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Abstract

Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine

differential gene expression. Identifying differentially expressed genes crucially depends on estimates

of read-count variability. These estimates are typically based on statistical models such as the negative

binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity

of these models has usually been tested on either low-replicate RNA-seq data or simulations.

Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theor-

etical models. The observed gene read counts were consistent with both log-normal and negative

binomial distributions, while the mean-variance relation followed the line of constant dispersion

parameter of �0.01. The high-replicate data also allowed for strict quality control and screening of

‘bad’ replicates, which can drastically affect the gene read-count distribution.

Availability and implementation: RNA-seq data have been submitted to ENA archive with project

ID PRJEB5348.

Contact: g.j.barton@dundee.ac.uk

1 Introduction

High-throughput sequencing of RNA (RNA-seq, Nagalakshmi

et al., 2010) estimates gene expression by counting the number of

sequenced RNA fragments that map back to a given gene within a

reference genome or transcriptome (Mortazavi et al., 2008).

Differential gene expression (DGE) experiments compare this rela-

tive measure of transcriptional activity across several biologically

interesting conditions to attempt to identify those genes that are fun-

damental to the difference between the conditions. This task is com-

plicated by expression noise resulting from biological and technical

variability, which introduces a level of uncertainty that has to be

taken into account when the expression values from two or more

conditions are compared. There are two major obstacles to identify-

ing whether the observed difference in the expression of a gene be-

tween the two conditions is statistically significant, or whether it is

consistent with arising through chance. First, the observed read

counts are a product of both the library size (total number of reads)

and the fractional expression of the gene. The gene expression values

thus need to be appropriately normalized before they can be mean-

ingfully compared across conditions. Second, due to cost, time and
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workload constraints RNA-seq experiments typically consist of only

a few replicates, making DGE genes particularly difficult to identify

due to a lack of statistical power in the experiment (Hansen et al.,

2011). These obstacles have motivated the development of numer-

ous algorithms and computational tools to calculate DGE, each

with their own underlying assumptions and their own approaches to

data normalization and DGE detection. In particular, these tools

commonly make assumptions about the form of the underlying

read-count distribution.

If sequenced RNA-seq reads originate randomly from the tran-

scripts of expressed genes in a sample, the resulting read-count dis-

tribution would be multinomial, with parameters representing the

proportions of reads mapping to individual genes. The observed

read counts for an individual gene are then represented by a bino-

mial random variable which, for a large total number of reads with

only a small fraction of reads mapping to each gene, can be well

approximated by a Poisson distribution. A key property of the

Poisson distribution is that the variance is equal to the mean.

Although they have limited statistical power due to low numbers

of replicates (Marioni et al., 2008, Robinson and Smyth, 2008,

Rapaport et al., 2013), previous studies have shown that RNA-seq

read-count data shows significant excess variance above that ex-

pected based on the Poisson model. The excess variance observed in

the data originates from biological processes, sample preparation,

the sequencing protocol and/or the sequencing process itself. A nat-

ural over-dispersed alternative to the Poisson model is a negative bi-

nomial distribution, in which the variance is always greater than or

equal to the mean.

The underlying read-count distribution for a gene is a fundamen-

tal property of RNA-seq data but without a large number of meas-

urements it is not possible to identify the form of this distribution

unambiguously. The limited number of replicates considered in pre-

vious studies means the true distribution of read counts for an indi-

vidual gene is still unclear. Many DGE tools make assumptions

about the form of this underlying distribution, including Poisson,

negative-binomial and log-normal, which may impact on their abil-

ity to correctly identify significantly DE genes. In this study, the

form of the underlying read-count distribution is measured directly

with a high-replicate, carefully controlled, RNA-seq experiment de-

signed specifically for the purpose of testing the assumptions intrin-

sic to RNA-seq data. For the first time, these data allow various

statistical models of read-count distribution to be tested directly

against real RNA-seq data.

2 Methods

2.1 Experiment design and data workflow
A controlled, 48 biological replicate, RNA-seq experiment in the

model organism Saccharomyces cerevisiae was performed for wild

type (WT) and a snf2 knock-out mutant cell line (Dsnf2). Briefly, the

extracted total RNA from each of the 96 replicates was enriched for

polyadenylated RNA, quality checked, and had an appropriate

amount of artificial External RNA Controls Consortium (ERCC)

spike-in transcripts added (Jiang et al., 2011, Loven et al., 2012) be-

fore undergoing the standard Illumina multiplexed TruSeq library

preparation. The libraries were pooled and sequenced on seven lanes

of a single flow-cell on an Illumina HiSeq 2000 using a balanced

block design (Auer and Doerge, 2010), resulting in a total of �1 bil-

lion 50-bp single-end reads across the 96 samples. These reads were

aligned to the Ensembl v68 (Flicek et al., 2011) release of the S. cere-

visiae genome (modified to include the ERCC transcript sequences)

with TopHat2 (v2.0.5, Kim et al., 2013) The aligned reads were

then aggregated with htseq-count (v0.5.3p9, Anders et al., 2014)

using the Ensembl v68 S. cerevisiae genome annotation to give total

gene read counts for 7126 gene features. A full description of the ex-

periment is provided in Schurch et al. (2015).

2.2 Notation
The following notation is used from this point on: nr ¼ 48 is the

total number of replicates in each condition, nl ¼ 7 is the total num-

ber of lanes on the flowcell. The subscript g denotes an individual

annotated gene, i and j identify individual biological replicates

within a given experimental condition, (i; j ¼ 1; . . . ; nr) and l is an

individual lane on the flow cell (l ¼ 1; . . . ; nl). xgil denotes the

number of read counts in gene g, replicate i and lane l and the read

count for each biological replicate summed over all lanes is given by

xgi ¼
Xnl

l¼1
xgil. Condition indices are skipped for clarity and the

condition, for which the calculations are performed for, is specified

in the text.

2.3 Normalization
RNA-seq experiments do not measure absolute gene expression; in-

stead the number of sequenced reads mapped to a gene is propor-

tional to its expression level, the sequencing depth and (in the case

of short read sequencing) the length of the gene. Normalizing the

data to compensate for these factors is a critical step in analysing

RNA-seq expression data and it is essential that the normalization

chosen is appropriate to the biological question being addressed.

The simplest normalization scales the raw counts to the total num-

ber of sequenced reads in the replicate (total count normalization),

however, this is unlikely to be appropriate for a DGE experiment

where one might reasonably anticipate that a small number of highly

expressed genes are likely to change their expression level dramatic-

ally while the expression of the majority remains unchanged.

Applying the total count normalization may result in many genes

being identified as differentially expressed between conditions when

they are, in fact, unchanged. Anders and Huber (2010) described a

normalization strategy to address this based on the median expres-

sion across all genes, making it insensitive to highly expressed out-

liers. Other methods to tackle this problem are the trimmed mean of

M-values (Robinson and Oshlack, 2010) and quantile normalization

(Smyth, 2004). See Dillies et al. (2013) for a detailed review of these

relevant normalization methods.

These normalization approaches all result in counts that are no

longer integer and this can lead to unpredictable results when testing

them against discrete probability distributions (e.g. Poisson and

negative binomial models). Accordingly, an alternative approach to

normalization was applied, that while not suitable for DGE, is more

appropriate for testing the underlying distribution of RNA-seq read

counts for a gene. When examining the distribution of gene read

counts across the biological replicates within a condition, the repli-

cate with the smallest total read count was selected and then the

other replicates were randomly sub-sampled to the same total read

count. The same approach was applied to read counts across flow

cell lanes within each biological replicate. The equal-count data are

then mapped to the reference genome obtaining normalized, but dis-

crete, mapped read counts.

The obvious disadvantage of this method is the loss of reads

(�16 and 35% for lane and biological replicate data, respectively)

and sensitivity. This approach is essentially a total count normaliza-

tion that preserves the discrete nature of the data and so is unlikely

to be any more appropriate for DGE analysis than standard total

count normalization. However, under the null hypothesis, the
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down-sampled replicates within a condition are realizations of inde-

pendent and identically distributed random variables, so it allows

goodness-of-fits tests to be performed on raw gene counts with no

need for any additional normalization. All the tests in this work are

done within one biological condition (or one biological replicate, for

lane data) and no DGE analysis is undertaken. The loss of reads is

not a concern for this work, which aims at studying distribution

over a wide range of read counts. The mean read count per gene ex-

tends from � 0:1 to � 105 in normalized data.

2.4 Quality control: identifying ‘bad’ replicates
Occasionally errors occur in an experimental protocol and a sample

generates improper or ‘bad’ data. In this experiment, the availability

of 48 replicates allowed three different criteria to be applied indi-

vidually and in combination to identify potential ‘bad’ replicates in

addition to standard quality checks by FastQC.

2.4.1 Replicate correlation

The differences between each pair of replicates, i and j, is quantified

by Pearson’s correlation coefficient, rij, calculated across all genes

with a non-zero count in at least one replicate (Fig. 1). The repli-

cate’s similarity to other replicates is captured by its median correl-

ation, r
�

i ¼ medianj 6¼i rij (Fig. 2a).

2.4.2 Outlier fraction

The poor correlations shown by some replicates are the result of a

small proportion of genes with atypical read counts. These outliers

can be identified by comparing each gene’s expression in an individ-

ual replicate with the trimmed mean across all replicates.

Specifically, the nt largest and smallest values are trimmed from the

set of replicates for a gene before calculating the mean ðxg;nt
Þ and

standard deviation (sg;nt
). Genes are then identified as outliers if

jxgi � xg;nt
j > nssg;nt

, where ns is a constant. Figure 2b shows the

fraction fi of all genes identified as outliers for each replicate i, for nt

¼ 3 and ns ¼ 5. As expected, the anomalous replicates with high

outlier fraction in Figure 2b correspond well with the poorly corre-

lating replicates in Figure 2a. Increasing nt and/or decreasing ns en-

hances the outlier fraction in replicates already identified as

anomalous; for example, reducing the standard deviation limit to ns

¼ 3 boosts the outlier fraction in these replicates by a factor �2–3.

2.4.3 Gene read depth profiles

The atypical total read counts of outlier genes are, in our case, the

result of an atypical, strongly non-uniform, read depth gene profile.

An example of the difference of the read depth profiles between

clean and ‘bad’ replicates is shown in Figure 3 for the gene

YHR215W. The distribution of reads from the example ‘bad’ repli-

cate (WT replicate 21, red line) is much less uniform than the mean

read depth from the other ‘clean’ replicates (black line) with distinct

peaks in the distributions that are 50-bp long. These suspicious fea-

tures are found universally in all outlier genes in ‘bad’ replicates and

can be also seen in some (but not all) non-outlier genes in these repli-

cates. It is likely that the cause of this atypical read distribution is

uneven priming during the polymerase chain reaction (PCR) amplifi-

cation step of the library preparation, prior to the sequencing. The

level of gene non-uniformity in each replicate can be quantified with

a reduced v2 statistic for each gene in each replicate, defined as

v2
gi ¼

1

lg � 1

Xlgi

p¼1

ðcgip � cgiÞ2

cgi
; (1)

where cgip represents read-count depth at base pair p within the

gene g in replicate i, lg is the length of gene g and cgi ¼ 1
lg

X
p
cgip.

Fig. 1. Pearson’s correlation coefficient between biological replicates in condi-

tion WT (left) and Dsnf2 (right). Dark bands show ‘bad’ replicates that poorly

correlate with others

Fig. 2. Identifying bad RNA-seq replicates in the WT (left) and Dsnf2 (right)

data. The top three panels (a–c) show individual criteria for identifying ‘bad’

replicates which are combined into a quality score (d) in order to identify

‘bad’ replicates in each condition. The identified ‘bad’ replicates are shown as

numbered points in each panel. The individual criteria are (a) median correl-

ation coefficient, ri
�

, for each replicate i against all other replicates, (b) outlier

fraction, fi , calculated as a fraction of genes where the given replicate is more

than five-trimmed standard deviations from the trimmed mean and (c) me-

dian reduced v2 of pileup depth, v
�2

i , as a measure of the non-uniformity of

read distribution within genes (see also Fig. 3)

Fig. 3. Read depth profiles of YHR215W (PHO12). The black line indicates the

mean read counts from all ‘clean’ WT replicates for a given genomic position

in the gene YHR215W (the set of ‘clean’ replicates is defined in Section 3.1).

The grey lines show the mean read depth plus/minus one standard deviation.

The red line illustrates the read depth profile from a single example ‘bad’ rep-

licate (WT replicate 21). The block diagram at the bottom shows the simple

gene structure of YHR215W
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When reads are randomly and uniformly distributed along the gene,

v2
gi � 1 is expected, but strongly non-uniform distributions give

v2
gi � 1. The median v2 statistic calculated over all genes, v

�2

i , gives a

quantitative measure of the non-uniformity of a replicate and en-

ables replicates to be compared on this basis within the same condi-

tion (Fig. 2c).

2.4.4 Defining quality score

Interestingly, while there is similarity between the replicates identi-

fied as ‘bad’ from the gene expression-based quality measures (repli-

cate correlation and outlier fraction, shown in Fig. 2, panels a and

b) and those identified by examining the gene read depth profiles

(Fig. 2c), there is no strict one-to-one correspondence between these

three strongly related measures. Combining these metrics results in a

simple replicate quality score that amplifies the distinctions between

replicates considerably simplifying the identification of ‘bad’ repli-

cates. The score for each replicate is defined as:

Si ¼ A logð1� r
�

iÞ þ B log fi þC logðv�2

i � 1Þ; (2)

where r
�

i is the median Pearson’s correlation coefficient between the

gene expression in replicate i and the gene expression in all other repli-

cates, fi is the fraction of genes identified as outliers in replicate i, and

v
�2

i is the median reduced v2 statistic for the gene read depth profiles in

replicate i. For simplicity, the arbitrary weights of A ¼ B ¼ C ¼ 1 are

set here, though other prescriptions are possible. This quality score is

shown in Figure 2d for replicates of both conditions. Based on this

score six WT replicates, and four Dsnf2 replicates, are identified as

‘bad’ (21, 22, 25, 28, 34, 36 and 6, 13, 25, 35, respectively). They

were subsequently removed from the downstream analysis unless

otherwise stated. In the following discussion, the remaining replicates

are referred to as ‘clean replicates’. This is an arbitrary and rather con-

servative selection. For example, one doesn’t expect Dsnf2 replicate

25 to make a huge impact. However, the most anomalous replicates

in this selection affect the measured read-count distribution dramatic-

ally (Section 3).

3 Results

3.1 Inter-lane variance
The sample libraries were sequenced in seven of the eight lanes on

an Illumina HiSeq2000, to give seven sequencing (technical) repli-

cates for each biological replicate. This allowed the inter-lane var-

iance in the sequencing protocol to be examined. The RNA

fragments from each sample were expected to be distributed uni-

formly and randomly across the flow cell lanes, which would result

in a Poisson distribution of sequenced read counts across lanes (see

Marioni et al., 2008 for a similar experiment). Any additional vari-

ability will result in a broader distribution.

Under the null hypothesis the read counts across lanes (for a

given gene and biological replicate) are realizations of independent

random variables that follow a Poisson law with the same mean (i.e.

lgi1 ¼ . . . ¼ lginl
). The appropriate statistic for the overdispersion

test (Fisher, 1950) is v2 distributed. Applying this test to each gene

in each replicate (all replicates were used for this test) with non-zero

read counts in at least one lane resulted in a total of 630 850 tests,

only two of which reject the null hypothesis with Benjamini and

Hochberg (1995) corrected significance of P < 0:05. This confirms

that the inter-lane sequencing variance is in excellent agreement

with the expected uniform random distribution of sequenced RNA

fragments across the lanes on the flow cell.

3.2 Inter-replicate variance
Forty-eight biological replicates in each of two conditions also allow

the quantification of reproducibility in expression data across the

replicates within a condition. Because the samples are independent,

a Poisson distribution arises naturally from counting the number of

reads mapping to each gene across replicates. Any additional vari-

ability, either from variability in the experimental protocol or biolo-

gical variability, will result in broader distribution. The variance-

mean relationship across all clean biological replicates (42 in WT

and 44 in Dsnf2) is shown in Figure 4. The data follow the Poisson

law at lower mean count rates, but above �10 counts per gene there

is a smooth departure from the Poisson relationship and the data be-

come over-dispersed. This can be represented by a relation

r2 ¼ lþ ul2, where u is a dispersion parameter, l is the mean, and

r2 is the variance. The data approximately follow a constant disper-

sion, represented by the median dispersion parameter calculated

over all genes (gold line). Though individual genes depart signifi-

cantly from this line, the best-fitting Loess regression (blue line)

agrees well with the constant dispersion parameter. This means that

the relative width of the count distribution is the same across the full

range of expression. The relative width of a probability distribution

can be represented by its coefficient of variation, r=l, and for large

values of the mean u � ðr=lÞ2. In these data, the measured median

dispersion coefficient is � 0:01, corresponding to a typical

r=l � 0:1.

3.3 Statistical models for read-count data
Many differential expression tools address the over-dispersion inher-

ent to short read RNA-seq data by assuming the form of the prob-

ability distribution underlying gene expression. Popular choices for

this distribution include, but are not limited to, a negative binomial

(NB, e.g. DESeq and edgeR) or log-normal (LN, e.g. limma) distri-

bution. Here, the gene read counts from clean data are tested against

log-normal, negative binomial and normal (NM) distributions.

The test of normality described by D’Agostino et al. (1990) was

applied to examine whether the data are consistent with a normal

distribution. It builds a statistic based on the skewness and kurtosis

of the data and is sensitive to departures from normality. The same

test was used to probe whether the gene expression data are consist-

ent with a log-normal distribution after log-transforming the data.

The disadvantage of this approach is that it cannot be applied to

data containing zeroes, ruling it out for the �10% of genes in each

Fig. 4. Mean-variance relation for each condition. Each dot in the diagrams

corresponds to one gene, with mean and variance calculated across all clean

replicates in equal-count normalization. The red dashed line is the Poisson re-

lation, where variance¼mean. The gold curves show lines of constant disper-

sion parameter, U, calculated for the median dispersion in each condition:

U
�

WT ¼2.35�10�2 and U
�

Dsnf 2 ¼1.35�10�2. Blue curves show the smoothed

data (in logarithmic space) using local polynomial regression fitting (R func-

tion ‘loess’ with second degree polynomials and smoothing parameter

a¼0.75)
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condition that contains at least one zero (766 out of 6873 genes in

WT and 693 out of 6872 genes in Dsnf2). The expression data for

all genes, including those with zeroes, was tested for consistency

with a negative binomial distribution using the goodness-of-fit test

proposed by Meintanis (2005). This test is based on the probability

generating function and the distribution of the test statistic is not

known in closed form so it requires a bootstrap to calculate P-

values. Hence, it is more computationally intensive than the normal-

ity test. 107 bootstraps were carried out and resulted in P-values

that are limited to be *10�7.

Figure 5 illustrates the result of applying all the tests to the read-

count data for all genes in both conditions. The null hypothesis is re-

jected using a Benjamini–Hochberg corrected critical P-value of

0.05. The data are largely consistent with both the log-normal and

negative binomial distributions; with �7% and 5% of genes reject-

ing the log-normal hypothesis in WT and Dsnf2 dataset, respect-

ively. The negative binomial test rejects this distribution in only a

few genes (which might be partially due to its lower sensitivity). In

fact, a large fraction of data is also consistent with a normal distri-

bution, perhaps unsurprisingly given that both log-normal and nega-

tive binomial distributions approximate the normal distribution for

high counts. At very low counts (xg&1) data become increasingly

non-normal due to its discrete nature, but remain consistent with

the negative binomial distribution.

To assess the impact that ‘bad’ replicates have on the observed

distributions, the same calculations were also performed on the full

set 48 replicates in each condition. When the ‘bad’ replicates were

included, the read counts for a large fraction of genes became incon-

sistent with all three model distributions. This demonstrates that

bad replicates can have a profound distorting effect on read-count

distribution and, by extension, differential expression results. The

effect can be seen particularly clearly in the case of Dsnf2, where the

fraction of genes inconsistent with a log-normal distribution

increased from 5 to 54%, in comparison with clean data.

4 Discussion and conclusions

The data presented here give us an unprecedented view of the vari-

ability inherent to RNA-seq experiments, albeit limited to an organ-

ism with gene expression largely unaffected by splicing and other

complex mechanisms observed in higher eukaryotes. Distinguishing

between variability introduced by experimental procedure and in-

trinsic biological variation is often tricky in RNA-seq experiments,

and is complicated by the opaque use of the terms ‘technical repli-

cate’ and ‘biological replicate’ in much of the literature. In the ex-

periment presented here, 48 S. cerevisiae cell cultures were grown

under the same experimental conditions for each of two biological

conditions; WT and a snf2 mutant line (Dsnf2). Each cell culture

represents a distinct biological replicate of the given condition.

However, each of the samples underwent a series of processing

steps: RNA extraction, polyA selection, fragmentation, priming,

cDNA synthesis, adapter ligation, PCR amplification and sequenc-

ing which can contribute to the overall variability. Accordingly, the

observed read-count variability is a combination of true biological

variability between individual samples, and the protocol variability

introduced during sample preparation and sequencing.

4.1 Read-count distribution
A key finding of this work is the demonstration that the read-count

distribution of the majority of genes is consistent with the negative

binomial model. Reassuringly, many of the most widely used RNA-

seq DGE tools [e.g. edgeR, DESeq, cuffdiff, (Trapnell et al., 2010)

and baySeq, (Hardcastle and Kelly, 2010)] do assume a negative bi-

nomial distribution of gene-read count. Therefore, the majority of

the RNA-seq DGE studies in the literature are, at least, based on

tools that make appropriate assumptions. We recommend that fu-

ture analyses of RNA-seq DGE experiments use existing, or new,

tools that are based on a negative binomial distribution of gene read

count. The log-normal model is also consistent with a large propor-

tion of the genes in our data, however, its use becomes problematic

when one or more of the replicates contain zero counts.

4.2 Mean-variance relationship
In this work, the observed variance is tightly related to the mean and

follows a line of constant dispersion parameter. Modelling the

mean-variance relationship is essential in many DGE tools [e.g. in

edgeR (Robinson et al., 2010) and DESeq (Anders and Huber,

2010)], when dealing with a small number of replicates. In such

cases, variance at individual gene level has to be controlled by bor-

rowing information from other genes. Our findings favour data

models based on a common dispersion calculated across all genes.

4.3 Inter-lane variability
The design of the experiment presented here also allows us to probe

the inter-lane sequencing variability in detail. This reflects how

reads from one biological sample are distributed between different

lanes of a flow cell and arises from a limited number of steps in the

RNA-seq protocol, namely loading the samples into individual

lanes, cluster amplification and sequencing by synthesis. An even

loading and spatially uniform amplification and sequencing should

give rise to a Poisson distribution of counts from individual genes.

This is technical variability at a very low level. A v2 dispersion test

applied to inter-lane data confirms that they follow the Poisson law.

Fig. 5. Goodness-of-fit test results for normal (top panels), log-normal (middle

panels) and negative binomial (bottom panels) distributions. Each panel

shows the test P-value versus the mean count across replicates. Each dot rep-

resents equal-count normalized data from one gene. Panels on the left (a, b,

e, f, i, j) show clean data with bad replicates rejected (42 and 44 replicates re-

maining in WT and Dsnf2, respectively). Panels on the right (c, d, g, h, k, l)

show all available data (48 replicates in each condition). Due to the number of

bootstraps performed, P-values for the negative-binomial test are limited to

�10�2. Due to numerical precision of the software library used, P-values from

the normal and log-normal tests are limited to �10�16. Below these limits

data points are marked in orange (light gray in black and white) at the bottom

of each panel. Horizontal lines show the Benjamini–Hochberg limit corres-

ponding to the significance of 0.05 for the given dataset. The numbers in the

right bottom corner of each panel indicate the number of genes with P-values

below the significance limit and the total number of genes
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This kind of test can be included in quality control to test for flow

cell defects.

4.4 Impact of ‘bad’ replicates
As shown in Figure 5, one of the key observations from this study is

the large impact that ‘bad’ replicates have on the underlying proper-

ties of RNA-seq data. Without additional quality controls at the rep-

licate level a large proportion of the data are inconsistent with all

the statistical models tested. Although the incidence of ‘bad’ repli-

cates can be reduced through improvements in sequencing tech-

niques such as paired-end and longer reads, it cannot be entirely

eradicated. In this study, 48 biological replicates were performed.

This is not practical or cost-effective for routine experiments, but it

is clear that increasing the number of biological replicates above the

2 or 3 typically performed in RNA-seq experiments will be benefi-

cial in mitigating the risk of ‘bad’ biological replicates skewing inter-

pretation of the data.
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