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Abstract
Objective To develop a precise semi-automated segmentation of the fascia lata (FL) of the thigh to quantify IMAT volume 
in  T1w MR images and fat fraction (FF) in Dixon MR images.
Materials and methods A multi-step segmentation approach was developed to identify fibrous structures of the FL and 
combining them into a closed 3D surface. 23 healthy young men with low and 50 elderly sarcopenic men with moderate 
levels of IMAT were measured by  T1w and 6pt Dixon MRI at 3T. 20 datasets were used to determine reanalysis precision 
errors. IMAT volume was compared using the new FL segmentation versus an easier to segment but less accurate, tightly 
fitting envelope of the thigh muscle ensemble.
Results The segmentation was successfully applied to all 73 datasets and took about 7 min per 28 slices. In particular, in 
elderly subjects, it includes a large amount of adipose tissue below the FL typically not accounted for in other segmenta-
tion approaches. Inter- and intra-operator RMS-CVs were 0.33% and 0.14%, respectively, for IMAT volume and 0.04% and 
0.02%, respectively, for  FFMT.
Discussion The FL segmentation is an important step to quantify IMAT with high precision and may be useful to investigate 
effects of aging and treatment on changes of IMAT and FF. ClinicalTrials.gov identifier NCT2857660, August 5, 2016.
Trial registration ClinicalTrials.gov identifier NCT2857660, August 5, 2016.
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Introduction

Quantification of muscle properties such as volume and fat 
infiltration as well as the amount and distribution of adipose 
tissue (AT), is of increasing interest in diseases or conditions 
such as obesity, osteoporosis, rheumatoid arthritis and sar-
copenia [1]. In particular, visceral and subcutaneous adipose 

tissue (SAT) of the abdomen and intermuscular adipose tis-
sue (IMAT) of the thigh and tibia have been investigated [2, 
3]. In addition to muscle volume, newer imaging methods 
provide quantification of muscle density (CT) [4] and fat 
fraction, i.e. multiecho chemical-shift-encoded MRI [5]. In 
this study, 6-point Dixon MRI was used [6].

However, it remains unclear, which parameter is most 
relevant. IMAT has been widely used as a semi-quantitative 
measure by physicians for diagnosis and treatment monitor-
ing in neuromuscular diseases such as muscular dystrophy 
[7–9]. Based on visual inspection of IMAT within the deep 
fascia, also known as the fascia lata (FL) in CT or standard 
T1 weighted MR images they assign scores for fat accumu-
lation and distribution [10]. However, a more quantitative 
analysis requires a stricter definition of the parameters and 
the specific anatomical location. Usually, the differentiation 
between tissues requires an accurate segmentation of the 
fascia lata of the thigh. Especially in CT with relatively low 
soft tissue contrast, this can be a challenging task [11, 12].
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This study focusses on MR imaging of the mid-thigh. The 
FL separates SAT from muscles surrounded by perimuscu-
lar adipose tissue. About 80% of adipose tissue consists of 
lipids [13] stored in adipocytes, which can also be found 
among muscle fibres [14]. In  T1 weighted images, larger 
agglomerations of adipocytes within muscles appear hypoin-
tens contrasting the darker muscle tissue. According to the 
traditional definition, these agglomerations together with the 
perimuscular AT forms IMAT [2, 15]. Other contributions 
of intramuscular adipose tissue—smaller agglomerations of 
adipocytes as well as intracellular lipids—cannot be detected 
on  T1 weighted images, but contribute to fat fraction (FF) 
that can be quantified by Dixon MRI [16].

Whether the quantification of IMAT volume and its dis-
tribution or the measurement of intramuscular FF is more 
relevant is still an unanswered question. One reason is the 
rather difficult segmentation of the FL, a thin layer of fibrous 
tissue often difficult to identify on single MR images and 
due to lower soft tissue contrast even more difficult to iden-
tify on CT images [17]. Thus, instead of segmenting the 
FL, several authors have simply used a tight envelope of the 
muscle ensemble of the thigh defining the VOI for the quan-
tification of IMAT [18–20]. However, this is problematic in 
elderly subjects, which typically show increased amounts of 
perimuscular adipose tissue between the FL and the muscle 
surfaces [21, 22].

Thus the primary aim of this study was the development 
of a novel semi-automated 3D segmentation method of the 
FL of the thigh to separate SAT from IMAT and to deter-
mine the reproducibility of parameters such as IMAT and 
muscle FF in various compartments of the thigh depending 
on the FL segmentation. Further, the effect of using the FL 
instead of a tight muscle envelope to quantify IMAT was 
evaluated in young healthy and elderly sarcopenic subjects 
in a retrospective analysis of a study reported earlier [23].

Materials and methods

Subjects and MRI scans

Two groups that had been recruited for an earlier study 
[23] were examined. Group 1 (G1) included 23 healthy 
young men (31 ± 6 years (mean value ± standard deviation), 
23–46 years, BMI 23.2 ± 2.0 kg/m2). Group 2 (G2) included 
50 elderly men with sarcopenia (77 ± 5 years, 70–86 years, 
BMI 26.2 ± 2.4 kg/m2). G1 and G2 combined, cover a wide 
range of muscle fat content [24].

MRI acquisition was performed using a 3T scanner 
(MAGNETOM  Skyrafit, Siemens Healthineers AG, Erlan-
gen, Germany) and an 18-channel body receive array coil. 
The flexible coil was wrapped around the left mid-thigh. 
The protocol included a clinically common  T1 weighted 

 (T1w) Turbo Spin Echo and a 6-point (6pt) Gradient Echo 
Volumetric Interpolated Breath-hold Examination (VIBE) 
Dixon sequence for chemical shift encoding-based quantifi-
cation of fat and water as proton density FF. The following 
acquisition parameters were used:  T1w sequence—voxel 
size: 0.5 × 0.5 × 3.0 mm3, 34 slices, matrix size: 512 × 512, 
TR: 844 ms, echo time (TE): 14 ms, bandwidth: 488 Hz/px, 
acquisition time: 2:54 min; 6pt Dixon sequence—voxel size: 
0.8 × 0.8 × 3.0 mm3, 36 slices, matrix size: 320 × 320, TR: 
14.00 ms, TEs: 1.90, 3.73, 5.56, 7.39, 9.22, and 11.05 ms, 
bandwidth: 710 Hz/px, flip angle: 6°, acquisition time: 
1:17 min; detailed information can be found in [25]. Dixon 
MRI delivered proton density FF maps, which assign a per-
centage of fat to every voxel. Intensities in the FF maps 
generated by the software of the Scanner are in a range of 
0–1000 corresponding to a FF of 0.0–100.0%.

To measure comparable regions of the thigh, the length 
of the femur and the knee joint gap was taken as a reference 
parameters to determine the mid-point of the femur, where 
the scanning volume was placed.

Segmentation outline

The FL segmentation was performed in the  T1w datasets, 
which had high spatial resolution and good image contrast. 
This allowed a distinction between the FL and the saphen-
ous fascia around the vena saphena magna [26] (Fig. 1). A 
flowchart of the segmentation process integrated in MIAF 
(Medical Image Analysis Framework, University of Erlan-
gen) package is shown in Fig. 2a. In a pre-processing step, 
the N4ITK algorithm [27] was used to compensate for the 
bias field caused by field inhomogeneities of the scanner 
(Fig. 2b).

The FL segmentation process started (step 1) with a fuzzy 
c-means clustering that based on image intensity separated 
all voxels into four different clusters: muscle, AT, bone/
background and fibrous tissue located at interfaces or inside 
the SAT (Fig. 2c). The surface of the thigh was determined 
from the bone and background cluster using morphological 
operations and a threshold filtering to remove the skin. The 
femur was also segmented using morphological operations.

In step 2, the level set method as described by Caselles 
et al. [28] was applied to the muscle cluster to find a tightly 
fitting envelope of the muscle ensemble of the thigh (ME: 
muscle envelope) (Fig. 2d). This step also excluded veins 
and other structures in SAT, which were included in the 
muscle cluster in step 1. To obtain the FL surface, a filtering 
process described in detail below was applied to the fibrous 
tissue cluster to identify FL structures in the SAT.

In step 3, a second level set process detailed in the section 
below combined these structures with ME obtained in step 
2 to complete the segmentation of the FL. If the result of 
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the automatic segmentation was not satisfactory, a manual 
refinement process could be applied.

3D fascia filtering

The fibrous tissue cluster resulting from the fuzzy c-means 
clustering contained several fibrous structures that were not 
part of the FL (Fig. 3a). These structures were typically not 
present in all slices of the image stack, whereas the FL is a 
connected 3D surface.

The undesired fibrous structures were filtered out by 
Frangi’s filter detection principle using the orthonormal 
eigenvalue decomposition of the Hessian matrix [29]. The 
filter distinguished between tube-like, sphere-like and plate-
like shapes, the latter being of major interest for the FL seg-
mentation. The filter computed the probability of a given 
fibrous structure being plate like and, therefore, considered 
as part of the fascia. The filter assigned a weight between 0 
(did not belong to FL) and 1 (was part of FL) to all fibrous 
structures outside ME (Fig. 3b). A second level set segmen-
tation starting outside ME incorporated these weighted vox-
els to determine the final surface defining the FL.

Fascia refinement

If the automated final FL detection failed or if artifacts inter-
fered, a manual refinement was necessary. This was realized 
by a livewire approach based on the A* algorithm, a heu-
ristic to the Dijkstra algorithm used by Mortensen’s Intelli-
gent Scissors tool [30, 31]. Based on a lowest cost criterion, 
the tool found the shortest path between seed points. The 
cost functional considered the most distinctive edges deter-
mined from the gradient of the  T1w images. The integration 
of these edges and the 3D filtered FL structures resulted in 
excellent performance of the manual editing tool (Fig. 4).

Once seed points were manually set in one slice, they 
were propagated to the next ten slices and adjusted auto-
matically. This process favored the most probable FL loca-
tion and facilitated the simultaneous correction of several 
slices, which significantly reduced the time required to edit 
the complete dataset. Basic morphological operations for 
additional local editing could be applied if necessary.

IMAT and FF quantification

IMAT volume was determined in the  T1w images by sum-
ming up all voxels of the AT cluster located in the intra-
fascia (IF) VOI, i.e. the VOI enclosed by FL after excluding 
the femur.

T1w and Dixon FF images were matched by intensity-
based rigid registration of the segmented thigh VOIs. The 
resulting transformation matrix was then used to transform 
the FL segmented in the  T1w images to the FF image stack. 
FF was determined in muscle tissue (MT) which was seg-
mented using the logarithmically scaled histogram of the 
greyvalues within the IF VOI (Fig. 5a). The minimum of 
this histogram was used as threshold to separate MT form 
IMAT (Fig. 5b).

Statistical analysis

To examine the effect of using the FL versus a tight mus-
cle envelope on the quantification of IMAT, the parameters 
‘IMAT within the FL’  (IMATFL) and ‘within ME’  (IMATME) 
were determined. Both parameters were compared via cor-
relation analysis. All statistical analysis was carried out in 
R [32].

5 datasets randomly selected from the group of young 
subjects and 15 datasets randomly selected from the group 
of elderly subjects were used for precision analysis. Spe-
cifically, reanalysis precision was determined for volume of 
the IF VOI, volume of IMAT in the  T1w scans and FF of 

Fig. 1  Examples of bias field 
corrected  T1w images of the 
two subject groups. Elderly 
sarcopenic subject of group G2 
(a); a healthy young subject of 
group G1 (b). The green con-
tour indicates the position of the 
fascia lata (FL), the red contour 
indicates the fascia of the vena 
saphena magna (also marked in 
red). These two fasciae are usu-
ally highly visible but have to be 
distinguished
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MT  (FFMT) in the Dixon datasets. The precision error was 
determined as inter-operator variability of 3 operators who 
each analyzed the 20 data sets once and as intra-operator 
variability, where 1 operator analyzed the same 20 data sets 
3 times. All operators were trained by a professional physi-
cian. The first and last three slices of each dataset were omit-
ted from the analysis due to segmentation difficulties caused 
by poor bias field correction. Reanalysis precision errors 
were calculated as the root mean square average of standard 
deviation (RMS-SD) in units of the measured variable and 

as root mean square average of the coefficient of variation 
(RMS-CV) in percent [33].

Results

All 73 datasets were successfully segmented and regis-
tered to the Dixon scans. Manual editing was required in 
the majority of datasets, but was mostly limited to fully 
excluding the vena saphena magna and refining the FL. In 

Fig. 2  a Flowchart of the segmentation process. b Bias field cor-
rected  T1w image, which is the input for the fuzzy c-means cluster-
ing. c Result of step 1: fibrous tissue (FT, red), bone and background 
(BG, blue), muscle (green) and adipose tissue (AT, yellow) clusters. 

Sometimes veins and thicker connective tissue can also lie within the 
bone and BG cluster. d Result of step 2: tightly fitting muscle enve-
lope
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40% of the datasets, manual corrections with the refine-
ment tool were applied to less than ten slices and in 10% of 
the datasets to ten slices or more. With the livewire refine-
ment tool, editing was applied to ten slices simultaneously; 

thus in practice, a very experienced operator only edited 
a few slices per dataset. Typical processing times includ-
ing minor corrections were 1–5 min per dataset. This time 

Fig. 3  Schematic presentation of the filtering process to obtain rele-
vant FL structures. Fibrous tissue cluster obtained from fuzzy cluster-
ing (left). Result after filtering all fibrous structures outside the mus-
cle envelope (right). Green: 3D plate-like structures, probably part of 

the FL; red: structures unlikely part of the FL; for visualization only 
two colors, green and red are used. In reality, all voxels containing 
fibrous structures were continuously scaled between 0 and 1 (see 
text). Grey: region defined by tight muscle envelope

Fig. 4  Incorrect FL segmenta-
tion in red (a). Application of 
an intelligent scissors tool using 
manually set seed points (yel-
low crosses); corrected fascia 
segmentation (b)

Fig. 5  Separation of adipose and muscle tissue within the intra-fascia 
VOI uisng Dixon 6pt images. a The histograms show the grey value 
distribution (FF values ranging from 0 to 1000) of the whole intra-
fascia VOI; the normal histogram (black) and the logarithmically 
scaled histogram (color gradient). The color gradient indicates mus-

cle tissue (red) and adipose tissue (yellow). The minimum of this dis-
tribution (blue line) was used as a threshold to segment muscle tissue. 
b Segmented Dixon images; red: borders of muscle tissue (black); 
green: fascia lata; blue: outer surface of the thigh; the grey voxels 
within the FL denote IMAT
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increased to 8–10 min per dataset in case of major correc-
tions. Examples are shown in Fig. 7a, b.

The registration between  T1w and Dixon sequences was 
checked visually. Manual corrections were not required. 
Figure 7c shows an example of IMAT quantification in  T1w 
data.

The Pearson correlation coefficient between  IMATFL and 
 IMATME, was r = 0.98. There was one outlier among the 

elderly subjects, which was excluded from the correlation 
analysis, as it showed unusually high amounts of IMAT. Fig-
ure 6 shows the correlation analysis and the outlier subject. 
When plotting the difference ∆IMAT  (IMATFL–IMATME) 
against  IMATFE, ∆IMAT showed an increase in variance 
with increasing values of  IMATFE (Fig. 6b).

Inter- and intra-operator reanalysis precision errors for 
the IF VOI are summarized in Table 1. As the segmentation 

Fig. 6  Comparison of IMAT results. a Correlation of IMAT volume 
determined by the FL  (IMATFL) versus the narrow muscle envelope 
segmentation  (IMATME). b Absolute  IMATFL values plotted against 

the difference of  IMATFL and  IMATME. Green dots represent young 
and blue triangles elderly subjects. One outlier is marked by a black 
circle. An image of this subject is shown as inset

Fig. 7  Segmentation of the 
T1w images of a healthy young 
(a) and an elderly (b) subject. 
Image (c) shows the difference 
in IMAT (magenta) using the 
segmentation of the FL versus 
a tight fitting envelope. d A 3D 
projection of the FL segmenta-
tion in green, with muscle in red 
and AT in yellow
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is easier for young than for elderly subjects, results are also 
shown separately for each group.

Discussion

We presented a robust and precise semi-automatic method 
for segmenting the FL of the thigh muscles by combining 
clustering, level sets and 3D filtering of FL structures.  FFMT 
was quantified by thresholding the 6pt Dixon scans after 3D 
registration with the  T1w scans. The method was applied to 
young healthy and elderly sarcopenic subjects.

The segmentation of the FL is difficult. Even in high-
quality  T1w MRI datasets such as those available in the cur-
rent study, the FL is not always unequivocally discernible 
from other SAT structures. To our knowledge, no other pub-
lication has addressed this problem in depth, indeed many 
methods struggled with an accurate FL localization or an 
anatomically accurate FL definition without using manually 
pre-labeled images. Some disregarded the FL altogether by 
limiting the segmentation to individual muscles or muscle 
groups or even limited the segmentation to muscle tissue 
only. Some studies used machine learning methods to seg-
ment degenerated muscles within their epimysium [34]. 
However, for an accurate quantification of IMAT and SAT, 
the FL segmentation is a prerequisite, which in particular 
in elderly subjects extends beyond the tightly fitting muscle 
envelope of the thigh.

The FL segmentation procedure developed in this study 
was based on the physiological FL characteristics of forming 
a closed 3D surface. Hence, filtering of plate-like structures 
was very efficient to locate the FL components. A similar 
segmentation approach was reported by Kovacs et al. [35] 
who used a thin line filter in the SAT to find the FL, but did 
not exploit its closed surface property.

Despite necessary manual adjustments to fine tune the 
FL, the precision of the new segmentation approach was 
excellent. As expected, the intra-operator errors were lower 
than the inter-operator precision errors. Scan–rescan preci-
sion errors of a subset of the cohort of the current study has 
been reported earlier [25]. RMS-CV FF precision errors of 
the scanning process were: 2.1% for the young healthy and 
1.6% for the elderly subjects, which is about ten times higher 
than the analysis error. Unfortunately, precision of IMAT 
and of  FFMT had not been reported in this earlier study.

The correlation analysis showed a highly linear relation 
between  IMATFL and  IMATME across a wide range of val-
ues. The slope differed from one, resulting in an accuracy 
error of IMAT when using the tight muscle envelope. Thus 
for certain cross-sectional studies, an accurate FL segmenta-
tion may not always be necessary. However, in longitudinal 
studies, or even when investigating age related differences 
cross-sectionally it remains unclear, whether a change in 
IMAT can adequately be quantified, if the more peripheral 
parts close to the FL are neglected or whether changes in 
 IMATME adequately reflect changes in  IMATFL.

In the study cohort, there was one outlier that showed an 
unusually high IMAT volume. When IMAT volume in such 
subjects should be quantified and compared with others, an 
accurate FL segmentation is unavoidable. It is important 
to note that the discrepancies between both segmentations 
increased with the amount of IMAT within the subjects.

Limitations

The quality of the segmentation approach developed in this 
study depends on image quality. A fundamental requirement 
is the detectability of fibrous tissue at the interfaces of mus-
cles and SAT. A visual inspection of Fig. 1a shows that the 

Table 1  Inter- and intra-
operator reanalysis precision 
errors of G1 (n = 5) and G2 
(n = 15)

All G1 and G2 combined; all parameters are measured within the IF VOI, i.e. intra-fascia region, excluding 
the femur, FFMT fat fraction of muscle tissue derived in Dixon 6pt scans by thresholding muscle and adi-
pose tissue inside the fascia lata, Volumetotal volume of IF derived in  T1w data, VolumeIMAT intermuscular 
adipose tissue volume derived in  T1w data, RMS-SD root mean square of the standard deviation in units of 
the measured variable, RMS-CV root mean square coefficient of variation in %

Precision errors Inter Intra

Mean RMS-SD RMS-CV Mean RMS-SD RMS-CV

All FFMT [%] 7.29 0.02 0.04 7.30 0.01 0.02
Volumetotal  [cm3] 1148 2.22 0.03 1149 0.87 0.01
VolumeIMAT  [cm3] 54.6 1.20 0.33 54.6 0.52 0.14

G1 FFMT [%] 3.94 0.01 0.35 3.96 0.01 0.07
Volumetotal  [cm3] 1347 2.81 0.13 1348 0.55 0.02
VolumeIMAT  [cm3] 18.1 1.75 5.80 18.0 0.25 0.82

G2 FFMT [%] 8.41 0.02 0.04 8.42 0.01 0.03
Volumetotal  [cm3] 1082 1.99 0.04 1083 0.95 0.02
VolumeIMAT  [cm3] 66.8 0.96 0.29 66.7 0.58 0.17
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voxel size of the  T1w images of 0.5 × 0.5 × 3.0 mm3 fulfilled 
this requirement but a decrease of spatial resolution will 
impair the detectability of fibrous tissue and, therefore, the 
accuracy of the FL segmentation. The segmentation method 
was developed and tested on axial scans with 3 mm slice 
thickness. It is difficult to estimate how a larger displacement 
between the slices or a different orientation would affect the 
results. Obviously the same is true for IMAT. A decrease 
in spatial resolution of the  T1w images will increase partial 
volume artefacts and thus decrease the precision of IMAT 
volume measurements.

Outlook

A segmentation approach based on shape priors together 
with a statistical formulation of the level set algorithm could 
further automate the FL segmentation [36]. Ideally the seg-
mentation should be fully automated, for example, using 
deep learning approaches [37]. However, this will require 
adequate training data that can easily be generated using the 
method developed in this study.

IMAT is the traditional parameter for the assessment of 
adipose tissue in  T1w images. With the segmentation of the 
FL, IMAT can now be quantified. In FF Dixon images, the 
FL segmentation is more difficult because image contrast 
and often also the spatial resolution is lower compared to 
 T1w images. In consequence, fibrous structures have much 
lower contrast in FF images. Therefore, the FL was regis-
tered to the Dixon images to determine muscle tissue FF. 
Theoretically, the registration step can be omitted if opposed 
phase Dixon images are used for the FL segmentation. In this 
case, probably the 3D filtering of the FL has to be improved 
by increasing the resolution of the Dixon images, because 
visual inspection also showed a better image contrast in T1w 
compared to opposed phase Dixon images. Based on the 
results of this study, the question whether for a given clinical 
or research setting FF of muscle tissue or IMAT volume is 
more relevant can now be adequately addressed.

Conclusion

A highly precise semi-automatic segmentation method of 
the FL of the thigh was developed. The multi-step procedure 
included fuzzy c-means clustering to identify fibrous struc-
tures, Frangi’s filter detection principle to determine whether 
these structures were part of the FL and level set methods 
to determine the final FL. The combined (G1 and G2) rea-
nalysis precision error of IMAT volume was below 0.5%. 
The combined reanalysis precision error of  FFMT was below 
0.4%. The FL differs from a simple envelop of the muscle 
ensemble of the thigh because of additional adipose tissue 

between muscles and FL, in particular in elderly subjects. 
When quantifying IMAT in subjects with high AT infiltra-
tion, a FL segmentation is required. An approximation of 
the FL by a tight muscle envelope may deliver useful results 
in cross-sectional studies. These are important results for 
quantitative investigations of effects of adipose tissue due 
to aging, treatment and across various diseases.
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