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Recent studies have shown that a number of common autoimmune diseases have
perturbations of their intestinal microbiome (dysbiosis). These include: Celiac Disease
(CeD), Multiple Sclerosis (MS), Rheumatoid Arthritis (RA), Sjogren’s Syndrome (SS), and
Type 1 diabetes (T1D). All of these have intestinal microbiomes that are different from
healthy controls. There have been numerous studies using animal models of single
probiotics (monoclonal) or mixtures of probiotics (polyclonal) and even complete
microbiota transfer (fecal microbial transfer-FMT) to inhibit or delay the onset of
autoimmune diseases such as the aforementioned common ones. However,
proportionally, fewer clinical trials have utilized monoclonal therapies or FMT than
polyclonal therapies for treating autoimmune diseases, even though bacterial mono-
therapies do inhibit the development of autoimmune diseases and/or delay the onset of
autoimmune diseases in rodent models of those autoimmune diseases. In this review
then, we review the previously completed and currently ongoing clinical trials that are
testing bacterial therapies (FMT, monoclonal, and polyclonal) to treat common
autoimmune dseases and discuss the successes in using bacterial monotherapies to
treat rodent models of these common autoimmune diseases.
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INTRODUCTION

The definition of autoimmune disease first arose with Dr. Paul Ehrlich, wherein he described the
condition as “horror intoxicus” (1). Currently Medline Plus.gov has the definintion of
autoimmunity as “when the body’s immune system attacks and destroys healthy body tissue by
mistake” (https://medlineplus.gov/ency/article/000816.htm), and the website for the American
Autoimmune Related Diseases Association (AARDA) has over 100 diseases listed as being
autoimmune (https://www.aarda.org/diseaselist/). Many studies have been done where probiotics
have been given to animal models of the less common autoimmune diseases. The most common
autoimmune diseases as listed by Medline Plus.gov are: Addison disease, Celiac Disease,
dermatomyositis, Graves disease, Hashimoto thyroiditis, multiple sclerosis, Myasthenia gravis,
Pernicious anemia, Reactive arthritis, Rheumatoid arthritis, Sjogren syndrome, Systemic lupus
erythematosus, and type 1 diabetes. This review will focus on these common autoimmune diseases,
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and more specifically, those autoimmune diseases that have had
clinical trials conducted (or are being conducted) to treat
autoimmune patients with bacterial therapies (fecal microbial
transplantation and probiotic) as listed by clinicaltrials.gov. This
therefore excludes Addison disease, dermatomyositis, Graves
disease, Hashimoto Thyroiditis, Myasthenia gravis, Pernicious
anemia, and Systemic Lupus Erythematosus.

The composition of the intestinal microbiome of many
autoimmune diseases, including celiac disease (CeD), multiple
sclerosis (MS), rheumatoid arthritis (RA), Sjogren‘s syndrome
(SS), and type 1 diabetes (T1D) has been characterized
predominantly using 16s rDNA sequencing of stool samples.
Studies have demonstrated that alterations of the fecal intestinal
(colonic) microbiome (dysbiosis) exist in patients that have CeD,
MS, RA, SS, and/or T1D, and that MS patients may have a
uniform decrease in Prevotella (2–14).

One study done with T1D patients demonstrated that there
was also dysbiosis in the small bowel of T1D patients as
compared to controls (15). Additionally, a study with duodenal
biospises of MS patients found dysbiosis in their small intestine
as well (16). In addition, a number of studies found dysbiosis in
the small bowel of CeD patients (6, 7, 17–21). All of these studies
clearly demonstrate that patients with these autoimmune
diseases have dysbiosis in their colonic microbiomes, where the
composition of their fecal microbiome is different from controls
such as first degree relatives or healthy controls. The data for
dysbiosis in the small intestine of CeD is strong, but more
research needs to be done with MS, RA, SS, and T1D.

It has been often assumed microbial therapies work by
normalizing the resident microbiota, and hence, prevent or
treat autoimmune diseases that have associated dysbiosis. How
the change in the composition of the intestinal microbiome due
to microbial therapy would exert changes in the systemic
immune system has been a focus of many rodent model
studies. At least two pathways have been identified. The first is
through Pattern Recognition Receptors (PRRs), such as Toll-Like
Receptors (TLRs), on different cell types that interact with
bacteria in the lumen, and the PRRs would detect and bind to
Microbe Associated Molecular Patterns (MAMPs) expressed by
the bacteria in the intestine (22, 23). Rodent models for MS have
demonstrated a role for TLR2 in controlling and treating disease
(24, 25).

The second pathway would be through the production of
Short Chain Fatty Acids (SCFAs) by the bacteria. The SCFAs
would bind to SCFA receptors expressed by the responsive host
immune cell, resulting in a phenotypic change to being either
regulatory or inflammatory, and deficits in SCFA production
have been identified in multiple sclerosis (5, 26, 27).

However, normality for the human intestinal microbiome is
unclear and varies greatly by geography, diet, and other external
factors (28–31) . Even age affects the composition of the human
intestinal microbiome, such that there are at least four distinct
age groups in which the human intestinal microbiome is different
(infant, pre-adolescent, adult, elderly) (32–35). Genetics play a
crucial role as well, and rodent models have demonstrated that
even the smallest alterations in the genetic background can lead
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to changes in the composition of the intestinal microbiome (36–
39). Differences in the composition of the intestinal microbiome
that are due to the effect of age, diet, geography, and host
genetics, could potentially also contribute to different responses
to different bacterial therapies, although the specific differences
as a consequence of these factors, especially age and genetics, in
response to bacterial therapies have not been rigorously
addressed, especially in humans.

Despite the complexity of the effects of probiotic treatment,
the concept of probiotics as being beneficial in helping the
intestine stabilize bacterial content (reach homeostasis) is
currently well known publically. The concept of how much
bacteria and which types of bacteria are needed to achieve
homeostasis is not as well known publically, nor determined in
a truly rigorous scientific manner (Figure 1). The transfer of
complete microbial content, or Fecal Microbial Transplantation
(FMT), interestingly was done as long ago as the fourth century
in China to treat diarrhea, constipation, and abdominal pain
(40). In this type of treatment today, all of the fecal bacteria is
transferred. Currently, the greatest success story of FMT is with
the treatment of patients infected with Clostridium difficile (C.
difficile) (41, 42). Mixes of probiotics, such as in the form of
yogurt, are not a complete mix of the bacteria found in the
digestive tract of humans. And at the opposite spectrum, there
are many studies done with rodents where only one bacteria is
provided to the animal. With autoimmune diseases, FMTs and
probiotics (both mixes and single strains) are being used in
clinical trials for treating patients with autoimmune disease. In
addition, there is a fourth category, that of bioengineered
probiotics/bacteria that secrete proteins to reduce autoimmune
responses. This will be highlighted in the last section on type 1
diabetes, as there is currently an ongoing clinical trial testing
such a product. In order therefore to obtain insight into the
effectiveness of the three main types of intestinal microbial
treatments (complete, restricted mix, and monoclonal) used in
treating autoimmune diseases, this review will systematically
progress through each of the common autoimmune diseases that
have had clinical trials conducted where probiotics (including
FMTs) were given to autoimmune patients to treat their disease
(CeD, MS, RA, SS, and T1D).
AUTOIMMUNE DISEASES

Celiac Disease
There is currently one clinical trial (NCT 04014413) that is
recruiting Celiac patients for conducting FMT. This study is also
determining the efficacy of FMT for a number of other
autoimmune and inflammatory disorders and is still recruiting
patients. No data has been released yet. In contrast, there have
been many randomized, double blind, placebo clinical trials
testing monoclonal and polyclonal bacterial therapies with
Celiac Disease that have been completed and results published,
with at least four (43–46) that are monoclonal and three
polyclonal (47–49), with the earliest results published as far
back as 2013 (46). Bacteria used in the bacterial monotherapies
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were Bifidobacterium infantis (45, 46), Bifidobacterium breve
(43), and Bifidobacterium longum (44). The rest were mixes of
two or more bacterial strains (47–49). In the clinical trial with B.
breve (43), circulating levels of TNFa present in children on a
GFD were decreased with the administration of B. breve. This
clinical trial was based in part on the following mouse models
(50, 51), wherein B. breve induced regulatory T cells (Tregs) in
mice. With the administration of B. longum to children with CeD
(44) there was a significant reduction in the number of
circulating CD3+ T lymphocytes and a slight reduction in the
level of TNFa. This was based in large part on a previous study
with a rat model of enteropathy, wherein administration of B.
longum to the rats increased IL10 and decreased TNFa (52). With
the administration of B. infantis to adults (46), there was an
improvement in the gastrointestinal rating scale for indigestion,
constipation, and reflux, and a later publication (45) found that B.
longum affected the innate immune system of patients by decreasing
a-defensin 5. Previous studies had shown that the administration of
B. infantis to mouse models of colitis and bacterial inflammation
(53–55) had increased the number of Tregs and downregulated
inflammatory cytokines. In the publication on a polyclonal
treatment by Francavilla et al. (47), five strains of lactic acid
bacteria and bifidobacteria were given to adult Celiac patients
with IBS like symptoms. The administration of the probiotic mix
led to a significant decrease in the gastrointestinal symptom rating
scale, whereas the placebo did not. In the publication on the
administration of two lactobacillus strains (L. plantarum HEAL9
and L. paracasei 8700:2) to children who were tTG IgA positive but
still on a gluten containing diet, a detailed analysis of circulating
lymphocytes was done by flow cytometry (48). The most notable
Frontiers in Immunology | www.frontiersin.org 3
change was a significantly reduced expansion of CD4+CD25
+CD45RO+ T cells (effector and memory T cells) in the probiotic
group (48). No significant change was observed in the levels of
circulating anti tTG IgA levels (48). With the third clinical trial that
administered a mix of probiotic bacteria, VSL#3 was administered
to adult CeD patients who still had gastrointestinal symptoms,
despite being on a gluten free diet (49). CeD patients who received
the VSL#3 probiotic mix had no improvement in clinical
gastrointestinal symptoms over the placebo group (49). The CeD
patients also did not have significant changes to their gut
microbiome as measured by microscopic and molecular
analysis (49).
Multiple Sclerosis
Three clinical trials have been set up for conducting FMT with MS
patients (NCT03183869), (NCT03975413), and (NCT04150549).
Only 10 patients were recruited for the NCT03183869 study due to
early termination (the primary investigator passed away), and no
significant changes in circulating cytokines were observed (either
inflammatory or anti-inflammatory) in the small number of
patients. NCT04150549 has not started recruiting patients, and
NCT03975413 is still active. Rodent models of FMT to treat EAE
provide mixed results. One study with rats show that transfer of
fecal microbiota of EAE resistant rats (Albino Oxford) to EAE rats
ameliorates the disease in disease prone rats (Dark Agouti) (56). In
contrast, another study observed that the transfer of fecal microbota
from naïve mice to EAEmice did not ameliorate disease (37). It was
only when fecal microbiota was transferred from CD44 knock out
mice that disease was ameliorated (37).
FIGURE 1 | Mechanisms by which probiotic bacterial therapies can affect inflammation at intestinal and extraintestinal sites. Depicted in the intestinal lumen are the
three main categories of bacterial groups currently used in clinical trials, reflecting quantity: complete, restricted mix (Limited#/Polyclonal), and one (monoclonal).
PRR, pattern recognition receptor; MAMP, microbe associated molecular pattern; SCFA, short chain fatty acid; SCFAR, SCFA Receptor.
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No clinical trials with bacterial monotherapies have been
conducted for MS patients. However, in one randomized,
double blind, placebo-controlled study conducted at the
Islamic Azad Medical Center, capsules containing probiotic
bacteria, Lactobacillus acidophilus, Lactobacillus casei,
Bifidobacterium bifidum and Lactobacillus fermentum, were
administered to relapsing remitting MS patients (RRMS) (57).
Patients who received the probiotic mix had significantly
decreased EDSS (expanded disability status scale) and DASS
(depression, anxiety, and stress scale). Another study conducted
at Harvard Medical Center administered a very common and
commercially available probiotic mix, called Visbiome, which
was previously called VSL#3, to MS patients and healthy controls
(58). Since no placebo was tested, this study was not a
randomized double blind placebo trial. The mix contained 8
different strains of bacteria: Lactobacillus paracasei DSM 24734,
Lactobacillus plantarum DSM 24730, Lactobacillus acidophilus
DSM 24735, and Lactobacillus delbruckeii subspecies bulgaricus
DSM 24734) , Bifidobacter ium longum DSM 24736,
Bifidobacteriuminfantis DSM 24737, and Bifidobacterium breve
DSM24732), and Streptococcus thermophilus DSM 24731).
RRMS patients who received Visbiome had changes to their
gut microbiome composition, and healthy controls who received
Visbiome had a decreased alpha diversity.

Rheumatoid Arthritis
One clinical trial (NCT03944096) is currently being conducted
with testing FMT for treating RA patients. Its title is Efficacy and
Safety of Fecal Microbiota Transplantation in Patients With
Rheumatoid Arthritis Refractory to Methotrexate (FARM). No
results have been posted yet though.

Only one group, at the Tehran University of Medical Sciences,
has published results on providing a bacterial monotherapy for
treating RA. They did a randomized, double- blind, placebo-
controlled clinical trial using capsules that contained active L.
casei (59). They obtained similar results with the women with
RA, in that inflammatory cytokines went down and anti-
inflammatory IL-10 went up. The disease scores for tender and
swollen joints for the patients that received the L. casei were also
decreased as compared to the placebo. L. casei was tested
previously for its effectiveness in mouse and rat models of
arthritis to decrease the inflammation of arthritis in those
models (60–62). These studies showed that in the animal
models, the administration of L. casei resulted in decreased
incidence and development of arthritis that was associated
with decreased production of inflammatory cytokines such as
IFNg, IL-17, and TNFa, and a decrease in the production of anti
collagen antibodies. A different randomized, double- blind,
placebo-controlled clinical trial conducted at the Kashan
University of Medical Sciences, RA patients were given L. casei
in addition to Lactobacillus acidophilus and Bifidobacterium
bifidum in a capsule. The disease activity score of 28 joints was
decreased significantly in the probiotic treated group; however,
the tender and swollen joints scores individually were not
decreased (63). A second group gave Lactobacillus rhamnosus
GR-1 and Lactobacillus reuteri RC-14 in capsules to RA patients
in a randomized, double- blind, placebo-controlled clinical trial
Frontiers in Immunology | www.frontiersin.org 4
conducted at the St. Joseph’s Health Care in London, Ontario,
Canada (64). They did not observe an overall clinical
improvement in the probiotic arm, but they did find that
blood levels of GMCSF, MIP1a, TNFa, IL-6, IL12p70, IL-15,
and IL-17, as determined by multiplex immunoassay, were
decreased in the probiotic arm.

Thus, although there is only one published clinical trial for
administering a bacterial monotherapy to RA patients, the results do
suggest that such therapies can be effective in reducing
inflammation in RA patients and that this is associated with
increased systemic production in anti inflammatory cytokines
such as IL10 and decreased production of inflammatory cytokines.

Sjogren’s Syndrome
One clinical trial for treating Sjogren’s Syndrome with FMT has
been completed (NCT03926286). No results have been posted
yet though. Results in rodent models of fecal microbiota transfer
to treat SS has been promising though. In one study, the transfer
of fecal microbiota of disease-free mice to a mouse model of SS
did ameliorate the disease (65). A second study using a different
mouse model of SS had similar results in that transfer of fecal
microbiota from disease free mice reverted the disease along with
a decrease in the pathogenic CD4+IFNg+ T cells (66).

No clinical trials for SS using a monoclonal bacterial therapy
have been established yet. However, there is a clinical trial set up to
determine the efficacy of treating oral candidiasis in SS
(NCT03840538) with probiotics, and this has been completed and
results published (67). Here a mix of probiotics was given
(Lactobacillus acidophilus, Lactobacillus bulgaricus, Streptococcus
thermophilus and Bifidobacterium bifidum) to SS patients to
determine if that would decrease candidial load. Results from the
study showed that this mix did provide a statistically significant
decrease in the candidial load from baseline to treatment end, and
the difference was not statistically significant in the placebo group.
There is one publication that showed that administering a probiotic
mix to a mouse model of dry eye, the main symptom of primary SS,
does have a beneficial effect (68). In this study, a mix called IRT5
was used (Bifidobacterium bifidum, Lactobacillus acidophilus, Lacto-
bacillus casei, Lactobacillus reuteri, and Streptococcus thermophilus)
(68). The administration of these bacteria orally by gavage led to
increased levels of CD11c+ and CD11b+ cells in the spleen and
increased levels of IL-10 along with decreased levels of IL1b in the
conjuctiva and cornea of the eye (68).

Type I Diabetes
Currently there is one clinical trial designed to determine the
benefit of FMT for treating T1D (NCT04124211). This is still
recruiting patients, so no results have been posted.

With T1D, only one bacterial monotherapy placebo-
controlled, double blind, randomized clinical trial has been
completed and results published (69). In that study, conducted
at the University Medical Center in Ahvaz, Iran, patients were
administered a synbiotic mixture of Lactobacillus sporogenes and
a corresponding prebiotic, fructooligosaccharide for 8 weeks to
children diagnosed with T1D (69). The synbiotic mix improved
the following glycemic indices in the children as compared to a
placebo control group: FBG, HbA1c, insulin, hs-CRP, and TAC.
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This was preceded by a study in an animal model in which
Bifidobactera bifidum and Lactobacillus sporogenes were
administered separately to rats that developed paw edema due
to injection with carrageenan (70). Administration of either
bacterial strain alone to the rats resulted in decreased paw
thickness, and increased physical activity as determined by a
stair climbing assay and motility assay (70). Another clinical trial
is set up to administer a bacterial monotherapy (NCT03961347),
but it is still recruiting patients at the University of Florida. In
this clinical trial, L. johnsonii is being administered to adults with
T1D. This clinical trial was preceded by studies in animal models
as well (71–76). Three other clinical trials have been set up to test
the effect of polymicrobial therapies on T1D, but no publications
on the results have yet emerged (NCT03032354 (77),
NCT03880760, and NCT03423589). The first multiple bacterial
therapy clinical trial (NCT03032354) was set up by Groele et al.
to be conducted at the Medical University of Warsaw, Poland
and the Department of Endocrinology and Diabetology, Children’s
Memorial Health Institute in Warsaw, Poland (77). Children with
T1D were to be recruited and given a mix of L. rhamnosus and B.
lactis Bb12. The second one with multiple bacteria (NCT03880760),
was set up to be conducted at the China Medical University
Hospital in Taichung, Taiwan. It was designed to treat T1D
children with a mix of Lactobacillus salivarius + Lactobacillus
johnsonii + Bifidobacterium lactis. The third multiple bacterial
therapy clinical trial, NCT03423589, was designed to administer
to T1D patients VSL#3 (Visbiome) at the Medical School
of Wisconsin. As described previously, VSL#3 is a mix of 8
bacterial strains. Overall then, only one clinical trial has been
completed and published on the efficacy of administering bacteria
to treat T1D, and this used a bacterial monotherapy and had
promising data.

NCT03751007 is a clinical trial that is utilizing bacteria from
the fourth category, genetically engineered bacterial, Lactococcus
lactis that secretes proinsulin and IL10 (AG019-Precigen Actobio
T1D, LLC), and is currently (as of this publication) being
conducted at 18 sites in the United States and Belgium. This
genetically modified bacterial strain was tested first in NODmice
(76). Administration of the L. lactis secreting proinsulin and IL10
along with anti CD3, substantially decreased hyperglycemia in
the NOD mice (76).
CONCLUSIONS/DISCUSSION

Of the five common autoimmune diseases that had clinical trials
to test bacterial therapies (CeD, MS, RA, SS, and T1D), all five
had FMT being tested. One for Celiac disease, three for MS, one
for RA, one for SS, and one for T1D (7 in total). Only one had
truly completed (NCT03926286), which is the one determining
the efficacy of treating SS with FMT. No results from that clinical
trial have been posted yet. Another one (NCT03183869) for MS
had terminated early, but had posted results on circulating
cytokines. Thus, it is too early to make any predictions on the
efficacy of treating autoimmune diseases with FMT; however,
there is a lot of effort going into answering this question.
Frontiers in Immunology | www.frontiersin.org 5
There were 3 clinical trials that use a restricted number of
probiotic bacteria for Celiac Disease, 2 for MS, 3 for RA, 1 for SS,
and 3 for T1D (12 in total). This is about twice as many as the
number of clinical trials to evaluate the efficacy of treating
autoimmune diseases with FMT. These gave mixed results in
that some studies showed improvement in gastrointestinal
symptoms, but others did not. Also too, not all of the studies
evaluated immune responses in a similar way, making it difficult
to determine if there was a common response by the immune
system to these mixes of probiotic bacteria, most especially in
those trials where no beneficial changes were observed to occur
in gastrointestinal symptoms.

For the administration of monoclonal therapies to patients
with autoimmune diseases, there were 4 with celiac disease, 0 for
MS, 1 for RA, 0 for SS, and 2 for T1D (7 total). Results from the
Celiac monoclonal clinical trials had results that showed that
administrating monoclonal therapies decreased levels of sera
TNFa and circulating CD3+ T cells. Also too a-defensin5 of
the innate immune system was decreased. In addition,
gastrointestinal symptoms improved with the administration of
monoclonal bacterial therapy in CeD patients. Similarly in RA
patients, using only L. casei, inflammatory cytokines went down
and anti-inflammatory IL10 went up. Symptoms and disease
scores improved as well. With the one monoclonal therapy on
T1D that was published, glycemic indices were improved with
the administration of L sporogenes. Overall then, there is a deficit
in the data on the outcomes of monoclonal bacterial therapies for
treating autoimmune patients, but the limited data suggests that,
at least with CeD and RA, there is a decrease in systemic
inflammatory cytokines that is associated with an increase in
anti inflammatory cytokines. The rodent models of these diseases
and the administration of these same monoclonal bacteria
support these findings as well as suggest that regulatory T cells
are increased by the administration of these bacteria. It should be
noted though, that the rodent models of autoimmune diseases
treated with the probiotic mixes had similar results as well.

In addition, there are many other rodent models of
monoclonal therapies to treat these common autoimmune
diseases, all of which have similar findings in that regulatory T
cells are increased along with anti inflammatory cytokines and
other regulatory cells. One example is with Prevotella histicola in
a CIA model, in which P. histicola induced IL-10, an anti-
inflammatory cytokine, in the intestines (jejunum) of the
treated mice (78). Serum levels of IL10 also increased after two
weeks of administering P. histicola, as well as levels of regulatory
T cells and a corresponding decrease in levels of Th17 cells (78).
With the EAE model, P. histicola induced the production of IL10
in dendritic cells and macrophages and increased levels of
regulatory T cells (79). Both of these studies demonstrate that
P. histicola has anti-inflammatory properties that lead to the
generation of regulatory T cells. With T1D, there have been a
couple of studies that have shown that bacterial monotherapies
work to decrease the incidence of T1D in NOD mice by
increasing the levels of regulatory T cells (80, 81). In the one
study with Clostridium, the Tregs would be generated in the
intestine and then migrate to the pancreatic lymph nodes (80).
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And with the study with Akkermansia muciniphilia, increased
numbers of Tregs generated by A. muciniphilia were associated
with increased levels of IL10 and TGFb (81). Other rodent
studies that have monoclonal therapies for Celiac Disease
include treatment with P. histicola (82), B. longum (52, 83, 84),
L. rhamnosus (85) and L. casei (86) For MS, there are rodent EAE
models using Lactobacillus reuteri (87) and Lactobacillus
plantarum (88). For RA, there are rodent models using L. casei
(60, 62, 89), Bifidobacterium animalis (90), Lactobacillus
fermentum (91), L. plantarum (92), L. rhamnosus (93, 94). For
T1D, there is another rodent model that uses a monoclonal
therapy, but a different species of Lactobacillus, Lactobacillus
brevis (95). Thus, there is a large number of probiotic
monotherapies for autoimmune diseases that have been tested
in rodent models, but relatively few have been incorporated into
clinical trials.

As to the fourth category of probiotics, that of bioengineered
bacteria that secrete specific disease associated antigens in order
to suppress disease activity, there are three rodent models. There
is the previously mentioned study for T1D (76) that used
Lactococcus lactis that secreted proinsulin and IL10. There is
also one for a mouse model of CeD in which Lactococcus lactis
that secreted a gliadin epitope was used (96). The third is a study
that generated lactobaccili to express EAE antigens and then
administered that to a rat EAE model (97). All three of these
models using recombinant bacteria showed a decrease in disease
activity with the administration of the recombinant bacteria to
the rodent.

In summary, there are almost twice as many clinical trials that
are being, or have been conducted, that use probiotic mixes as
Frontiers in Immunology | www.frontiersin.org 6
there are that are using monoclonal bacterial therapies or FMTs.
So far, there are few rodent models of FMTs to treat the common
autoimmune diseases, and the results are mixed. FMT to treat SS
in rodents has provided positive results, but FMT to treat EAE in
rodents has provided contrasting results. In contrast, there is a
large number of rodent models of autoimmunity that
demonstrate that monoclonal bacterial therapies are effective in
altering the systemic immune respone in autoimmunity. Many
more clinical trials should be undertaken to conclusively
determine the efficacy of monoclonal bacterial therapies in
treating autoimmune diseases, especially with bacterial strains
that have been tested in rodent models but not yet tested in
clinical trials. Since FMTs are designed to transfer all of the
microbial content to the recipient and there are a number of
currently ongoing clinical trials, there should be enough data in
the next five years to determine the efficacy of FMTs in
treating autoimmunity.
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