequent activation of the graft
endothelium, the complement recognition system and the coagulation systems. The
complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by
ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via
the lectin pathway. The complement system therefore is still an important recognition and
effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate
complement activation in different manners. Therefore, to effectively protect xenografts
against xeno-rejection, it would appear reasonable to employ not only one but several
CRPs including anti-complement drugs. The further assessment of antigens continues to
be an important issue in the area of clinical xenotransplantation. The above conclusions
suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is
necessary. Moreover, multilateral inhibition on local complement activation in the graft,
together with the control of signals between macrophages and lymphocytes is required.

Keywords: complement-immunological terms, complement regulatory protein, complement receptor, gene-
modified pigs, locally produced complement, non-Gal antigens
INTRODUCTION

Last year, kidneys from aGal (1) -knock out (KO) pigs were transplanted into a brain-dead patient,
and the results revealed that hyper-acute rejection could be overcome by genetic modification. The
heart from a pig in which genes-modified was transplanted into a patient with end-stage heart
failure. These events show that clinical application of xenografts has finally begun. Since there are
many review articles on complement and xenotransplantation (2–4), we leave the general discussion
to them and focus mainly on the recent progress made in this area.

The first breakthrough in xenotransplantation research was the report of species differences in
the complement system (5). This was combined with transgenic technology and led to the creation
of the complement regulatory proteins (CRPs)-transgenic pig (6, 7). The next breakthrough was the
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discovery of heterologous carbohydrate antigens. Knockout
technology was added to nuclear transfer technology to
produce KO pigs. Further studies with the goal of elucidating
the relationship between complement and the coagulation
system, reperfusion injury, etc in transplantation. In addition, a
new topic that is generally associated with transplantation has
arisen, namely, the local production of complement in the graft
and complement receptors (8). These issues will become more
apparent and may also be relevant to Xenotransplantation.
FEATURES OF COMPLEMENT
REGULATORY PROTEINS

Regarding complement regulatory proteins, CD46, CD55, and
CD59 are currently the focus of attention, and it is recommended
that at least two of these be expressed in grafts. Since these
functions are all different, expressing all of them would be the
best strategy. In addition, C1 esterase inhibitor (C1-INH) has
been used as a drug by some groups, but due to its wide range of
functions, it would be better to be expressed in grafts using the
membrane form (9) (Figure 1).

Membrane Cofactor Protein; CD46
MCP is a single-chain glycoprotein with four short onsensus
repeats (SCRs), an Ser/Thr-rich (ST) region (ABC, BC and C)
and four types of cytoplasmic tails (CYT1 to CYT4). As a function,
it is a cofactor for factor I in serum, an irreversible reaction that
restricts the degradation of C3b to iC3b and C4b to C4d, which are
components of C3 convertase that is formed on the same
membrane. The sites involved in the binding and degradation of
both enzymes are SCR2 to SCR4, and the N-glycans of SCR2 and
SCR4 are required for their function (10, 11).

In addition to the complementary functions of the cell
surface, the expression of MCP is intimately involved in the
regulation of T cell activation.
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During T cell activation, CD46 is mobilized in the immune
synapse, and its ST-region is required. The mobilization of CD46
to immune synapses causes T cells to switch from producing the
proinflammatory cytokine interferon-g (IFN-g) (Th1) to
producing IL-10 (Tr1), and these reactions are related to CYT1
and CYT2 (12).

Decay-Accelerating Factor; CD55
DAF consists of four SCRs and ST regions, and a glycosyl
phosphatidyl inositol (GPI)-anchor and is expressed on most
blood cells. SS-bound dimers are present in the DAF of blood cells.

In addition, there is also a water-soluble form of DAF as a
splicing variant.

DAF promotes the dissociation of the C3 convertases C4b2a
and C3Bb, SCR2 and SCR3 are responsible for the dissociation of
C4b2a, and SCR2-SCR4 are responsible for the dissociation of
C3Bb (13–15).

Moreover, in addition to the complement system, DAF binds
to CD97 on T cells via SCR1, thus controlling their activation
and the differentiation of Type 1 regulatory T cells (Tr1 cells).

It also directly inhibits the cytotoxic function of Natural Killer
(NK) cells by SCR2-4 (16).

CD59 (Membrane-Attack Complex
Inhibition Factor, Homologous
Restriction Factor or Protection)
CD59 is a relatively small glycoprotein that contains a GPI-
anchor (17). It is a member of the neurotoxin family and is also
classified as a member of the Ly6 superfamily (18). As a function,
it binds to C8 and C9 to inhibit the formation of membrane
attack complexes (MACs). N-glycans are not required for its
function, but, rather, act in an inhibitory manner.

This molecule is also expressed on T cells and is associated
with CD58, which is involved in the adhesion and activation of T
cells. CD59 on T cells is reported to function as a signal
transducing molecule for activation (19).
FIGURE 1 | Complement regulatory proteins. A schematic diagram of each complement regulatory proteins, MCP, DAF, CD59, C1-INH and CR1, are shown.
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C1 Esterase Inhibitor
This molecule inhibits the action of serine proteases C1r
(activates C1s) and C1s (activate C4 and C2). The active center
is located in the Val-Ala-Arg-Thr-Leu portion of the C-terminal
side, which is truncated at Arg(444) and binds to the active serine
of C1r and C1s, where it directly and irreversibly inhibits their
enzymatic activities. The peptide portion from the N-terminus to
101 is not involved in this function (20–22).

Importantly, this molecule also inhibits the activities of other
serine proteases such as kallikrein, plasmin, and the coagulation
factors XI and XII. For the above reasons, this molecule is
sometimes used as a drug for xenotransplantation (9).
Complement Receptor Type 1
There are four allotypes (A-D) of CR1. The basic primary
structure is that of a type 1 transmembrane glycoprotein with
four long homologous repeats (LHRs) consisting of seven SCRs,
which are linked to the transmembrane portion by two other
SCRs. It combines the dissociation activity of the C3-converting
enzymes C4b2a and C3bBb, and the degradation activity of C4b
to C4d and C3b to C3dg.

As a feature, this molecule functions extrinsically, so it is not
suitable for being transgenic in the original molecule.

CR1 on monocytes and macrophages also functions as a
receptor that binds to C3b molecules on the surface of foreign
substances to induce phagocytosis. CR1 on erythrocytes binds to
C3b-bound (opsonized) bacteria, viruses, and immune
complexes and transports them to the monocyte-macrophage
system. CR1 on B-lymphocytes cooperates with complement
receptor type 2 (CR2) to activate lymphocytes, while CR2
prevents these phagocytes from overreactin (23–26).
Thrombomodulin
This molecule is basically an anticoagulant factor, and promotes
the activation of protein C with thrombin. In addition,
thrombomodulin binds to factor H, thereby promoting the
inactivation of complement C3b. or inactivating C3a and C5a
via an activated thrombin activatable fibrinolysis inhibitor
(TAFI) (27–29).
A Bound Form of Serum CRP
Serum contains several SCRs, including C4bp (30) and FactorH
(31). These molecules show DAF-like catalytic functions as well
as MCP-like cofactor functions. Therefore, there are reports of
converting these serum factors into membrane forms and
studying their functions on the cell surface.

As a result, these molecules show MCP and/or DAF functions
on porcine cells. However, concerning membrane-type factor I, it
functions in vitro, but its in vivo function when converted to
membrane form is currently unknown.

These are synthetic molecules based on SCR2-4 hybrids
of MCP and DAF, and are considered to be suitable for use
in transgenic pigs. In addition, C1 Estarase Inhibitor
*Thrombomodulin+DAF+MCP (CTDM or CDM) hybrids
were reported (2, 32, 33).
Frontiers in Immunology | www.frontiersin.org 3
Functions Other than Complement
Control—Virus Receptors
It has been reported that CR functions as a receptor for a number
of viruses. One of the solutions for preventing viral adhesion is to
remove the SCR1 of MCP & DAF. This may not completely
eliminate the function as virus receptor, but it may greatly reduce
this function (34–36).
TRANSGENIC PIGS

The trend appears to be that at least two of the CRPs,MCP, DAF (6),
andCD59, are transgenic in pigs. This is reasonable since the function
of each molecule is different from the other (Table 1) (2, 37–51).

To elaborate, DAF is predominant in its catalytic function in
vitro, but leaves remnants of C4b and C3b on the cell surface. This
does not affect the opsonin function of immune cells, such as
macrophages, which produce complement receptors. On the other
hand, MCP may be inferior to DAF in the speed at which it
controls complement from the cell membrane, but the cofactor
action of Factor I allows it to completely remove complement
from the membrane. Regarding CD59, as described in the
coagulation factors section, some of the complement is activated
fromC5 on the porcine cell membrane, so it is necessary to express
CD59 in order to inhibit MAC formation. However, since the
CD59 molecule is small and does not have much species-specific
heterogeneity, pig CD59 is also considered to be functional.
Therefore, using human CD59 is not absolutely necessary (52).

On the other hand, the question arises as to how hMCP is
expressed in pigs. MCP contains a part of a DNA molecule that
negatively regulates its expression, which initially caused some
problems. The ST region of MCP is related to its function, and
the CYT part is related to the expression of metabolism, i.e., the
amount of expression (53, 54).

In addition, if human MCPs are expressed in pig T cells, this
might be a problem, but no information regarding this is
available. However, the development of a d-CYT type MCP-pig
has been considered.
COMPLEMENT RECEPTORS

CR2(CD21)
This molecule is mainly produced on B cells, binds to C3dg and
C3dg and regulates the function of B cells.

Normally, antigens alone have a weak ability to be presented
to B cells. However, when complement is attached to the antigen,
the CR2 that is expressed on B cells recognizes the degradation
products derived from complement, which induces a second
signal-like reaction in T cells and helps them to recognize the
antigen. In addition, another function has been identified for the
CR2-mediated role of follicular DCs in the germ center of lymph
nodes for B cells (55).

CR3 (CD11b/CD18, Mac1)
This is localized on granulocytes, macrophages, NK cells, related
to phagocytosis.
April 2022 | Volume 13 | Article 860165
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CR4 (CD11c/CD18, p150,95)
This is localized on granulocytes, macrophages, dendritic cells,
and is related to monocyte migration.

C3a/C4a Receptors
C5a Receptors (CD88)
C1q Receptors (gC1q, cC1q)
These molecules are related to the increased phagocytosis of
monocytes/macrophages, the increased oxidative metabolism of
neutrophils, and the regulation of antibody production in B
cells (56).

CRIg
CRIg binds to C3b, iC3b, and C3c. In T cells, it is involved in
their proliferation and the release of cytokines, is expressed on
DCs and is involved in immunosuppression (57).
ROLE OF LOCALLY PRODUCED
COMPLEMENT AND COMPLOSOME

Locally Synthesized Complement
In the allo transplantation, locally synthesized complement
components have a profound effect on the grafts. A well-
known example of this is a mouse kidney transplant model,
where recipients that received C3-/-kidneys showed long-term
graft survival (8). Moreover, a C5aR deficiency and inhibition
has also been reported to prolong the survival of renal and
Frontiers in Immunology | www.frontiersin.org 4
intestinal allogeneic grafts, reduce apoptosis and attenuate the
infiltration of inflammatory cells (58, 59). As research has
progressed, it has become clear that the relationship between
C3a and C3 receptors (C3aR) and C5a and C5 receptors (C5aR)
plays a major role in the presentation of antigen-presenting cells
(APCs) to T cells, and that these responses and stimuli enter T
cells as a strong auxiliary signal. On the other hand, the
expression of complement regulators on the surface of the
graft has also been shown to be important and is possibly
related to graft survival (60).

It is conceivable that a similar reaction occurs between graft-
infiltrated APC-T cells with the complement they produce and
their receptors in the xenograft.

It might be necessary to verify whether the porcine
complement produced by xenografts reacts with human
complement receptors, and the possibility that the local
porcine complement could attack human immune cells, in
addition to the case of liver transplantation (61).

Complosome
It is generally accepted that complement activation occurs
intracellularly (60). Specifically, human CD4 + T cells express
C3aR not only on the cell surface but also on lysosomes. It has
also been reported that C5 is conserved in human T cells. When
T cells are activated, intracellular C5a binds to intracellular
C5aR1, resulting in the activation of endogenous NOD-, LRR-
and pyr in domain-conta in ing prote in 3 (NLRP3)
inflammasomes, and the secretion of the autocrine IL-1b. CD4
+ T cells express C5aR2 on their surface and intracellularly, and
TABLE 1 | Report of CRP transgenic pig heart and kidney transplantation into primates, and comparison with Gal-KO. In addition, the best record for reference.

I. Heart (Hetero)
Pigs Recipient Survival days Immunosuppression Report

CD46 Baboon 1h – 16 (5.25) none Adams et al. (38)
CD46 Baboon 15 – 137 (96) Rituximab, ATG, TPC, FK506, Rapa, CS McGregor et al. (39)
CD55 Baboon (5.1) none Thompson (40)
CD55 Baboon 4 – 139 (27) GAS914, ATG, sCR1, LoCD2b, Thymic irradiation, MMF, CVF,

anti-CD154, CS
Houser et al. (41)

CD59 Baboon 2.25 – 3.0 h. none Diamond et al. (42)
Gal-KO Baboon 16 – 179 (78) ATG, LoCD2b, Thymic irradiation, CVF, anti-CD154, MMF, CS Kuwaki et al. (43)
Gal-KO with CD46 and TBM Baboon Max 2.5 years Anti-CD20, ATG, anti-CD40, CVF, CS Muhiuddin et al. (44)
II. Heart (Ortho)
Pigs Recipient Survival days Immunosuppression Report
CD46 Baboon 34 - 57 (40) aGal-polymer, anti-CD20, ATG, FK506, Rapa, CS McGregor et al. (45)
CD55 Baboon 39 CyP, CsA, MMF, CS Vial (46)
Gal/b4GalNT2/GHR-KO with
CD46, TBM, EPCR and CD47

Baboon 182, 264 Anti-CD20, ATG, anti-CD40, CVF, CS Muhiuddin*

III. Kidney
Pigs Recipient Survival days Immunosuppression Report
CD46 Baboon 13 – 15 (14) CsA, CyP, CS, splenectomy, affinity colum for anti-Gal Ab Dean et al. (47)
CD55 Cynomolgus 5 – 78 (35) CsA, CyP, CS, splenectomy Cozzi et al. (48)
CD55 Baboon 21 – 36 (23) GAS914, CyP, ATG, CsA, Rapa, CS Ghanekar et al. (49)
Gal-KO Baboon 20 – 34 (29) ATG, LoCD2b, CVF, anti-CD154, MMF, CS Yamada et al. (50)
Gal-KO with CD55 Rhesus >70 – 499 (328) anti-CD4mAb, anti-Cd154mAb, MMF, CS Kim et al. (51)
April 2022 | Volume
ATG, anti-thymocyte globulin; TPC, anti-Gal-polyethyleneglycol conjugate; Rapa, rapamycin; CS, steroid; GAS914, a soluble Gal (a1-3) Gal polymer; CVF, cobra venom factor; LoCD2b,
rat anti-primate CD2b monoclonal antibody; sCR1, soluble complement receptor type I;
MMF, mycophenolate mofetil; CsA, cyclosporine; CyP, cyclophosphamide.
* : Mohiuddin MM, 215.4 Select Life-Supporting Multi-Gene Cardiac Xenografts from Swine Demonstrate Survival >8 months in Baboons, with implications for human Clinical Trials. The Joint
Congress of the International Xenotransplantation Association (IXA) and the Cell Transplant and Regenerative Medicine Society (CTRMS), taking place virtually. September 23-25, 2021.
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negatively regulate C5aR1-driven NLRP3 inflammasome activity
(62). Unfortunately, these studies are referred to as
complosomes, and few studies have been reported in which
human T cells were used. However, this topic also may be
related to xeno immune responses in the future.
CONCERNING NON-GAL ANTIGENS

Gal (GGTA1)
iGb3 Synthase (GT2)
It was reported that even if GGAT1 is knocked out, GT2 remains
and the Gal antigen itself remains abundant on the cell surface.
Some teams have actually knocked out both of these antigens
(64). However, it appears that the Gal antigen itself is nearly
completely eliminated by the KO of GGAT1 (1, 2, 63).

The H-D Antigen
Since the Hanganutziu-Deicher (H-D) antigen is expressed in
Old World monkeys, it has not been extensively addressed in
preclinical studies (65–68).

It is also weak as a natural antibody in these KO-mice and is
produced after transplantation (69). However, its cytotoxicity
has been clearly confirmed. In addition, this antigen is not
produced by New World monkeys.

Moreover, recent reports suggest that the KO of Cytidine
monophospho-N-acetylneuraminic acid hydroxylase (CMAH)
increases the antibody titer in monkeys (baboons).

Sda Antigen
b4GalNT-2 is recognized as a blood group antigen and is
expressed by about 90% of humans (70). The issue of whether
there is a difference between the expression of Sda in pigs and in
humans remains unclear (71).

Blood group antigens are an important issue in
transplantation because it is thought that they are expressed on
the endothelium of organs. Identifying them and knocking out
all of them will be very time consuming.

For example, 90% of pigs have type the A blood group and the
remaining 10% have the type O blood group. On the other hand,
many of the monkeys used in preclinical experiments contain
type B blood.

The Neoantigen in the GalT-KO Pig
Concerning the neoantigen in the GalT-KO pig, when the KO of
Gal was started, there was some hesitation that the knockout
procedure would leave its substrate on the porcine carbohydrate
chain and it would become a new antigen (2). However,
this does not appear to be a problem. the substrate must be
expressed by humans, since Gal is knocked out. Moreover,
glycosyltransferases are not generally 100% functional and
remain as substrates to some extent.

The KO of some genes in pigs, e.g. Gal, may cause changes in
the N- and O-glycans of such molecules produced by the pig,
resulting in functional changes. However, since the transgenic
human molecule does not contain Gal, this does not appear to be
a problem.
Frontiers in Immunology | www.frontiersin.org 5
CLOSSTALK BETWEEN THE
COMPLEMENT AND
COAGULATION SYSTEMS

Complement and coagulation pathways are closely related
(72, 73).

As mentioned above, thrombin acts as a potent C5-
converting enzyme that generates C5a, especially in the
absence of C3 (74). Similarly, it has been proposed that
complement-independent enzymes such as thrombin,
neutrophil elastase, and macrophage serine proteases are
endowed with C5-converting enzyme activity (75). These
pathways should be considered during xenograft rejection.

In addition, coagulation system serine proteases such as
Xa, XIa, and plasmin also have the ability to cleave C3 and
C5 (76). The von Willebrand factor also interacts with
complement components.

It has also been reported that platelets interact with
complement and the coagulation system. Activated platelets
have been reported to act on factors of the lectin pathway (77)
and to bind to plasma proteins to activate factors XIIa and XIa,
and kallikrein.

Therefore, under certain circumstances such as AVR/AHXR,
serine proteases of the coagulation system may be involved in the
cleavage of C3 and C5. Conversely, it is also well known that C5a
activates tissue factor (TF) and initiates the coagulation cascade
(78, 79). An association with vasculitis has also been noted (4).
IBMIR AND IRI

IBMIR (The Instant Blood-Mediated
Inflammatory Reaction)
This reaction is triggered by platelets, the coagulation system, the
complement system of all three pathways, and infiltrates the
islets (80) Isolated islets may also serve as indicators of
extracellular matrix proteins as new antigens (81). That is, not
only tissue factor (TF) expression but also intrinsic pathway
activation by collagen and other negatively charged molecules on
the islet surface, which are not normally in contact with the
blood, due to the procedure that involves islet harvesting (82). At
the same time, IRI activates the complement pathway as a matter
of course.

Therefore, not only anti-complement drugs but also
anticoagulants such as heparin (83) and other molecules have
been used to prevent or inhibit this reaction (84). The expression
of hCRP is at least required to protect porcine islets from human
complement during the reaction (85, 86).

Ischemia-Reperfusion Injury
In the case of pancreatic islets, this process starts when the islets
are transplanted into blood vessels, and in the case of organs, it
occurs during reperfusion. As an IRI, this phenomenom is
involved in antibody, and all-mediated rejection and the
development of thrombic microangiopathy and transplant
vasculopathy (87, 88).
April 2022 | Volume 13 | Article 860165
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Another important aspect of Xeno-rejection is that when pig
cells are destroyed, Damage-Associated Molecular Patterns
(DAMPs) and Pathogen-Associated Molecular Patterns
(PAMPs) are released, which are then phagocytosed by human
APCs (Dendric Cells, Mcrophages, etc.). This results in the
transmission of information on adaptive immunity
(lymphocytes) and is independent of inflammation. This is
usually combined with opsonin action of complement.

However, the regulation of these macrophages and others is
also a major challenge for the future. A single CD47 (89)
molecule is not sufficient, and comprehensive regulation
including HLA classIb (90, 91), CD200 (92), TIGIT (93),
CD177 (94), etc. needs to be carefully examined.
CONCLUDING REMARKS

In the USA, clinical trials of xenotransplantation have been
initiated, using gene-modified pigs. Other teams of the world
are also preparing to launch trials.

Complement regulation, along with the regulation of
coagulation factors, appears to be the basis for successful
xenotransplantation. However, simply expressing two CRPs
Frontiers in Immunology | www.frontiersin.org 6
along with several anticoagulants in pigs without taking their
expression levels into consideration may not be sufficient. It may
also be necessary to consider both the complement of the pig
being released from the graft in addition to liver grafts. Also, the
tight control of innate immunity such as macrophages, to control
the movement of lymphocytes, will be important as the next step
in the era of xenotransplantation is realized.
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