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Abstract

Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such
knowledge, however, is often lacking. New technologies for collecting biological and physical
data coupled with advances in modelling techniques could help address these gaps and facil-
itate improved management outcomes. Here we examined the utility of environmental data,
obtained using different methods, for developing models of both uni- and multivariate biodi-
versity metrics. We tested which biodiversity metrics could be predicted best and evaluated
the performance of predictor variables generated from three types of habitat data: acoustic
multibeam sonar imagery, predicted habitat classification, and direct observer habitat classifi-
cation. We used boosted regression trees (BRT) to model metrics of fish species richness,
abundance and biomass, and multivariate regression trees (MRT) to model biomass and
abundance of fish functional groups. We compared model performance using different sets of
predictors and estimated the relative influence of individual predictors. Models of total species
richness and total abundance performed best; those developed for endemic species per-
formed worst. Abundance models performed substantially better than corresponding biomass
models. In general, BRT and MRTs developed using predicted habitat classifications per-
formed less well than those using multibeam data. The most influential individual predictor
was the abiotic categorical variable from direct observer habitat classification and models that
incorporated predictors from direct observer habitat classification consistently outperformed
those that did not. Our results show that while remotely sensed data can offer considerable
utility for predictive modelling, the addition of direct observer habitat classification data can
substantially improve model performance. Thus it appears that there are aspects of marine
habitats that are important for modelling metrics of fish biodiversity that are not fully captured
by remotely sensed data. As such, the use of remotely sensed data to model biodiversity rep-
resents a compromise between model performance and data availability.
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Introduction

Globally, marine biodiversity provides myriad and valuable ecosystem goods and services [1-
3]. These goods and services, however, are threatened by an extensive range of natural and
anthropogenic stressors, many of which are broadly distributed [4,5]. Consequently, many of
these goods and services are in decline [2]. The conservation and sustainable management of
marine biodiversity is hampered by insufficient information [5] and taxonomic bias in the
information currently available [6]. Effective conservation and management is further impeded
by the difficulty and cost of acquiring additional data from marine habitats due to their extent
and inaccessibility, as well as the complexity of these systems. The lack of effective biological
surrogates [7,8], and the often insufficient opportunities to supplement current information,
means that other approaches must be used to overcome these information and knowledge
gaps.

Recent advances in collecting and analysing marine data are supporting new analytical tech-
niques that can help fill these gaps, and in doing so, contribute to more effective conservation
and management of living marine resources [9,10]. Tools such as baited cameras and towed
video enable direct observation of marine species and their habitats, in more affordable and
efficient ways, and in places divers cannot access [11-13]. Multibeam sonar is also now com-
monly used to generate high-resolution bathymetry of marine habitats (e.g. [10]). In turn, such
bathymetry supports habitat classification at very fine spatial resolution over large areas of sea-
floor [10,14,15].

More commonly now, predictive biodiversity models developed with remotely sensed data
are being developed and applied to marine ecosystems. However, whether predicted habitat
classification provides better predictors for modelling metrics of biodiversity (e.g. species rich-
ness) than predictors taken directly from remotely sensed data is not yet known. Similarly, pre-
dictors from remotely sensed data have not previously been compared to predictors obtained
from direct observer habitat classification. Assessment of the strength of predictors produced
by these three methods could improve our understanding of how to build better models by
informing the selection of sampling methods, and the suitability of such models according to
their intended use and the relative resource requirements of information acquisition. Further-
more, the use of such models to predict assemblage-level metrics has, so far, been largely lim-
ited to predicting total species richness, total abundance or total biomass (e.g. [16]). Utility of
these models would be enhanced if they could predict a wider suite of metrics that are informa-
tive with respect to conservation and management objectives. Such metrics might include
abundance and biomass of specific groups such as vulnerable species or endemic species, or
functional group membership more broadly.

Here we investigate which of a range of habitat classification methods provides the most
powerful predictors when modelling metrics of fish biodiversity and explore which of a series
of metrics can be most effectively modelled. We use data from the Marine Futures Project
(2005-2008), funded through Australia’s Natural Heritage Trust. Using these data, we test the
predictive power of environmental parameters obtained in three different ways: acoustic
(multibeam) sonar imagery, predicted habitat classification, and direct observer habitat classi-
fication. We then investigate the relative influence of individual predictors and test the ability
of models to predict a series of community-level univariate and multivariate metrics: total spe-
cies richness, total abundance, total biomass, abundance and biomass of vulnerable species
(‘vulnerability’, after [17]), abundance and biomass of fisheries targeted species, abundance
and biomass of endemic species, and functional group composition by abundance and
biomass.
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Methods
Study Site

Rottnest Island (Fig 1, Geographic Datum of Australia 94 Zone 50 South, GDA 94 Z50) is biolog-
ically diverse, and includes a wide range of habitats from tropical coral reefs to rocky temperate
reefs, seagrass beds and sandy barrens. This diversity reflects the strong influence of the Leeuwin
Current, a south-flowing boundary current that brings warm tropical water and species into this
otherwise sub-tropical region. As such, the region supports an unusual mix of tropical and tem-
perate fishes [18]. Rottnest Island and its environs are also an important recreational area in
close proximity to Western Australia’s state capital, Perth, and as such, marine based tourism
and recreational activities including sailing, diving and fishing are highly valued [19]. There is
limited commercial fishing in the area and no oil and gas exploration activity. Despite the area’s
high conservation and socioeconomic value, there is little information on the distribution of its
marine biodiversity, and therefore, the implication of these distributions for management.

Rottnest Island was surveyed in 2007 as part of the Marine Futures Program (www.
marinefutures.fnas.uwa.edu.au). Surveys included multibeam mapping, towed video and 349
Baited Remote Underwater Video (BRUV) deployments. From these surveys the species data
(fish) and habitat data (three types) used in this study were obtained. These data and the meth-
ods used to obtain them are described below.

Habitat data

An area around Rottnest (~250 km?) was subject to a full coverage multibeam survey con-
ducted by Fugro (PTY). The multibeam survey was conducted using a Reson 8101 Multibeam.
The multibeam sensor point cloud varied with water depth but on average collected one point
or ping every ~50-100cm, which was averaged over a 2.5m cell. Development of secondary
datasets from the hydroacoustic data provided textural information about the seafloor. Data
were processed to construct full coverage bathymetry maps with a 2.5m cell size. Combined,
these data formed our first group of (27) habitat variables, hereafter referred to as multibeam
habitats.

Approximately 100 km of towed video imagery was also collected. Processing of this imag-
ery consisted of classifying the observed imagery with respect to habitat type and geo-referenc-
ing position such that boundaries between habitat types, and thus patches of habitat types,
were identified ([20]). Habitat types were classified by trained and cross-validated analysts into
34 broad classes using a standard classification scheme for Australia [21]. The multibeam and
the habitat classification data from the towed video were used to generate predicted habitat
classifications across the study area, again at a cell size of 2.5m. Regression trees [22,23] were
used to predict the probability of the presence of a given habitat type in a given cell (See S1 File,
supplementary methods, for full details). These data formed our second group of (34) habitat
variables, hereafter referred to as predicted habitats.

Lastly, during the analysis of the BRUVS images, habitats observed were classified by visual
observation in to one of five abiotic habitat classes (high, medium and low profile reef, sand
inundated reef, or sand) and one of six biotic habitat classes (macroalgae, seagrass, coral, sessile
invertebrates, bare). These data formed our third group of (2) categorical habitat variables (abi-
otic and biotic categories), hereafter referred to as direct observer habitats.

Species Data

The predicted habitat map generated from the multibeam and towed video formed the basis of
the sampling design for the fish survey using stereo-BRUVS. A total of 349 BRUV deployments
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Fig 1. Map of Rottnest study site, Western Australia. Geographic Datum of Australia 94 Zone 50 South
(GDA 94 Z50).

doi:10.1371/journal.pone.0155634.g001

(hereafter referred to as samples) were made at the Rottnest site. All samples with

visibility < 3m were excluded, leaving a total of 280 samples used in this study. From each of
the remaining samples, fish species were identified and there relative abundances and individ-
ual fork lengths were estimated using Event-Measure [24]. See S1 File, supplementary methods,
for full details of BRUVS sampling design and image analysis.

A series of biodiversity metrics were calculated for each sample (Table 1). These metrics
were derived from species identifications, relative species abundances and individual fork
lengths. Biomass was estimated by calculating individual fish weight from fork length using
relationships available on FishBase [25]. Fishbase was also used: to assign each species to a tro-
phic level and score their vulnerability to exploitation [17], to class each species as either

Table 1. Estimates of biodiversity metrics for marine fishes around Rottnest Island, Western Australia. Vulnerability, target and endemic metrics are
reported as a percentage of the total abundance or total biomass. Results are from 280 samples, each sample being an individual BRUVs deployment.

Metric Mean Std.Dev min max
Total species richness 10.8 5.8 1 31
Total abundance 55.5 75.2 1 1041
Total biomass (g) 33252.1 51675.2 67.9 735990.2
Vulnerability (abundance) 4.3 8.9 16.9 87
Vulnerability (biomass) 61.8 11.4 24.2 87
Target (abundance) 54.1 26.8 0 100
Target (biomass) 77.6 23.1 0 100
Endemic (abundance) 83.1 21.7 0 100
Endemic (biomass) 48 31.9 0 100

doi:10.1371/journal.pone.0155634.t001
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endemic to Australia or not, to assign each species to a functional group, and to ascertain
whether or not each species was targeted by fisheries [25].

Vulnerability estimates were based on species’ life history traits and scored on a scale of 1
(lowest) to 100 (highest) [17]. Classification to functional group was based on information on
prey items, trophic level and maximum body size, as reported in Fishbase (see S1 File, supple-
mentary methods).

The large number of benthic omnivores and zoobenthivores and the large variations in their
body sizes led us to separate them into small and large size classes within both groups of spe-
cies. Small and large omnibenthivores were separated at a mean observed size of 31.5 cm while
small and large zoobenthivores were separated at a mean observed size of 35.0 cm. The classifi-
cation of individuals into small and large categories for the omnibenthivores and zoobenthi-
vores was based on the distribution of observed sizes, with the former trophic category tending
towards smaller individuals.

Modelling

Variable selection. Our set of potential predictor variables was large and included esti-
mates of 27 multibeam derived variables and 34 predicted habitat variables, plus two direct
observer habitat variables (abiotic & biotic categories) and depth (see S1 Table for a detailed
description). Whilst regression trees largely ignore non-informative predictors when fitting
trees [26,27], predictor selection is still useful because redundant predictors can degrade a
model’s performance by increasing variance (Elith et al 2008). BRT are also only robust to
moderate levels of multicollinearity [28]. Therefore, within each of the multibeam and pre-
dicted habitat variable sets, we selected predictors for use in our models based on three steps.
We identified predictors that were highly correlated (Pearson’s r > 0.8). We developed an ini-
tial set of exploratory BRT models including all candidate predictors and examined their rela-
tive influence, identifying candidate predictors for which the relative influence was
consistently < 1%. Finally, we ran a step-wise simplification of those exploratory models, using
methods analogous to backward selection in regression (after Elith et al 2008), to see which
variables were repeatedly dropped from the models. Based on our initial investigation of these
candidate predictors, we reduced our predictors to 12 multibeam variables, 11 predicted habitat
variables, the two direct observer habitat variables (abiotic and biotic categories) and depth (54
Table).

Boosted regression trees. We used boosted regression trees (BRT) (Elith et al. 2006, 2008)
to model relationships between environmental characteristics and nine univariate, community
level metrics (Table 1). Models were developed in R 3.1.1 [29], using the gbm package.

Distributions of community metrics were skewed. Therefore, we either log(x+1) trans-
formed them if variables were null or positive (species richness, total abundance and total bio-
mass) or logit transformed them if bounded between 0 and 1 (vulnerability, target and
endemic metrics) to approximate a normal distribution [26,30]. For each community metric,
models were developed for five sets of predictors: 1) multibeam plus direct observer habitats, 2)
predicted habitats plus direct observer habitats, 3) multibeam, 4) predicted habitats, 5) direct
observer habitats. All models also included depth.

Models were developed using a randomly selected 50% of the data (0.5 bag fraction). Fol-
lowing Elith et al. (2008), the 50% level was chosen based on model performance after a range
of values between 30 and 70% were tested on an initial set of models, and their predictive pow-
ers compared. Cross-validation (CV), using bootstrapped data, was used to evaluate the predic-
tive capacity of the models. For each combination of community level metric and set of
predictors, a range of values for the two main model parameters, tree complexity and learning
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rate, were explored and the best model selected based on the greatest CV deviance explained
and lowest mean prediction error, following [26] (see S2 Table for the parameters of the best
models). Model residuals were tested (Moran’s I) to rule out spatial autocorrelation. In some
cases, intra-model variability was of similar magnitude to inter-model variability, so each
model was run five times with the same parameters and the average CV deviance and predic-
tion error were calculated across model runs (S3 Table shows the ranges in CV deviance and
prediction error for the best models). We also examined the relative influence (%) of each pre-
dictor on the best models (Figs 2 and 3).

Multivariate regression trees. We used multivariate regression trees (MRT) (De'Ath
2002) to model the relationship between predictors and the relative abundance (or biomass) of
the different trophic and vulnerability-based functional groups (R package mvpart). We
defined groups by combining diet and vulnerability, which resulted in 29 functional groups
ranging from ‘high vulnerability piscivores’ to ‘low vulnerability zooplanktivores. We built an
initial model using predictors from the multibeam data, which we then compared to a second
model built using predicted habitat classes derived from the multibeam—both models also
included the direct observer habitats (biotic and abiotic categories) and depth.

MRT clusters sites by repeated splitting of the data, with each split determined by habitat
characteristics [31] and corresponding to a distinct species assemblage. Tree fit is defined by
the relative error (RE; total impurity of the final tree divided by the impurity of the original
data). RE is an over-optimistic estimate of tree accuracy, which is better estimated from the
cross-validated relative error (CVRE). We determined the best tree size (i.e. number of leaves
or clusters formed by the tree) as that which minimized CVRE, which varies from zero for a
perfect predictor to nearly one for a poor predictor (De'Ath 2002). We then examined the splits
and quantified the variance that each of them explained, based on the entire dataset and for
each individual functional group.

We identified functional groups and species that characterized each resulting cluster using
the Dufréne-Legendre index, which is based on the relative abundance and frequency of each
species (or functional group) within a given cluster [32]. The index varies between 0, no occur-
rences of a species within a cluster, to 100, if a species occurs at all sites within the cluster and
in no other cluster. The index is associated with the probability of resulting from a random pat-
tern, based on 250 reallocations of sites among clusters[32].

Ethical approval

Quantitative measurements of the fish assemblage were made using non-destructive sampling
methods (BRUVS) and there was no sacrifice or incident mortality associated with this sam-
pling method. The use of BRUVS for collecting the data used here required ethics approval,
which was from the University of Western Australia and approval from the Western Australian
Department of Fisheries. No other approvals were necessary, nor did sampling occur within
protected areas or on private property. The field work did not impact any listed protected
species.

Results
Boosted regression trees

BRT explained up to 63.9% CV deviance in response variables, depending on the set of predic-
tors used and the community metric being modelled (Table 2). The best performing models
were for total species richness (63.9% CV deviance explained) and total abundance (43.4% CV
deviance explained). Biomass proved more difficult to model, with CV deviance explained con-
sistently lower for biomass than for the corresponding abundance (Table 2). Abundance and
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Fig 2. The relative influence (%) of individual predictors estimated using boosted regression tree models for nine fish diversity metrics.
Models were developed with predictors from Multibeam data plus direct observer habitats (abiotic and biotic) and depth. Multibeam data and depth were
numeric values, the abiotic and biotic variables were categorical (five abiotic and six biotic classes). Vulnerability, target and endemic metrics were
developed for both the percentage of the total abundance and the percentage of the total biomass.

doi:10.1371/journal.pone.0155634.g002

biomass of endemic species proved the most difficult to model, with a CV deviance explained
of only 10.0% and 8.4%, respectively.

Models developed using predictors from predicted habitats, plus direct observer habitats
and depth generally had the greatest CV deviance explained, outperforming models developed
with other sets of predictors for five out of nine metrics (Table 2). Models that excluded the
direct observer habitats consistently performed worse than corresponding models including
them, highlighting the importance of these two variables. Indeed, models including depth and
the direct observer habitats alone were able to explain >80% of the maximum CV deviance for
five of the nine community metrics, and >50% for eight of the nine metrics (across all metrics,
range = 35-95%, mean = 70%).

Models without direct observer habitats also performed worse in terms of mean prediction
error than corresponding models that included them (Table 2). In almost all cases, models for
biomass had greater mean prediction error than the corresponding models for abundance,
again indicating that biomass was less predictable than abundance. Models developed using
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multibeam data had consistently lower prediction error than those developed with predicted
habitats, however, the difference was generally very small (i.e. < 0.01 for five of the nine met-
rics; Table 2).

When using either multibeam or predicted habitats, plus direct observer habitats and depth,
the abiotic variable from the direct observer habitats generally had the greatest relative influ-
ence on BRTs, with 22.1% average influence on models developed using habitats and 12.2% on
models developed using multibeam (Figs 2 and 3). Relative influence was much more evenly
distributed between individual predictors for models developed using multibeam habitats than
those developed from predicted habitats (Figs 2 and 3). The relative influence of individual pre-
dictors varied greatly across community metrics; the abiotic category for example had a much
greater influence on abundance metrics (28.5% * 13.4 when using habitats and 17.6% + 11.5
when using multibeam; mean + SD) than it did on biomass metrics (14.2% + 13.6 when using
habitats and 5.3% * 11.3 when using multibeam).
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Table 2. Results of boosted regression tree models for nine biodiversity metrics, developed with five sets of predictors. Predictors were developed
from three sets of habitat data: multibeam habitats (multibeam), predicted habitats (pred. habitats) and direct observer habitats (biotic and abiotic categories).
All models also contained depth as a predictor. Vulnerability, target and endemic metrics were developed for both the percentage of the total abundance and
the percentage of the total biomass. The cross validation (CV) deviance explained (%) and mean prediction error (%) are averaged values from five model

runs. The greatest CV deviance explained and the lowest prediction error for each metric are highlighted in bold. Data were collected around Rottnest Island,
Western Australia, in 2007.

Predictors
Metrics Multibeam, depth, Pred. habitats, Multibeam & depth| Pred. habitats & Biotic, abiotic &
biotic & abiotic depth, biotic & depth depth
abiotic
CV deviance Total species 63.9 63.3 55.8 49.9 58.5
explained (%) richness
Total abundance 43.4 421 38.9 34.6 39.6
Total biomass 16.6 17.6 14.8 16.1 14.1
Vulnerability 259 27 22.1 235 234
(abundance)
Vulnerability 0.5 1.9 0.4 1.2 1
(biomass)
Target (abundance) 26.9 26.9 19 11.8 24.3
Target (biomass) 12.1 9 8.5 3 7
Endemic 8.5 10 8.2 9.3 5.5
(abundance)
Endemic (biomass) 6.3 8.4 6.2 8.3 2.7
Mean prediction Total species 104 11.9 11.5 14.6 13.4
error (%) richness
Total abundance 13.4 15.4 17 19.8 18.2
Total biomass 8.1 8.5 8.3 8.6 8.7
Vulnerability 10.3 11.9 11.2 12.3 12.2
(abundance)
Vulnerability 14.9 15.4 15.5 15.6 15.8
(biomass)
Target (abundance) 64.5 77.2 71 94.6 76.5
Target (biomass) 69.7 70 85.7 97.9 85
Endemic 48.9 69.3 52 64.6 55
(abundance)
Endemic (biomass) 234.8 245.3 250.3 252.7 313.4

doi:10.1371/journal.pone.0155634.t002

Multivariate regression trees

Multivariate regression trees based on either the multibeam or predicted habitats, with the
direct observer habitats and depth, were similar, explaining 25% and 31% of variance in assem-
blage composition, respectively (Fig 4). In both cases, the abiotic variable from the direct
observer habitats was associated with the first split, explaining 38% of the variance in assem-
blage composition by differentiating sandy (16%) from reef habitats (22%). Depth further dif-
ferentiated shallow (3%) from deeper habitats (3%). Only the last split differed between
models, based on either the standard deviation in elevation within a 50-km radius from the
multibeam variables (Fig 4A) or algal diversity from predicted habitats (Fig 4B). This last split
had little relevance in the first (multibeam) case, only differentiating three samples character-
ized by a higher abundance of zooplanktivores (Chromis westaustralis). By contrast, in the
second (predicted habitats) case, the last split led to a more even partitioning of samples,

with the last cluster being characterized by medium to high vulnerability omnivores (Parma
mccullochi), herbivores (Meuschenia hippocrepis), zooplanktivores (Pseudocaranx sp.) and
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variables were categorical (five abiotic and six biotic classes). SA = sand, SIR = sand inundated reef, HPR/
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doi:10.1371/journal.pone.0155634.9004

zoobenthivores (Coris auricularis, Notolabrus parilus, Pseudolabrus biserialis, Ophtalmolepis
lineolata, Epinephelides armatus, Thalassoma lunare).

The same models without the direct observer habitats explained only 3% of variance in the
first case (i.e. multibeam; CVRE = 1.01), but 24% in the second case (i.e. predicted habitats;
CVRE = 0.98). The latter tree consisted of a single split (general biota, gen_bio). Multivariate
regression trees of fish biomass performed poorly with only 12-14% variance explained
depending on the predictors used (RE 0.86-0.88; CVRE 0.88-1.01).

Discussion

Better predictive models of biodiversity are needed to support conservation and management
of marine ecosystems under increasing anthropogenic pressures. Here we explored the use of
habitat data obtained by three different classification methods for the development of models
predicting a range of both uni- and multivariate fish biodiversity metrics. While in most cases,
reasonable models could be developed with remotely sensed data, models that incorporated
direct observer habitats consistently outperformed those that did not. Models for abundance
also consistently outperformed corresponding models for biomass, and metrics of endemism
were particularly difficult to model.

Remote sensing methods, such as multibeam, can provide valuable data for predicting bio-
diversity metrics [9,10]. Here, models developed using multibeam habitats alone were able to
explain a substantial proportion of CV deviance for fish total species richness (56%) and total
abundance (39%). Other studies predicting similar metrics from remotely sensed data have
obtained similar or even better performance [16,33,34]. As such, our results reaffirm that
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predictors generated by remote sensing can offer substantial utility in conservation planning
and resource management. However, our results also illustrate limitations in the ability of
remotely sensed data to predict biodiversity metrics.

Whilst remotely sensed data have been used to model fish species richness, abundance, and
biomass (e.g.,[33]), such models have not previously been compared to models generated using
alternative predictors. Here, when we did so, models generated with multibeam habitats alone
were consistently outperformed by those that included direct observer habitats. The abiotic
variable from the direct observer habitats was also the single most influential predictor, possi-
bly because multibeam data does not always enable differentiation between the presence or
absence of certain habitats. For example, no detectable difference in multibeam imagery was
found before and after the experimental removal of 100m? of kelp from three separate sites
[15]. Studies have also shown that seagrass beds can be difficult to detect based on multibeam
imagery, particularly when plants are present at low densities [35,36] or when plants are associ-
ated with certain substrate types [37]. Thus, there may be ecologically important aspects of the
environment that are not captured well in multibeam data, but that are captured by direct
observer habitat classification.

Consequently, modelling biodiversity with remotely sensed data represents a compromise
between model performance and data availability. While predictors generated from direct
observer habitat classification may provide valuable additional information when modelling
fish biodiversity metrics, they can be prohibitively expensive to gather at sufficient resolution
over large areas like Western Australia. Indeed, estimating biodiversity features over relatively
large scales is a key problem [16,38]. Over these large scales remote sensing may offer the only
cost-feasible way of generating high-resolution, continuous spatial data that can be used to gen-
erate predictions of biodiversity features, such as habitat classes or community level metrics.

Producing predicted habitats requires an additional resource investment, beyond the collec-
tion of remotely sensed data. Here, this greater investment did not necessarily result in better
predictors for modelling fish biodiversity metrics. For five of the univariate metrics, models
developed using predicted habitats resulted in higher CV deviance explained than those devel-
oped using multibeam habitats. However, for the other 4 univariate metrics we observed the
opposite and in both cases the difference in CV deviance explained was small. BRT models built
using multibeam habitats also had consistently lower mean prediction error than those devel-
oped with predicted habitats, which suggests that when predicting univariate metrics such as
species richness over broad spatial scales, predictors from multibeam data may be more robust.
Using multibeam data directly also avoids issues involved in the development of habitat classifi-
cation models, such as the lack of a standardised method of classification, variable classification
accuracy and variable amounts of ground-truthing [10]. Habitat classification maps based on
remote sensing are an important part of many marine spatial conservation planning processes
[39-42]. However, if habitat maps are not already available for a particular area of interest, our
results suggest there may be little to no value in investing additional resources to develop them
for the purpose of providing predictors for modelling univariate metrics of biodiversity. There is
some indication here that predicted habitat classifications may provide better predictors when
developing multivariate models, though more research is needed to understand this potential.

Some biodiversity metrics were more difficult to predict than others. Here, biomass was
more difficult to predict than abundance, with lower CV deviance explained and higher mean
prediction error. Because biomass is a function of abundance and individual length, estimates
of biomass are likely to be more uncertain than non-composite metrics because of compound-
ing errors [43]. Whilst all of the metrics explored here could provide valuable information for
conservation planning, our results suggest that some, such as those for endemic species, may
not be tractable with predictors from habitat data alone. Modelling others, such as abundance
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of fisheries targeted species, may require more habitat data than can be generated from remote
sensing or predicted habitats alone, and thus, would have limited applicability. Nonetheless, we
were able to generate reasonable predictive models of the abundance of vulnerable fishes using
only multibeam or predicted habitat data. Having a metric of fish vulnerability provides an
important planning tool for both conservationists and fisheries managers [17]. Modelling fish
vulnerability over areas such as Western Australia would provide valuable data on where to
prioritise effort for both maintaining fish biodiversity and fish stocks, and could inform the
positioning of spatial management units such as protected areas or localised fishing-gear
modifications.

Biodiversity metrics are impacted by factors other than environmental conditions, and fish
metrics will very likely be impacted by fishing. Through the selective extraction of targeted spe-
cies, fishing alters the composition of communities such that the remaining fishes do not fully
reflect the original community composition that would otherwise be determined by local biotic
and abiotic conditions. Fishing impacts are very likely to have been present at Rottnest Island
as it is a popular location for boat-based recreational fishing [44] and key target species are
classified as overexploited in this area [45]. Because fishing generally targets larger individuals
of higher trophic level species [46,47], fishing could be expected to have a greater impact on
measures of fish biomass than abundance, which may be an additional cause of the poorer per-
formance of the biomass models observed here. Indeed, incorporating fishing pressure, or spa-
tial closures to fishing, alongside environmental predictors can improve model performance
when predicting community assemblages [48] and classifying benthic biotopes [49]. Therefore,
exploration of ways to incorporate fishing into predictive models of fish biodiversity metrics,
over broad spatial scales, would likely be valuable. However, data on the spatial distribution of
fishing effort often does not exist [50] or is not accessible [51]. Thus, future studies exploring
the incorporation of historical and/or current fishing pressure may need to investigate the use
of surrogates for fishing.

Individual habitat predictors had varying influence on the models of fish biodiversity met-
rics tested here, reflecting how the different metrics respond to different environmental drivers.
Fish species richness can be influenced by habitat complexity (e.g. [52]), with increasing com-
plexity leading to increased richness. In general sand patches are species poor, reefs are species
rich, and significantly more species are found on high profile rather than low profile reefs
[53,54]. Here we found that species richness was best predicted by the abiotic variable from the
direct observer habitats, which consisted of five classes that relate very closely to habitat com-
plexity: high/medium/low profile reef, sand inundated reef, sand. Furthermore, the second
most influential predictor for species richness was ‘range’, a multibeam variable that describes
the topographic variation in an area. The abiotic variable from the direct observer habitats
and/or the variable range from the multibeam habitats were also the most influential predictors
for the abundances and biomasses of fisheries targeted species, possibly reflecting the associa-
tion of many of these species with higher complexity reefs. For endemic species (abundance
and biomass) the relative influence of either the abiotic variable from the direct observer habi-
tats or range from multibeam habitats was minimal. However, the predicted habitat class ‘reef
(probability of occurrence) was the most influential of the non-multibeam predictors. This sug-
gests that whilst many endemic species may be reef associated, they are not, as a group, associ-
ated with a particular level of reef profile/habitat complexity. Improved understanding of the
relative influence of environmental drivers of a broader set of biodiversity metrics, such as
those modelled here, could contribute to improved spatial conservation planning processes.

BRT and MRT are emerging techniques for modelling nonlinear species-habitat relation-
ships. Both methods can accommodate different predictor types. Here, for example, we used
both categorical and continuous data. These methods can also accommodate missing data, fit
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complex nonlinear relationships and model interaction effects between predictors [26,27].
When modelling fish species richness, BRT has outperformed more established methods such
as multiple linear regression, general adaptive models and neural networks on multiple occa-
sions [16,38,55,56]. Both BRT and MRT can be used to predict across sites for which only envi-
ronmental data are available [26,27]. Thus BRTs and MRT's could be used to generate maps of
predicted biodiversity metrics from remotely sensed data over large areas, which could comple-
ment predicted habitat maps and aid conservation planning and natural resource management.
Here we demonstrate that at least three community level metrics (total species richness, total
abundance and abundance of vulnerable species) can be usefully predicted using BRT and
remotely sensed data alone, and as such, how BRT models could inform conservation planning
and natural resource management over large, data limited areas, such as the coastal seas off
Western Australia. Ultimately, the utility of using remotely sensed data in BRT and MRT mod-
els to generate predictions of biodiversity metrics over large areas will depend on the transfer-
ability of models generated with sample data collected over a limited number of sites to un-
sampled areas [57]. Future studies now need to assess how transferable such models are, and
investigate, the factors that impact model transferability.

Conclusion

Improved understanding of the distribution of a wide range of biodiversity metrics would have
great utility for conservation and management, especially if that understanding was based on
remotely sensed data. However, it seems that less standard metrics of biodiversity, such as vul-
nerability to exploitation or endemism, will be difficult to model. Moreover, whilst remotely
sensed data can adequately predict total species richness, total abundance, and total biomass,
predictive performance of such models can be improved by the addition of data from direct
observer habitat classification. As such, it appears that the drivers of some metrics of fish biodi-
versity are not captured by habitat classification, and that there are aspects of habitats that are
important for predicting fish biodiversity that are not readily captured through the use of
remotely sensed data alone.
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