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Background: There has been an increasing interest in studying electroencephalogram
(EEG) as a biomarker of Alzheimer’s disease but the association between EEG signals
and patients’ neuropsychiatric symptoms remains unclear. We studied EEG signals
of patients with Alzheimer’s disease to explore the associations between patients’
neuropsychiatric symptoms and clusters of patients based on their EEG powers.

Methods: A total of 69 patients with mild Alzheimer’s disease (the Clinical Dementia
Rating = 1) were enrolled and their EEG signals from 19 channels/electrodes were
recorded in three sessions for each patient. The EEG power was calculated by Fourier
transform for the four frequency bands (beta: 13–40 Hz, alpha: 8–13 Hz, theta: 4–
8 Hz, and delta: <4 Hz). We performed K-means cluster analysis to classify the
69 patients into two distinct groups by the log-transformed EEG powers (4 frequency
bands × 19 channels) for the three EEG sessions. In each session, both clusters were
compared with each other to assess the differences in their behavioral/psychological
symptoms in terms of the Neuropsychiatric Inventory (NPI) score.

Results: While EEG band powers were highly consistent across all three sessions before
clustering, EEG band powers were different between the two clusters in each session,
especially for the delta waves. The delta band powers differed significantly between
the two clusters in most channels across the three sessions. Patients’ demographics
and cognitive function were not different between both clusters. However, their
behavioral/psychological symptoms were different between the two clusters classified
based on EEG powers. A higher NPI score was associated with the clustering of higher
EEG powers.

Conclusion: The present study suggests that EEG power correlates to behavioral and
psychological symptoms among patients with mild Alzheimer’s disease. The clustering
approach of EEG signals may provide a novel and cost-effective method to differentiate
the severity of neuropsychiatric symptoms and/or predict the prognosis for Alzheimer’s
patients.
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INTRODUCTION

Alzheimer’s disease is a type of neurodegenerative disorder
which affects 5.8 million elderly people in the United States
alone. It is the sixth leading cause of death in the general
population of the United States and is also the leading cause
of disability and morbidity amongst the elderly (Alzheimer’s
Association, 2020). As of 2019, the global percentage of
people above the age of 60 years who are affected by
Alzheimer’s disease is estimated to be between 5% and 8%
(World Health Organization, 2020).

Typically, dementia due to Alzheimer’s disease is diagnosed
by a set of criteria involving patients’ cognitive function and
neuropsychiatric history (McKhann et al., 2011). The assessment
of Alzheimer’s disease includes testing the patient’s memory,
verbal skills, problem solving skills, and mood through a series
of questionnaires. Close acquaintances of the patient are also
questioned about the patient’s memory, cognitive ability, and
recent behavior (Alzheimer’s Association, 2020). However, this
method of diagnosis may not capture the heterogeneous nature
of the disease. Recently, researchers have harbored significant
interests in developing an objective method of classifying
Alzheimer’s disease and assessing the severity of the condition
based on biological markers (Bateman et al., 2012; Blennow and
Zetterberg, 2018).

One of the compelling biomarkers that can assess
brain functioning for Alzheimer’s dementia is the
electroencephalography (EEG). The EEG is a non-invasive,
widely-available, and economical method that offers high
temporal resolution, making it more attractive than functional
magnetic resonance imaging (MRI) and positron-emission
tomography (PET; Dauwels et al., 2010; Cassani et al., 2018;
Smailovic and Jelic, 2019). Pathophysiologically, dementia of
the Alzheimer type is caused by a build-up of beta-amyloid
peptide in the brain, which in turn leads to synaptic dysfunction,
impairing the vital cognitive functioning of the brain (Masters
et al., 2015; Scheltens et al., 2016; Selkoe and Hardy, 2016).
EEG scans directly measure neurological signaling while MRI
and PET offer only hemodynamics and metabolic signals,
respectively (Smailovic and Jelic, 2019).

Given that the behavioral and psychological symptoms
vary to an extent among Alzheimer’s patients even though if
they have the same severity of dementia, understanding the
variation should help initiate preventive measures, organize
appropriate care, and facilitate applicable treatment plans
for these patients. While previous studies had examined
the difference in EEG signals of Alzheimer’s patients vs.
non-Alzheimer’s patients recognizing alternation of EEG
power, and/or reduction of temporal complexity and
functional connectivity in Alzheimer’s disease (Dauwels
et al., 2010; Nobukawa et al., 2019, 2020; Smailovic and
Jelic, 2019), this study aimed to explore the potential
difference in EEG scans of heterogeneous Alzheimer’spatients.
Our hypothesis was that between patients with the same
severity of disease, there would still be a difference in their
neuropsychiatric symptoms with a corresponding difference in
their EEG signals.

MATERIALS AND METHODS

Participants
This study group was composed of 69 patients (42 women vs.
27 men) with mild Alzheimer’s disease, 61–90 years of age
(mean ± standard deviation, SD = 78.0 ± 6.7). All of the
research participants were enrolled from the Dementia Clinic
at the Neurological Institute of the Taipei Veterans General
Hospital in Taiwan. The diagnosis for Alzheimer’s disease was
based on the criteria of the National Institute of Neurological and
Communicative Disorders and the Stroke/Alzheimer’s Disease
and Related Disorders Association (McKhann et al., 1984). In
light of the study purpose to assess EEG signals among patients
with similar severity of dementia, only patients characterized
as having mild Alzheimer’s dementia (i.e., Clinical Dementia
Rating, CDR scale = 1; Morris, 1993) were included in this study.

The cognitive functioning of the patients was evaluated
using the Mini-Mental State Examination (MMSE; Folstein
et al., 1975), a verbal category fluency test, and the forward-
and-backward digit span tasks subset of the Wechsler Adult
Intelligence Scale. Their behavioral and psychological symptoms
were evaluated using the Neuropsychiatric Inventory (NPI),
a quantitative assessment of over 12 neuropsychiatric
domains: delusions, hallucinations, dysphoria, anxiety,
agitation/aggression, euphoria, disinhibition, irritability/lability,
apathy, aberrant motor activity, appetite, and night-time
behavior disturbances (Cummings et al., 1994). The study was
approved by the Institutional Review Board of National Yang
Ming University (IRB Approval Number: YM109075E).

EEG Signal Processing
All patients received the digital EEG recording (Nicolet EEG,
Natus Medical, Incorporated, San Carlos, CA, USA) in the
examination room, and the details of the recording protocol
has been previously reported (Yang et al., 2013). Each patient
had three separate sessions of resting eye-closed EEG scan for
10–20 s. EEG signals from the 19 electrodes (Fp1, Fp2, F7,
F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1,
and O2) were recorded according to the standard 10-20 system
with reference to linked earlobe electrodes at a sampling rate
of 256 Hz. Initial filter settings were low-pass filter frequency
of 70 Hz, high-pass filter of 0.05 Hz, notch filter of 60 Hz, and
electrode impedances below 3 k�. A technician monitored the
process and would alert the patient if signs of drowsiness/sleep
appeared (Yang et al., 2013).

For the EEG scan from each electrode per session with eyes
closed, a 10-s segment of artifact-free EEG signals was manually
extracted after careful visual inspection (Yang et al., 2013). Each
patient had three EEG segments of 10 s each from each electrode,
and these EEG data were used for the subsequent analyses. The
EEG signal processing and analysis in this study were all done on
the Matrix Laboratory (MATLAB) software (MathWorks, Inc.,
Natick, MA, United States).

The original EEG data from each electrode per segment as a
function of voltage over time were transformed using the Fourier
transform to yield theWelch’s periodogram of the power spectral

Frontiers in Aging Neuroscience | www.frontiersin.org 2 April 2021 | Volume 13 | Article 623930

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Liu et al. EEG Power for Alzheimer’s

density vs. frequency. The EEG signals were classified by the four
conventional frequency bands defined as beta (13–40 Hz), alpha
(8–13 Hz), theta (4–8 Hz), and delta (<4 Hz). The absolute EEG
power was calculated by integrating the power spectral density
with respect to frequency for the corresponding frequency band.
Each patient has 76 band powers since each of the 19 electrodes
has four frequency bands. The EEG band powers were then
log-transformed and a 69 (patients) by 76 (log-transformed
band powers) result matrix was constructed for each of the
three segments.

Cluster Analysis
Cluster analysis was performed on each of the three result
matrices of log-transformed band powers using K-means
clustering on MATLAB to classify the 69 patients in each of
the three segments into two distinct clusters, making six overall
clusters. A cluster size of two was chosen for all three
segments after silhouette analysis was performed. Across all three
segments, the silhouette value for clusters of two (0.453, 0.422,
and 0.406 respectively) were the utmost vs. clustering of any
other size. Moreover, we performed the clustering 100 times and
averaged them to yield the conclusions in order to improve the
stability of the K-means results.

Statistical Analysis
For each of the three EEG segments, both clusters generated
by K-means method on their EEG powers were compared
with each other to assess the differences in their demographics,
cognitive functioning, and neuropsychiatric symptoms. The
demographics of the patients included age, sex, education, and
duration of illness. The cognitive functioning included MMSE,
verbal fluency, digit forward span test, and digit backward
span test. The NPI variables contained the 12 neuropsychiatric
domains listed above with higher scores indicating worse
conditions. Independent-sample t-tests were conducted to
compare the continuous variables between both clusters whereas
the chi-square tests were used to compare the categorical
variables such as gender distribution. Two-sided p-values of
less than 0.05 were considered statistically significant. IBM
SPSS Statistics, version 25.0 (SPSS Inc., Chicago, Illinois, United
States) was used for all of the statistical analyses.

RESULTS

Scalp EEG Power Features of Patients
With Dementia
The absolute EEG power spectral density analysis was performed
on the EEG data among the three segments of the 69 patients
with mild Alzheimer’s disease. Topographic plots show the
EEG power features mapping the EEG band power for the
19 electrodes in a 2-dimensional circular view looking down
from the top of the head (Figure 1). Figure 1A shows that the
EEG power features for the four frequency bands were highly
consistent across all three segments before clustering. For the
delta frequency band, the EEG signals from left frontal electrodes
(FP1) were strongest across all three segments. In contrast, for

FIGURE 1 | Topography of electroencephalogram (EEG) power for the four
frequency bands among the three EEG sessions. The color spectrum
corresponds to the log-transformed EEG power for the delta (<4 Hz), theta
(4–8 Hz), alpha (8–13 Hz) and beta (13–40 Hz) band. (A) EEG band powers
are consistent across all three sessions. (B) EEG band powers are different
between the two clusters in each of the three sessions, especially for the
delta frequency band.

the theta or alpha frequency band, the EEG powers were weak
globally across all three segments.

Cluster Analysis on EEG Powers
For each of the three EEG segments, cluster analysis was
performed to classify the 69 patients into two distinct clusters
based on their EEG frequency band powers. Clusters 1 and
2 contained 33 vs. 36, 33 vs. 36, and 34 vs. 35 patients for Segment
1, Segment 2, and Segment 3, respectively. Table 1 shows the
similarities in clustering between different segments in terms of
the Jaccard similarity index which measures the intersection over
union of the clusters compared. Overall, the clustering patterns
among the three segments were highly consistent as the Jaccard
index ranged from 73.7% to 77.5%, significantly above the value
of around 31% by random grouping. Figure 1B also reveals
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TABLE 1 | Comparisons of the clustering in terms of the Jaccard index (%) for the cluster analysis on EEG powers among the three electroencephalogram (EEG)
sessions.

Session 1 Session2 Session 3

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2

Session 1 Cluster1 - 0
Cluster2 0 -

Session 2 Cluster1 73.7 7.8 - 0
Cluster2 7.8 75.6 0 -

Session 3 Cluster1 76.3 7.7 76.3 7.7 - 0
Cluster2 6.3 77.5 6.3 77.5 0 -

the consistency of clustering on EEG band powers across the
three segments.

In each of the three segments, the two clusters generated by
K-means clustering methods were distinctive with each other
regarding their EEG power, particularly for the delta frequency
band (Figure 1B). For every segment, the delta band power, theta
band power, and alpha band power of one cluster (Cluster 1)
appeared stronger than that for the corresponding electrode of
the other cluster (Cluster 2). Table 2 shows that the delta band
powers differed significantly between the two clusters in most
of the 19 scalp electrodes across the three sessions. Although the
strongest signals came from the left frontal area (Fp1), the EEG
delta band power for Fp1 of Cluster 1 was still greater than that
of Cluster 2.

Comparisons of Demographic and Clinical
Variables Between Clusters on EEG
Powers
Following cluster analysis on EEG powers, the two clusters
generated by K-means method were compared with each other
regarding demographic and clinical variables. In general, for
each of the EEG segments, patients’ demographics and cognitive
functions were not different between both clusters except for

Segment 1, which had more females in Cluster 1 than in Cluster
2 (75.8% vs. 47.2%; P = 0.015).

Regarding patients’ neuropsychiatric symptoms, Table 3
shows a clear trend that in all three segments, patients of
Cluster 1 exhibited higher NPI scores, total score or subdomain
score, than Cluster 2, indicating that the clustering of higher
EEG powers may be associated with severer neuropsychiatric
symptoms. For Segment 1, the total NPI score for the first cluster
was significantly higher than the second cluster (19.3 ± 18.6 vs.
10.0 ± 9.7; P = 0.014). For Segment 2, the total NPI score for the
first cluster was 17.2 ± 18.9 while the second cluster had a score
of 11.9± 10.6. And for Segment 3, the total NPI score for Cluster
1 was 17.7 ± 18.7 while Cluster 2 was 11.3 ± 10.3 (P = 0.086,
Table 3).

We learned that there were no statistically significant
differences in NPI score between clusters after applying the
false discovery rate function in MATLAB to correct the P-value.
However, the purpose of the experiment was to explore the
patterns between clusters. Moreover, there is still a noteworthy
trend in the differences of the NPI score between clusters, which
can have clinical significances.

Specifically, for Segment 1, patients in Cluster 1 experienced
a significantly higher level of delusion, hallucination, anxiety,

TABLE 2 | Distinction in log-transformed EEG delta band power between both clusters across 19 EEG channels among the three sessions.

Session 1 Session 2 Session 3

EEG channels C1 C2 P-value C1 C2 P-value C1 C2 P-value

Fp1 5.31 4.67 0.074 5.69 4.48 0.003 5.63 4.19 <0.001∗

Fp2 3.52 2.24 <0.001∗ 3.93 2.29 <0.001∗ 3.93 2.24 <0.001∗

F7 3.48 2.26 <0.001∗ 3.43 2.24 <0.001∗ 3.52 2.15 <0.001∗

F3 3.15 2.59 0.001∗ 3.33 2.51 <0.001∗ 3.28 2.47 <0.001∗

Fz 5.28 4.63 0.086 5.73 4.45 0.002∗ 5.63 4.10 <0.001∗

F4 3.60 2.30 <0.001∗ 3.98 2.38 <0.001∗ 3.96 2.38 <0.001∗

F8 3.54 2.30 <0.001∗ 3.47 2.30 <0.001∗ 3.56 2.18 <0.001∗

T3 3.09 2.57 0.001∗ 3.21 2.48 <0.001∗ 3.22 2.49 <0.001∗

C3 4.32 3.33 <0.001∗ 4.38 3.59 0.008 4.45 3.48 0.003
Cz 3.12 1.59 <0.001∗ 3.09 1.73 <0.001∗ 3.15 1.74 <0.001∗

C4 3.24 1.97 <0.001∗ 3.06 1.97 <0.001∗ 3.12 1.90 <0.001∗

T4 2.79 2.19 <0.001∗ 2.95 2.10 <0.001∗ 3.00 2.06 <0.001∗

T5 4.33 3.48 0.010 4.56 3.37 <0.001∗ 4.62 3.46 <0.001∗

P3 3.14 1.62 <0.001∗ 3.16 1.77 <0.001∗ 3.16 1.83 <0.001∗

Pz 3.29 1.98 <0.001∗ 3.12 2.01 <0.001∗ 3.26 1.89 <0.001∗

P4 2.98 2.28 <0.001∗ 3.02 2.07 <0.001∗ 2.95 2.13 <0.001∗

T6 4.26 3.43 0.002∗ 4.55 3.29 <0.001∗ 4.55 3.37 <0.001∗

O1 3.57 2.03 <0.001∗ 3.59 2.16 <0.001∗ 3.58 2.19 <0.001∗

O2 3.82 2.46 <0.001∗ 3.62 2.46 <0.001∗ 3.70 2.37 <0.001∗

∗Significance level is corrected for multiple comparison using Bonferroni method at P < 0.0026 (0.05/19 channels).
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TABLE 3 | Comparison of cognition function and behavioral/psychiatric symptoms between both clusters of patients classified by their EEG powers for the three EEG
sessions.

Session 1 Session 2 Session 3

Cluster 1 Cluster 2 P-value Cluster 1 Cluster 2 P-value Cluster 1 Cluster 2 P-value

Demographic
Age (years) 76.9 ± 6.6 79.1 ± 6.8 0.176 76.6 ± 5.9 79.2 ± 7.3 0.105 76.4 ± 6.4 79.5 ± 6.8 0.058
Sex, male (%) 24.2 52.8 0.015 30.3 47.2 0.150 29.4 48.6 0.103
Education (years) 7.2 ± 5.3 8.6 ± 4.8 0.260 7.6 ± 4.7 8.2 ± 5.4 0.645 8.2 ± 4.7 7.6 ± 5.4 0.655
Duration of illness (years) 2.6 ± 2.6 2.1 ± 1.8 0.354 2.2 ± 2.5 2.5 ± 1.9 0.606 2.4 ± 2.4 2.2 ± 2.0 0.686
Cognitive functioning
MMSE 17.9 ± 4.5 19.9 ± 5.7 0.104 18.3 ± 4.7 19.6 ± 5.7 0.278 17.9 ± 5.3 19.9 ± 4.9 0.095
Verbal fluency 8.8 ± 3.3 9.6 ± 3.4 0.370 8.5 ± 3.3 9.9 ± 3.3 0.087 8.5 ± 3.5 9.9 ± 3.0 0.074
Digit forward 8.4 ± 2.4 9.0 ± 2.5 0.359 8.4 ± 2.1 8.9 ± 2.7 0.336 8.4 ± 2.3 8.9 ± 2.6 0.341
Digit backward 3.6 ± 2.2 4.1 ± 2.0 0.374 3.6 ± 2.1 4.1 ± 2.1 0.374 3.7 ± 2.3 4.1 ± 2.0 0.440
Neuropsychiatric Inventory
Total score 19.3 ± 18.6 10.0 ± 9.7 0.014 17.2 ± 18.9 11.9 ± 10.6 0.156 17.7 ± 18.7 11.3 ± 10.3 0.086
Delusion 1.4 ± 2.4 0.5 ± 1.0 0.040 1.1 ± 2.0 0.8 ± 1.7 0.573 1.0 ± 2.0 0.9 ± 1.7 0.851
Hallucination 0.8 ± 1.8 0.1 ± 0.3 0.040 0.7 ± 1.8 0.2 ± 0.4 0.089 0.6 ± 1.8 0.2 ± 0.5 0.192
Agitation/aggression 1.6 ± 2.3 0.8 ± 1.6 0.076 1.6 ± 2.3 0.8 ± 1.6 0.125 1.8 ± 2.5 0.6 ± 1.0 0.013
Dysphoria/depression 2.1 ± 2.7 1.1 ± 2.2 0.110 2.2 ± 3.0 1.0 ± 1.7 0.065 2.0 ± 3.0 1.1 ± 1.7 0.128
Anxiety 2.0 ± 3.0 0.5 ± 1.1 0.011 1.3 ± 2.5 1.1 ± 2.2 0.735 1.4 ± 2.5 1.0 ± 2.2 0.531
Euphoria 0.3 ± 1.0 0.1 ± 0.3 0.170 0.3 ± 1.0 0.1 ± 0.3 0.170 0.3 ± 1.0 0.1 ± 0.3 0.311
Apathy 2.0 ± 3.1 1.4 ± 2.2 0.351 2.2 ± 3.2 1.2 ± 2.1 0.118 2.1 ± 3.1 1.2 ± 2.2 0.159
Disinhibition 0.9 ± 2.1 0.8 ± 1.9 0.779 0.8 ± 2.0 0.9 ± 2.0 0.932 1.1 ± 2.3 0.7 ± 1.6 0.364
Irritability 1.9 ± 3.4 1.0 ± 2.2 0.191 2.1 ± 3.4 0.9 ± 2.0 0.085 2.3 ± 3.5 0.6 ± 1.6 0.013
Aberrant motor behavior 0.9 ± 1.9 1.2 ± 2.3 0.535 0.7 ± 1.4 1.3 ± 2.5 0.222 0.6 ± 1.3 1.5 ± 2.6 0.094
Sleep change 2.5 ± 3.4 1.1 ± 1.5 0.034 2.1 ± 3.3 1.5 ± 1.8 0.360 2.3 ± 3.4 1.3 ± 1.6 0.101
Appetite change 2.8 ± 4.1 1.4 ± 2.5 0.100 2.1 ± 3.6 2.0 ± 3.3 0.910 2.1 ± 3.6 2.1 ± 3.2 0.974

MMSE, Mini-Mental State Examination. P-values of <0.05 are considered statistically significant and shown in bold.

and sleep change than patients in Cluster 2. For Segment 3,
patients in Cluster 1 experienced a significantly higher level of
agitation/aggression and irritability than patients in Cluster 2.

DISCUSSION

In light of the goal to develop an objective method of
classifying Alzheimer’s disease and assessing the severity of the
neuropsychiatric conditions using EEG markers, we performed
cluster analysis to categorize the Alzheimer’s patients into two
groups based on their EEG band powers from 19 scalp electrodes.
We found a clear linkage between the clustering on EEG powers
and differences in the behavioral and psychological symptoms
that a higher NPI score was associated with the clustering of
higher EEG band powers, supporting the hypothesis that the
discrepancy in neuropsychiatric symptoms of patients with the
same severity of Alzheimer’s dementia would correspond to a
difference in their EEG signals.

Although previous studies repeatedly demonstrated that
patients with Alzheimer’s disease show an increase in delta/theta
band power, a decline in alpha/beta band power, reduced
complexity and impaired synchrony in EEG signals compared
to non-Alzheimer individuals (Dauwels et al., 2010; Nobukawa
et al., 2019, 2020; Smailovic and Jelic, 2019), there have been
limited data on assessing the EEG signals associated with
neuropsychiatric conditions for Alzheimer’s patients with the
same severity of dementia. While neuropsychiatric symptoms
generally increase as the stage of dementia progresses, many
symptoms still develop in the early stage of Alzheimer’s disease
(Panza et al., 2010; Lyketsos et al., 2011; Hashimoto et al., 2015).

In general, our findings verified that Alzheimer’s patients may
be heterogeneous regarding their behavioral and psychological
symptoms even though they have the same severity of dementia.
The most common neuropsychiatric disorders in patients with
mild stages of dementia include depression, apathy, anxiety and
irritability. Patients in cluster one of all three sessions had higher
NPI score for these conditions than patients in the second cluster.
Furthermore, the average NPI score of the patients in the first
cluster were all <14 whereas the average of the NPI score for
patients in the second cluster were>14 . Patients with NPI scores
at or <14 may be associated with a better outcome of dementia
when they are faced with neuroleptic discontinuation, which had
already been demonstrated in a randomized, placebo controlled
study (Ballard et al., 2004).

One possible physiological mechanism underlying these
findings is that dementia can lead to slowing EEG waves.
The slowing EEG may in turn signal the worsening ability
of coordination between the various brain regions. Further
studies should be conducted to study the underlying mechanism.
Moreover, future investigations could also be performed to
examine the relationship between temporal complexity measures
and functional connectivity.

Our finding of the association of neuropsychiatric symptoms
with the clustering on patients’ EEG band powers suggests that
the clustering approach on EEG signals may be a reliable and
effective biomarker to characterize neuropsychiatric conditions
and/or prognosis for Alzheimer’s patients with similar cognitive
functions. Specifically, such a cost-effective approach may
identify patients with increased odds of delusion, hallucination,
anxiety, sleep change, irritability, and agitation/aggression,
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which should in turn inform the prognosis, organize preventive
measures and appropriate care, and facilitate applicable
treatment plans for these patients (Lyketsos et al., 2011).

Taking the clustering approach on absolute EEG band powers
provide several advantages. First, it is safe, convenient, and
cost-effective. Second, the results of the clustering seemed
stable and consistent that were displayed in our study.
Moreover, as expected, the clustering was not associated with
the demographics or cognitive functioning of Alzheimer’s
patients with the same severity of disease. Third, without
predetermined constraints, EEG signals for the four frequency
bands from all 19 scalp electrodes, instead of information from
only single band or local channels, were considered for the
cluster analysis. Nevertheless, we found that the alpha band
power, theta band power, and especially delta band power were
grossly different between the two clusters in almost all channels
and the clustering of higher EEG band powers corresponded
to the group of patients with more severe neuropsychiatric
conditions. Although we did not find prior research using the
same approach that could corroborate our findings, previous
studies reported that the changes of EEG signals develop
gradually and the increase in EEG delta band power typically
occurs in later stages across the Alzheimer’s disease continuum
(Coben et al., 1985; Soininen et al., 1991; Smailovic and Jelic,
2019).

Even though our findings shed light on the development
of a novel model for phenotyping neuropsychiatric symptoms
profiles of Alzheimer’s disease, there are still a few limitations to
be noted. First, themajor limitation is the relatively small number
of participants which leads to insufficient statistical power to
demonstrate the statistically significant differences in NPI scores
between the two clusters for every EEG session. However,
the trends showing that a higher NPI is associated with the
clustering of higher EEG powers were consistent among different
sessions. Second, this is a cross-sectional study. Future large-scale
prospective studies are warranted to investigate the long-term
clinical outcomes of Alzheimer’s patients and to corroborate
our findings.

In summary, the neuropsychiatric symptoms were different
between the two groups of patients with the same severity
of Alzheimer’s dementia categorized by cluster analysis based
on EEG powers. A higher NPI score was associated with the
clustering of higher EEG powers, particularly in delta frequency

band. The results of the study suggested that EEG band powers
correlate to behavioral/psychological symptoms among patients
with Alzheimer’s disease. The clustering approach of EEG signals
may provide a novel and cost-effective method to differentiate
the severity of neuropsychiatric symptoms and/or predict the
prognosis for Alzheimer’s patients.
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