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Abstract

The anti-lymphoma activity and mechanism(s) of action of the multikinase inhibitor sorafenib were investigated using a
panel of lymphoma cell lines, including SU-DHL-4V, Granta-519, HD-MyZ, and KMS-11 cell lines. In vitro, sorafenib
significantly decreased cell proliferation and phosphorylation levels of MAPK and PI3K/Akt pathways while increased
apoptotic cell death. In vivo, sorafenib treatment resulted in a cytostatic rather than cytotoxic effect on tumor cell growth
associated with a limited inhibition of tumor volumes. However, sorafenib induced an average 50% reduction of tumor
vessel density and a 2-fold increase of necrotic areas. Upon sorafenib treatment, endothelial and tumor cells from SU-DHL-
4V, Granta-519, and KMS-11 nodules showed a potent inhibition of either phospho-ERK or phospho-AKT, whereas a
concomitant inhibition of phospho-ERK and phospho-AKT was only observed in HD-MyZ nodules. In conclusion, sorafenib
affects the growth of lymphoid cell lines by triggering antiangiogenic mechanism(s) and directly targeting tumor cells.
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Introduction

Sorafenib is an oral multitargeted inhibitor of kinases approved

by the Food and Drug Administration for the treatment of patients

with advanced renal cell carcinoma (RCC) and those with

unresectable hepatocellular carcinoma (HCC) [1–3]. It is also

approved by the European Medicines Agency for the treatment of

patients with HCC and patients with advanced RCC with whom

prior interferon-a- or interleukin-2-based therapy had failed or

those considered to be unsuitable for such therapy. Sorafenib is

currently undergoing phase II/III clinical evaluation in a wide

variety of other solid as well as hematopoietic tumors [4–7].

In addition to targeting the receptor tyrosine kinases c-kit, Flt3,

and RET [8,9], sorafenib at a clinically achievable plasma

concentration of 10 mM, inhibits multiple additional receptor

tyrosine kinases and intracellular kinases [10]. By inhibiting the

Raf/mitogen-activated protein (MAP)/extracellular-signal regu-

lated kinase (ERK) kinase (MEK)/ERK (Raf/MEK/ERK)

signaling pathway sorafenib exerts direct antiproliferative, apo-

ptotic and antiangiogenic effects on a variety of solid tumors as

well as leukemic cell lines [11]. The antiproliferative activity of

sorafenib varies from nanomolar to micromolar concentrations

depending on the oncogenic signaling pathways driving prolifer-

ation. The proapoptotic effects of sorafenib may vary among cell

lines and result from mechanism(s) of action that are only partially

elucidated. A commonly observed feature is the inhibition of

phosphorylation of the initiation factor eIF4E and downregulation

of the antiapoptotic protein myeloid cell leukemia-1 (Mcl-1)

[12,13], a Bcl-2 family member implicated in malignant hemato-

poietic cell survival. Downregulation of Mcl-1 by sorafenib is

associated with the release of cytochrome c from mitochondria

into the cytosol, caspase activation, and apoptotic cell death [14].

The ability of sorafenib to suppress tumor angiogenesis has been

well established and is likely due to the potent inhibition of the

proangiogenic vascular endothelial growth factor receptor

(VEGFR1)-1, VEGFR-2, VEGFR-3, and platelet-derived growth

factor receptor-ß [9]. In vivo, sorafenib exhibits antitumor activity

against a variety of human xenograft models of multiple

histological types, including melanoma, renal, colon, pancreatic,

hepatocellular, lung, and thyroid carcinomas, as well as acute

myelogenous leukemia [7,15–17]. Furthermore, sorafenib pro-

duced partial tumor regressions in mice bearing PLC/PRF/5

HCC and induced tumor regression in a breast cancer model

harboring B-Raf and K-Ras oncogenic mutations [18].

Several lines of in vitro evidence suggest that sorafenib might

have a role in the treatment of lymphomas by overcoming the

cytoprotective effects of ERK, and Mcl-1 and eventually targeting

oncogenic signaling pathways driving lymphomagenesis [19–23].
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Indeed, sorafenib-induced inhibition of the ERK1/2 pathway

might results in Bcl-XL downregulation [24], thus mimicking

rituximab-mediated effects on CD20-positive non-Hodgkin lym-

phoma cell lines [25]. Additionally, sorafenib might downregulate

Mcl-1 [14], which is implicated in resistance to anticancer drugs

and is overexpressed in a significant proportion of diffuse large B

cell lymphoma (DLBCL) and follicular lymphoma (FL) [26],

thereby restoring lymphoma cell sensitivity to apoptosis.

It was the aim of the present study to further investigate in

preclinical models both in vitro and in vivo the antitumor activity

and mechanism(s) of action of sorafenib using a panel of cell lines

representative of the heterogeneity of lymphoproliferative disor-

ders. Data reported herein demonstrate that pharmacologically

achievable concentrations of sorafenib inhibit the growth of

lymphoid cell lines of different histotypes, and suggest that both

antiangiogenic mechanism(s) as well as direct targeting of tumor

cells mediate the in vivo antilymphoma activity of sorafenib.

Materials and Methods

Reagents
Sorafenib (Bayer AG, Leverkusen, Germany, EU) was dissolved

in 100% dimethylsulfoxide (DMSO) to obtain a stock solution

(60 mg/ml). Working solutions (1006) were obtained by further

diluting in RPMI-1640 and were added to in vitro cultures at 1%

(v/v) to achieve a final DMSO concentration of 0.01%.

Cell lines and primary cells
SU-DHL-4V (DLBCL), Granta-519 [mantle cell lymphoma

(MCL)], HD-MyZ [Hodgkin lymphoma (HL)], and KMS-11

[multiple myeloma (MM)] cell lines were purchased from the

German Collection of Microorganisms and Cell Cultures (DSMZ,

Braunschweig, Germany, EU). Cell lines were cultured in RPMI-

1640 supplemented with 10% fetal bovine serum (FBS) and

periodically tested for mycoplasma contamination. Primary

DLBCL and MCL mononuclear cells (MNCs) were isolated at

the time of diagnostic work-up from the peripheral blood of

consenting patients. As assessed by flow cytometry, percentages of

neoplastic cells were always .95%.

Apoptosis and viable cell counting
Apoptotic cells were detected by annexin-V/propidium iodide

(PI) double staining and flow cytometry analysis, as previously

described [27]. Viable cells, i.e. annexin-V2/PI2 cells, were

counted with Flow-Count beads (Beckman Coulter, Milano, Italy,

EU) by flow cytometry. The proportion of viable cells was further

determined by an WST-based vitality assay following the

manufacturer’s recommendations (Biovision, Milpitas, CA, USA).

Measurement of DYm
Mitochondrial membrane depolarization was determined by

using the fluorescent probe TMRE and flow cytometry, as

previously described [28]. The fluorescent dye TMRE is

accumulated by mitochondria and as a results of mitochondrial

membrane depolarization, a shift to the left in the emission

spectrum by apoptotic cells can be detected.

Western blot analysis
Cell samples were homogenized in NP-40 lysis buffer (1% NP-

40, 20 mM Tris-HCl pH 8, 137 mM NaCl, 10% glycerol, 2 mM

EDTA, 1 mM sodium orthovanadate, 10 mg/mL aprotinin,

10 mg/mL leupeptin). Cell lysates were resolved by electrophoresis

on a 10% polyacrylamide gel and transferred to nitrocellulose

membranes. Immunocomplexes were visualized using an en-

hanced chemiluminescence Western blotting detection system

(Amersham Biosciences, Milano, Italy, EU). Blotting analysis was

performed using anti-Mcl-1, anti-phospho-MEK, -ERK,-AKT

S473, -S6, GSK-3 a/b, anti-p38a, -caspase-8 antibodies from Cell

Signaling (Danvers, MA, USA), anti-caspase-3 antibody (Santa

Cruz, San Diego, CA, USA), anti-caspase-9 and anti-poly(ADP-

ribose)polymerase (PARP) (B–D).

Phospho-MAPK proteome profiler array
Untreated and sorafenib-treated cells were washed with ice-cold

PBS and solubilized in NP-40 lysis buffer (1% NP-40, 20 mM

Tris-HCl pH 8, 137 mM NaCl, 10% glycerol, 2 mM EDTA,

1 mM sodium orthovanadate, 10 mg/mL aprotinin, 10 mg/mL

leupeptin). Cell lysates were centrifuged (14,000 rpm, 5 minutes,

4uC), and protein concentrations in the supernatants was

determined using the Bradford assay (Bio-Rad Laboratories).

Equal amounts of proteins (200 mg) from control and sorafenib-

treated cells were incubated with the human phospho-MAPK

array kit. The following kinases were detected: ERK1 (T202/

Y204), ERK2 (T185/Y187), c-Jun N-terminal kinase (JNK) pan

(T183/Y185, T221/Y223), p38a (T180/Y182), glycogen synthase

kinase (GSK)-3 a/b (S21/S9), GSK-3 b (S9), Akt pan (S473, S474,

S472), Akt1 (S473), Akt2 (S474), Akt3 (S472), p70 S6K (T421/

S424), and HSP27 (S78/S82). Phospho-MAPK array data

developed on X-ray films (Amersham Biosciences) following

exposure to chemiluminescent reagents were analyzed using the

open source imaging software ImageJ (http://rsb.info.nih.gov/ij/).

The assays were conducted in duplicate. A ratio of signal intensity

(sorafenib:control) was calculated for each of the four replicates

(two duplicates per assay) and transformed into a log value (base

10).

In vivo activity of sorafenib in tumor-bearing non-obese
diabetic/severe combined immunodeficient (NOD/SCID)
mice

Six- to eight-week-old NOD/SCID mice were purchased from

Charles River (Milano, Italy, EU) and xenografted with SU-DHL-

4V, Granta-519, HD-MyZ, or KMS-11 cell lines [27]. Mice were

housed under standard laboratory conditions according to our

institutional guidelines. Animal experiments were performed

according to the Italian laws (D.L. 116/92 and following

additions), which enforce the EU 86/109 Directive, and were

approved by the institutional Ethical Committee for Animal

Experimentation of the National Cancer Institute Foundation.

Tumor cells (56106 cells/mouse) were inoculated subcutaneously

(SC) in the right flank of each mouse. When tumor volume

reached approximately 100 mg in weight (6–13 days after tumor

inoculation), mice were randomly assigned to receive either a

short- or long-term treatment with sorafenib diluted in DMSO

(final concentration, 10% v/v) or control vehicle (DMSO 10%, v/

v). In preliminary experiments, mice injection with a 10% DMSO

solution failed to affect tumor cell signaling likely due to an in vivo

DMSO dilution as well as metabolism. The short-term treatment

consisting of intraperitoneal (IP) sorafenib (90 mg/kg) or DMSO

for 5 days was used to assess necrotic areas and tumor vascularity.

The long-term treatment consisted of sorafenib (90 mg/kg) or

DMSO 5 days per week for 3 weeks. The endpoint of the long-

term treatment was tumor weight. The tumors were measured

with calipers, and their weights were calculated using the formula:

(a6b2)/2, where a and b represented the longest and shortest

diameters, respectively. Antitumor efficacy was measured as tumor

growth inhibition (TGI) defined as [12(T/C)6100], where T and

C are the mean tumor weight in the treated and untreated control
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groups, respectively. Mice were monitored twice weekly and were

killed by cervical dislocation when they showed signs of terminal

illness, including hind leg paralysis, inability to eat or drink, and/

or moribund. Each experiment was performed on at least two

separate occasions, using five mice per experiment.

Analysis of tumor nodules
Tumor vasculature was analyzed by in vivo staining using

sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-bio-

tin, Thermo Fisher Scientific, Rockford, IL, USA) [27,29].

Biotinylated tumors were snap-frozen in isopentane in liquid

nitrogen. Tumor endothelial cells were then revealed by immu-

nohistochemistry using HRP-conjugated streptavidin (Dako,

Milano, Italy, EU) or immunofluorescence using Alexa Fluor

488-conjugated streptavidin (Invitrogen, Milano, Italy, EU).

Formalin-fixed, paraffin-embedded tumor nodules were stained

with hematoxylin and eosin (H&E) or processed for immunohis-

tochemistry with anti-mouse CD31 (Santa Cruz Biotechnology,

Inc., Heidelberg, Germany, EU) and anti-human Ki-67 (Dako).

Tumor necrosis was detected using TdT-mediated dUTP nick

end-labeling (TUNEL) staining (Roche, Milano, Italy, EU)

according to the manufacturer’s instructions. Positive signal was

revealed by 3,3-diaminibenzidine staining, and tumor sections

were then counterstained before analysis by light microscopy.

Analysis of stained sections
Entire tissue sections were acquired at 206magnification with

an automatic high-resolution scanner (dotSlide System, Olympus,

Tokyo, Japan) and subdivided into a collection of non-overlapping

red, green, and Blue (RGB) images in TIFF format (final

resolution, 3.125 pixels/mm). For necrosis quantification, images

were acquired at 26 magnification without further subdivision.

Image analysis was performed using the open source imaging

software ImageJ (http://rsb.info.nih.gov/ij/). Routines for image

analysis were coded in ImageJ macro language and executed on

RGB images without further treatment. Per each experimental

condition, at least three tissue sections from at least three different

tumor nodules were analyzed. Necrotic areas was evaluated on

TUNEL-stained sections as previously described [27]. Endothelial

cells were analyzed on cryosections from in vivo biotinylated mice

which were stained with HRP-conjugated streptavidin. Automatic

routines were validated by comparing results with those obtained

by visual counting of up to 10% of the total images.

Confocal microscopy
Confocal microscopy was performed as previously described

[27]. To detect tumor vessels, frozen sections were incubated with

Alexa Fluor 488-conjugated streptavidin. To detect pericytes and

tumor vessels, frozen sections were double stained with Alexa

Fluor 568-conjugated streptavidin and anti-mouse NG2. Forma-

lin-fixed, paraffin-embedded tumor nodules were sectioned at

1 mm and double-stained with anti-mouse CD31 (Santa Cruz

Biotechnology, Inc., Heidelberg, Germany, EU) and anti human/

mouse phospho-AKT (Ser473) or phospho-ERK1/2 (Cell Signal-

ing). CD31 expression was revealed by appropriate Alexa Fluor

568-conjugated secondary antibody (Invitrogen) and tumor/

endothelial p-AKT or p-ERK1/2 expression was revealed by

Alexa Fluor 488- conjugated secondary antibody (Invitrogen).

Nuclei were detected incubating sections with TO-PRO-3 nuclear

dye (Invitrogen). Fluorescence-stained sections were examined

under an epifluorescent microscope equipped with a laser confocal

system (MRC-1024, Bio-Rad Laboratories). Image processing was

carried out with LaserSharp computer software (Bio-Rad Labo-

ratories).

Statistical analysis
Statistical analysis was performed with the statistical package

Prism 5 (GraphPad Software, San Diego, CA, USA) run on a

Macintosh Pro personal computer (Apple Computer Inc.). To test

the probability of significant differences between untreated and

treated samples, the Student’s t test for unpaired data (two-tailed)

or two-way ANOVA were used, as appropriate. Tumor volume

data and proteome profiler array data were statistically analyzed

with two-way ANOVA, and individual group comparisons were

evaluated by Bonferroni’s multiple comparison test. Differences

were considered significant if p#0.05.

Results

Sorafenib reduces viable cell countings and triggers
apoptosis

The effects of sorafenib on cell proliferation were investigated in

vitro by performing dose-response and time-course experiments

using four cell lines representative of lymphoproliferative disorders

with different histotypes. Readout of these experiments included

viable cell countings and a WST-based cell proliferation assay.

Exposure to 5 mM sorafenib for 24 or 48 hours resulted in modest

cytostatic effects (Figure 1A, Figure S1). In contrast, in vitro

exposure to a clinically achievable concentration of sorafenib

(10 mM) [30] for 24–48 hours resulted in significant reductions of

cell viability (Figure 1B, Figure S1) (p#0.05 at least) with

cytotoxic effects being detected in SU-DHL-4V, Granta-519, and

KMS-11 cell lines and cytostatic effects being detected in HD-

MyZ cell line (Figure 1B).

To investigate whether sorafenib-induced antiproliferative

effects involved apoptosis, annexin-V/PI double staining was

performed (Figure 1B, Figure S2). Again, exposure to 5 mM

sorafenib had no effect on cell death, whereas exposure to 10 mM

sorafenib significantly increased (p#0.05 at least) cell death in all

cell lines but HD-MyZ cells. Sensitive cell lines showed a wide

degree of variability to sorafenib-induced apoptosis, with mean cell

death values of 35% (range, 30% to 40%) and 55% (range, 40% to

64%) following a 24- and 48-hour incubation, respectively

(Figure 1B). Upon sorafenib exposure, SU-DHL-4V and

Granta-519 cell lines but not KMS-11 cell line showed evidences

of caspase-independent apoptosis as suggested by the lack of

caspase activation and PARP cleavage (Figure 2A). To further

examine the molecular mechanisms whereby sorafenib triggers

apoptosis, we investigated whether loss of mitochondrial potential

was involved in sorafenib-induced cell death. Indeed, a potent

mitochondrial membrane depolarization could be detected in all

apoptosis-prone cell lines (Figures 2B–C), with loss of mitochon-

drial potential ranging from 58% to 94%.

Effects of sorafenib on primary DLBCL and MCL cells
Apoptotic activity of sorafenib was further evaluated by

analyzing its effect on primary cells purified from the peripheral

blood of DLBCL and MCL patients at diagnosis (Table 1). While

sorafenib-induced apoptosis could be detected in only 1 out of 3

MCL samples, apoptotic cell death was consistently observed in all

DLBCL samples.

Sorafenib affects phosphorylation of MAPK and PI3K/Akt
pathways

To analyze sorafenib’s effects on MAPK and PI3K/Akt

signaling pathways, we used a standard antibody array technology

allowing simultaneous analysis of all three major MAPKs,

including ERK1/ERK2, JNKs, and p38a, as well as the Akt

In Vivo Antilymphoma Activity of Sorafenib
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Figure 1. Antiproliferative and apoptotic effects of sorafenib. Following incubation with increasing doses of sorafenib, viable cell counts and
apoptotic cell death were assessed by annexin-V/PI double staining and flow cytometry analysis. (A) Viable cell counts upon exposure to 0 (&), 5 (%)
and 10 (N) mM sorafenib. Viable cells are expressed as fold increase (FI) of annexin-V2/PI2 cells after 24 and 48 hours of incubation with sorafenib as
compared to day 0. (B) Cell death following 24 (%) or 48 (&) hours sorafenib exposure. Percentages of cell death include annexin-V+/PI2 plus
annexin-V+/PI+ plus annexin-V2/PI+ cells. Values refer to four independent experiments. * p#0.001, u p#0.01, and ? p#0.05, compared to controls.
doi:10.1371/journal.pone.0061603.g001
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isoforms, and the direct and indirect Akt targets GSK-3 a/b and

p70 S6 kinase 1 (p70S6K). Sorafenib (10 mM, 2 hours) affected

MAPK and PI3K/Akt signaling pathways in a rather heteroge-

neous manner (Figure 3A–C). As demonstrated by reduced

phosphorylation levels for ERK1/2 and p38a kinases, sorafenib

downregulated MAPK signaling in all cell lines. Analysis of PI3K/

Akt signaling revealed significantly reduced phosphorylation levels

of Akt1 and Akt2 in SU-DHL-4V and Granta-519 cell lines. These

lines also showed reduced phosphorylation levels of the direct and

indirect Akt targets GSK-3 a/b and p70S6K, revealing that

sorafenib may severely affect the PI3K/Akt pathway in some

lymphoma cell lines (Figure 3A–B). In contrast, PI3K/Akt

signaling was unaffected in the HD-MyZ, and KMS-11 cell lines.

Western blot analysis essentially confirmed the previous

antibody array results, further showing that sorafenib treatment

modulated MAPK and PI3K/Akt phosphorylation levels in a

rather heterogeneous manner depending on the different target

cells (Figure 3C). Consistent with sorafenib’s effect on the Raf/

MEK/ERK pathway, a time-dependent down regulation of MEK

and ERK phosphorylation could be detected in SU-DHL-4V,

HD-MyZ, and KMS-11 cell lines (Figure 3C). Additionally,

Figure 2. Mechanism of sorafenib-induced apoptosis. SU-DHL-4V, Granta-519, HD-MyZ and KMS-11 cells were treated with sorafenib (10 mM)
for 48 hours. (A) Cytosolic proteins were then separated by SDS-PAGE and analyzed by immunoblotting with anti-caspases-8, -9, -3, and anti-PARP.
CF, indicates cleaved fragments. (B) Loss of mitochondrial potential was measured using TMRE staining and flow cytometry. * p#0.001, compared to
controls. (C) Representative dot plots of mitochondrial membrane depolarization in untreated and sorafenib-treated cell lines.
doi:10.1371/journal.pone.0061603.g002

Table 1. Effects of sorafenib on primary DLBCL and MCL cells.

Case Diagnosis Annexin-V-/PI- (%)

DMSO 5 mM 10 mM

1 DLBCL 100 100 59

2 DLBCL 100 100 79

3 DLBCL 100 100 56

4 MCL 100 100 49

5 MCL 100 100 100

6 MCL 100 100 100

Freshly isolated blood MNCs from DLBCL and MCL patients were resuspended
(16106/ml) in RPMI-1640 supplemented with FBS (10%, v/v) and incubated
(24 hours, 37uC, 5% CO2) with sorafenib (5–10 mM). Controls were
supplemented with DMSO. At the end of the incubation, viable cell counts
(Annexin-V-/PI-) were evaluated by Flow-Count beads and Annexin-V/PI double
staining. Data are expressed as percent of control.
doi:10.1371/journal.pone.0061603.t001
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Figure 3. Sorafenib treatment induced changes in survival signals in NHL cells. (A) To assess the effects of sorafenib, cells were exposed for
2 hours to control vehicle (DMSO) or sorafenib (10 mM). Shown are data from one of two independent experiments. The chemiluminescence signal
intensity of individual spots was analyzed using the open source imaging software ImageJ (http://rsb.info.nih.gov/ij/). The assays were conducted in
duplicate. A ratio of signal intensity (sorafenib:control) was calculated for each of the four replicates (two duplicates per assay) and transformed into a
log value (base 10). * p#0.001, and u p#0.01, compared to controls. (B) Shown are data from one of two independent experiments. Representative
proteome profiles of control and sorafenib-treated cell lines. The position of the antibodies (double spots for each antibody) relative to the relevant
protein kinases is shown. The chemiluminescence signal intensity of individual spots was analyzed using the open source imaging software ImageJ
(http://rsb.info.nih.gov/ij/). 1 = positive control; 2 = p70 S6 kinase; 3 = Akt pan; 4 = Akt 2; 5 = Akt 1; 6 = GSK-3 a/b; 7 = p38 a; 8 = JNK pan; 9 = ERK2; and
10 = ERK1. (C) Immunoblots of extracts from SU-DHL-4V, Granta-519, HD-MyZ and KMS-11 cells treated with control vehicle (DMSO) or sorafenib
(10 mM) for the indicated time periods showed consistent downregulation of p-38a phospho-ERK, phospho-MEK, phospho-Akt, phospho-S6,
phospho- GSK-3 a/b and Mcl-1. Equal protein loading was confirmed by blotting for b-actin.
doi:10.1371/journal.pone.0061603.g003
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exposure to sorafenib resulted in a time-dependent down

regulation of p-38a in all cell lines. SU-DHL-4V and Granta-

519 cells demonstrated constitutive phosphorylation of Akt, which

was completely inhibited by sorafenib in a time-dependent

manner. Phosphorylation of S6, downstream target proteins of

Akt, was also markedly inhibited in all cell lines (Figure 3C).

Upon sorafenib exposure, expression of Mcl-1 was markedly down

regulated in SU-DHL-4V, HD-MyZ and KMS-11 cells, whereas

no effect was observed in Granta-519 cells (Figure 3C).

Sorafenib inhibits tumor cell proliferation and
angiogenesis

NOD/SCID mice inoculated subcutaneously with SU-DHL-

4V, Granta-519, HD-MyZ, or KMS-11 cells, received a 15-day

treatment with sorafenib (90 mg/kg/day, 5 days per week for 3

weeks) or vehicle control. Treatment was started when tumor

volumes reached approximately 100 mg in weight (i.e., 6–13 days

after tumor inoculation). Sorafenib treatment resulted in modest

effects on the growth of SU-DHL-4V, Granta-519, and KMS-11

xenografts, as shown by TGI values of 37%, 39%, and 53%,

respectively, whereas it substantially affected the growth of HD-

MyZ xenograft, resulting in a 71% TGI (Figure 4A). These

Figure 4. Effect of sorafenib on tumor growth. (A) NOD/SCID mice bearing SC tumor nodules 100 mg in weight were randomly assigned to
receive a 15-day treatment with sorafenib (&) (90 mg/kg/day, 5 days per week over 3 weeks) or control vehicle (DMSO) (N). Mice were checked twice
weekly for tumor appearance, tumor dimensions, body weight, and toxicity. Mean (6 SEM) values refer to at least two independent experiments,
using 5 mice per experiment. Treatment initiation is indicated by horizontal black lines. * p#0.001 and u p#0.01 compared to controls. (B) Ki-67
staining of lymphoma tumor treated with sorafenib (90 mg/kg/day, 5 days) or control vehicle (DMSO). In the Ki-67-stained section, brown staining
represents positive signals within the tumors (blue cells are the negative, living cells). Objective lens, original magnification: 0.75 NA dry objective,
206. Scale bar: 50 mm.
doi:10.1371/journal.pone.0061603.g004
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findings were paralleled by a strong decrease of Ki-67 expression

in tumor cells (Figure 4B), suggesting that sorafenib indeed

inhibited tumor cell proliferation. However, such an antiprolifer-

ative effect was not associated with an increase of tumor cell

apotosis, as evaluated by TUNEL staining (data not shown),

suggesting that the effect of sorafenib on tumor cell growth was

cytostatic rather than cytotoxic.

We then evaluated the effects of sorafenib on tumor vasculature

by using a sulfo-NHS-LC-biotin-based in vivo assay that allows a

detailed qualitative and quantitative analysis of tumor vasculature

[29]. Tumor vessel density was assessed by quantifying the

percentage of biotinylated cells, i.e., the percentage of the entire

tissue section occupied by endothelium. Reduction of tumor

vasculature was calculated within viable tumor areas only while

excluding necrotic areas. Regardless of the lymphoma subtype,

tumor vasculature in control mice was abundant, tortuous, and

evenly distributed throughout the tumor, which thus appeared well

vascularized (Figure 5A). Extensive vascularization is likely due to

the upregulation of VEGFR-2 expression by tumor cells and

tumor endothelium and the concomitant production of VEGF by

tumor cells (data not shown) [31].

In control mice, vascular density resulted in mean values of

endothelial areas ranging from 7% to 11% of the total tumor area.

Upon a 5-day sorafenib treatment, all tumors showed an average

50% inhibition of tumor vessel density (Figure 5A). In fact, as

compared to mice receiving vehicle control, sorafenib significantly

Figure 5. Effect of sorafenib on tumor vasculature. (A) Mice treated with sorafenib (90 mg/kg) or control vehicle (DMSO) were in vivo
biotinylated with sulfo-NHS-LC-biotin, and tumor vasculature was revealed by staining sections with Alexa Fluor 488-streptavidin (upper panel,
objective lens, original magnification: 1.0 NA oil objective, 406). CD31-stained tumor paraffin sections are shown for comparison (lower panel,
objective lens, original magnification: 0.75 NA dry objective, 206). (B) Quantification of endothelial area on entire tissue sections was achieved with
ImageJ software. The reduction of vessel density detected in sorafenib-treated nodules was calculated by assessing only viable areas of tissue
sections while excluding necrotic areas. The boxes extend from the 25th to the 75th percentiles, the lines indicate the median values, and the whiskers
indicate the range of values.
doi:10.1371/journal.pone.0061603.g005
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reduced mean endothelial areas of SU-DHL-4V (11% vs 6%,

p#0.0001), Granta-519 (8% vs 3%, p#0.0001), HD-MyZ (7% vs

3%, p#0.0001), and KMS-11 (9% vs 5%, p#0.0001) nodules

(Figure 5B). The potent sorafenib-induced inhibition of tumor

vascularization was further confirmed by staining tumor sections

with the endothelial cell marker CD31 (Figure 5A).

In sorafenib-treated tumors, vessels appeared smaller in length,

lacking in sproutings and much less arborized and dishomogen-

eously distributed throughout tumor tissue as compared to vehicle-

treated animals (Figure 5A) [32], suggesting that in contrast with

other antiangiogenic drugs, sorafenib has no effect on vessel

normalization [33]. To further investigate this issue, tumor

sections were co-stained for both tumor vasculature with Alexa

Fluor 568-conjugated streptavidin, and pericytes with anti-NG2

antibody. After sorafenib treatment, confocal microscopy analysis

showed a marked reduction of pericytes in SU-DHL-4V and HD-

MyZ xenografts, whereas no difference was observed in Granta-

519 and HD-MyZ xenografts, further supporting no activity of

sorafenib on vessel normalization (Figure 6).

In vivo anti-tumor mechanism(s) of sorafenib were additionally

investigated by analyzing Akt and ERK1/2 phosphorylation in

sorafenib-treated tumor cells and tumor vasculature (Figure 7).

Tumor and vascular ERK1/2 phosphorylation was unaffected in

SU-DHL-4V and Granta-519 cell lines, whereas it was strongly

Figure 6. Effects of sorafenib on pericytes. Mice treated with sorafenib (90 mg/kg/die, 5 days) or control vehicle (DMSO) were in vivo
biotinylated with sulfo-NHS-LC-biotin. SU-DHL-4V, Granta-519, HD-MyZ and KMS-11 tumor vasculature was revealed by staining sections with Alexa
Fluor 568-streptavidin (red). Tumor sections were stained with NG-2 (green) followed by AlexaFluor 488-conjugated secondary antibody for indirect
immunofluorescent detection of pericytes. Nuclei were detected with DAPI nuclear dye (blue). Representative images are shown. Objective lens,
original magnification: 1.0 NA oil objective, 406. Scale bar: 100 mm.
doi:10.1371/journal.pone.0061603.g006
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reduced in HD-MyZ and KMS-11 cell lines. Tumor and vascular

Akt phosphorylation was reduced in SU-DHL-4V, Granta-519

and HD-MyZ cell lines, but not in KMS-11 cell line. Thus, HD-

MyZ xenograft showed a combined inhibition of ERK1/2 and

Akt phosphorylation on both tumor and endothelial cells, whereas

the remaining lymphoma xenografts showed a selective inhibition

of either ERK1/2 or Akt pathways on both tumor and vascular

cells (Figure 7). Notwithstanding the strong inhibition of ERK1/2

and/or Akt phosphorylation on vascular cells, we did not detect

any increase in tumor endothelial cell apoptosis, as evaluated by

CD31/TUNEL double-staining (data not shown).

Despite apoptosis was not a prominent features of tumor or

endothelial cells in sorafenib-treated mice, tumor sections from

these animals showed large areas of non-hemorrhagic tumor

necrosis by hematoxilyn/eosin as well as TUNEL staining

(Figure 8A), suggesting that hypoxic conditions subsequent to

tumor vessel inhibition might have triggered tumor destruction. As

compared to controls, sorafenib significantly increased necrotic

areas in mice bearing SU-DHL-4V (7% vs 13%, p#0.0001),

Granta-519 (7% vs 17%, p#0.004), HD-MyZ (18% vs 45%,

p#0.0001), and KMS-11 (2% vs 8%, p#0.0001) xenografts

(Figure 8B).

Discussion

Data reported herein using four cell lines representative of

different lymphoproliferative disorders show that sorafenib may

exert antilymphoma activities that are likely mediated by a variety

of mechanism(s), including antiproliferative effects on tumor cells

as well as antiangiogenic effects. These findings significantly

extend the spectrum of tumors that sorafenib targets and are

consistent with previously reported results showing efficacy of

sorafenib in multiple tumor xenograft models [7,15–17].

In vitro, clinically achievable concentrations of sorafenib (5–

10 mM) [30] induced a marked inhibition of MAPK and/or

PI3K/Akt signaling as well as Mcl-1 in all cell lines, resulting in a

significant reduction of cell proliferation and/or induction of

apoptosis. Sorafenib affected both MAPK and PI3K/Akt signaling

in essentially all analyzed cell lines, with PI3K/Akt signaling being

markedly affected in SU-DHL-4V and Granta-519 cell line. In

vivo, sorafenib has previously been reported to inhibit the growth

of a wide variety of human tumor xenografts in mice [7,15–17].

Our data obtained in four xenograft models of lymphoma

demonstrate that the potent antiangiogenic activity of sorafenib,

eventually combined with its marked inhibition of lymphoma cell

Figure 7. Sorafenib-induced inhibition of Akt and ERK phosphorylation in tumor and endothelial cells. SU-DHL-4V, Granta-519, HD-MyZ
and KMS-11 tumor nodules growing subcutaneously in mice treated with sorafenib (90 mg/kg) or control vehicle (DMSO) for 5 days were excised
3 hours after the last treatment, fixed in formalin and embedded in paraffin. Tumor sections were double-stained with CD31 (red) and phospho-ERK
1/2 (green) or phospho-Akt (green) followed by the appropriate AlexaFluor 568- or 488-conjugated secondary antibody for indirect
immunofluorescent detection of the corresponding antigen. Nuclei were detected with TO-PRO-3 nuclear dye (blue). Arrows indicate phospho-
ERK 1/2 or pospho-Akt expression by endothelial cells; arrowheads indicate phospho-ERK 1/2 or pospho-Akt expression by tumor cells.
Representative images are shown. Objective lens, original magnification: 1.0 NA oil objective, 406. Scale bar: 50 mm.
doi:10.1371/journal.pone.0061603.g007
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Figure 8. Sorafenib induces in vivo tumor necrosis. (A) H&E and TUNEL staining of lymphoma tumor treated with sorafenib (90 mg/kg) or
control vehicle (DMSO). In the TUNEL-stained section, brown staining represents positive signals within the tumors (blue cells are the negative, living
cells). Objective lens, original magnification: 0.08 NA dry objective, 26. (B) Quantification of necrotic areas on entire tissue sections using ImageJ
software. Percentage of necrosis was calculated by the following formula: (necrotic area/total tissue area)6100. The boxes extend from the 25th to the
75th percentiles, the lines indicate the median values, and the whiskers indicate the range of values.
doi:10.1371/journal.pone.0061603.g008
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proliferation, induces a relevant tumor destruction as shown by

large areas of tumor necrosis detected in sorafenib-treated mice.

According to previously reported studies, an optimal biological

dose of sorafenib (90 mg/kg/day) was choosen for our in vivo

experiments [9,18,34]. Sorafenib dose resulting in antitumor

activity in our xenograft models (90 mg/kg/day) roughly equals to

600 mg/day in humans and compares well with the standard

sorafenib daily dose used in clinical trials. The treatment dose used

in our experiments is expected to produce plasma drug

concentrations in the range of pharmacologically achievable

concentrations of sorafenib, i.e., 5 to 15 mM, that are consistently

detected in patients receiving the standard sorafenib daily dose of

800 mg [4,5,17,30].

While a 5-day treatment with sorafenib induced an average

50% inhibition of tumor angiogenesis and extensive tumor

necrosis, biologically significant effects on the volume of lympho-

ma xenografts could only be observed in one of four xenografts

(i.e., HD-MyZ) and required a long-term sorafenib treatment.

Indeed, the limited effects of sorafenib on the volume of

lymphoma xenografts closely resemble the findings frequently

reported in patients treated with sorafenib who may experience a

clinical benefit in the absence of any tumor volume reduction

[3,35].

Analysis of tumor xenografts showed a substantial reduction of

Ki-67 expression, as well as inhibition of phospho-Akt and/or

phospho-ERK1/2 levels, suggesting that sorafenib-mediated

lymphoma growth inhibition also involves a direct inhibition of

cancer cell proliferation. However, analysis of tumor nodules from

mice receiving a 5-day sorafenib treatment revealed a marked

reduction of tumor angiogenesis, eventually associated with

inhibition of vascular phospho-Akt and/or phospho-ERK1/2,

thus suggesting that inhibition of angiogenesis is likely to play a key

role in triggering the antitumor activity of sorafenib. Indeed,

angiogenesis inhibition almost certainly represents a primary effect

of sorafenib treatment rather than being secondary to tumor cell

loss and reduced production of angiogenic factors. In fact,

inhibition of tumor angiogenesis was detected in non-necrotic

areas, suggesting that inhibition of tumor vasculature was the first

event triggered by sorafenib, subsequently leading to the

generation of extensive tumor necrosis due to hypoxic conditions.

Alternatively, if tumor cell loss would have preceded reduction of

angiogenesis, tumor vessel density would not be expected to

decrease and should result unchanged or possibly increased.

Taken together, these data strongly support that sorafenib acts

primarily as an antiangiogenic agent, as shown by the marked

tumor vessel reduction, but it also directly affects lymphoma cells,

as shown by Ki-67 inhibition.

It has been proposed that one of the mechanisms by which

antiangiogenic agents mediate their effect is to transiently

‘‘normalize’’ tumor vasculature, resulting in attenuation of

hyperpermeability, increased vascular pericyte coverage, reduction

in tumor hypoxia and interstitial fluid pressure [36]. The results of

our studies however, show that administration of sorafenib results

in a decrease of vasculature, leading to elevated level of tumor

necrosis with the absence of vessel normalization as detected by

vessel morphological features as well as number of pericytes.

Although vessels leakiness poses a challenge for drug delivery [37],

at the same time, lack of pericytes makes the vessels susceptible to

antiangiogenic therapies [38]. Sorafenib may therefore improve

anti-angiogenic therapy in lymphoma by targeting both endothe-

lial cells as well as their supporting pericytes.

The best in vivo antitumor response to sorafenib, i.e., a 70%

TGI, was detected in NOD/SCID mice bearing HD-MyZ

xenografts that showed a marked inhibition of both tumor and

vascular ERK1/2 and Akt phosphorylation, suggesting that the

concomitant inhibition of MAPK and PI3K/Akt signaling is

required to achieve an optimal antilymphoma activity. In contrast,

modest in vivo responses, ranging from 35% to 50% TGIs, were

observed in mice bearing SU-DHL-4V, Granta-519 or KMS-11

xenografts that were characterized by a selective in vivo inhibition

of either ERK1/2 or Akt signaling. Overall, MAPK, PI3K/Akt

and Mcl-1 signaling pathways appear to be critical determinants

mediating the in vivo antitumor response to sorafenib [12,14,39].

Human lymphomas harbor multiple genetic and epigenetic

alterations leading to deregulation of multiple pathways and

cellular processes. Our data as well as those of others [19–22]

suggest that the therapeutic armamentarium today available for

human lymphomas might also include sorafenib mainly due to its

antiangiogenic properties along with its antiproliferative and

signaling inhibitory activities eventually associated with down

modulation of Mcl-1 expression [31,40,41]. As a single agent,

sorafenib might preferentially act as an inducer of tumor necrosis,

whereas it might enhance the efficacy of radio-chemotherapy due

to its effects on vessel normalization. In conclusion, our results

provide evidence that sorafenib may be a potentially interesting

molecule for the treatment of lymphoproliferative disorders mainly

due to its antiangiogenic properties.

Supporting Information

Figure S1 Cell growth inhibition of sorafenib toward
NHL cells. NHL cells were treated with the indicated

concentrations of sorafenib for 24–48 hours. Cell viability was

measured using WST assays. * p#0.0001 and ? p#0.001

compared to controls.

(TIF)

Figure S2 Sorafenib cytotoxicity. Cell death was assessed by

annexin-V/PI double staining and flow cytometry analysis.

Representative dot plots of cell death in untreated and

sorafenib-treated (5–10 mM) cell lines after 48 hours of exposure.

(TIF)
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