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The pharmacokinetics of pefloxacin after single 10 mg/kg BW intravenous (IV) and oral 
doses were studied in healthy broiler chickens. For 24  h, serial blood samples were 
obtained after IV and oral administration. Concentrations of pefloxacin and its major 
metabolite N-demethyl pefloxacin (norfloxacin) were measured by use of high-performance 
liquid chromatography. The plasma concentrations–time data were found to fit a two- 
compartment open model. For pefloxacin, the elimination half-life (t½β) was 8.44 ± 0.48 
and 13.18  ±  0.82  h after IV and oral administration, respectively. After single oral 
dose, pefloxacin was rapidly absorbed with an absorption half-life (t½a) and TMAX of 
0.87 ± 0.07 and 2.01 ± 0.12 h, respectively. Maximum plasma concentration (CMAX) was 
4.02 ± 0.31 µg/mL. Oral bioavailability of pefloxacin was found to be 70 ± 2%. Pefloxacin 
was converted to N-demethyl pefloxacin (norfloxacin). This metabolite represented  
5% of the parent drug plasma concentrations. The maximal plasma concentration (CMAX) 
of N-demethyl pefloxacin (norfloxacin) was calculated as 0.19 ± 0.01 mg/mL. The t½β 
of N-demethyl pefloxacin after oral pefloxacin administration was 10.93 ± 0.80 h. The 
results indicate that an oral dose of 10 mg pefloxacin/kg BW, every 24 h, should be 
effective in treatment of the most systemic infections in poultry.

Keywords: pefloxacin, broiler chickens, iV and oral dose, kinetics, PK/PD modeling

inTrODUcTiOn

Pefloxacin [1-ethyl-6-fluoro-1-4-dihydro-4-oxo-7(4-methyl-1-piperazinyl) quinolone-3 carbox-
ylic acid] is a fluorinated quinolone, which is structurally related to nalidixic acid. Pefloxacin 
has high antibacterial activity against Gram-negative bacteria including the most species of 
Enterobacteriaceae and Neisseria, Campylobacter, Haemophilus species, and Gram-positive bacteria 
such as Staphylococcus, and Streptococcus, between others (1). Antibacterial active structural analogs 
of nalidixic acid inhibit prokaryotic DNA gyrase in vitro. Pefloxacin and other 4-quinolones inhibit 
DNA gyrase activity and DNA replication. DNA gyrase inserts negative superhelical turns into bac-
terial DNA and belongs to a group of enzymes known as DNA topoisomerases that are responsible 
for controlling the spatial geometry of DNA in vivo. Inhibiting the action of DNA gyrase prevents 
the supercoiling and relaxation of DNA. The bactericidal effect of the 4-quinolones probably results 
from the inhibition of the resealing of open nicks in the DNA strand produced by DNA gyrase (1, 2).
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FigUre 1 | chemical structures of pefloxacin and metabolites.
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A large number of structurally related analogs of nalidixic acid 
have been developed. In particular, the 4-quinolones such as cip-
rofloxacin, enoxacin, fleroxacin, lomefloxacin, and ofloxacin have 
broad spectrums of antibacterial activity, are rapidly bactericidal, 
penetrate most body fluids and tissues, and have demonstrated 
promising results in the treatment of a variety of infectious 
conditions (3–6). Pefloxacin is another 4-quinolone, which has 
similar in vitro antibacterial activity against most Gram-negative 
and Gram-positive bacteria. It is rapidly absorbed following 
oral administration, achieving steady state serum concentra-
tions that are in excess of the MIC values for most pathogens. 

In addition, pefloxacin is extensively distributed throughout the 
body, producing high tissue concentrations. Because of its broad 
spectrum activity, it is likely that pefloxacin should have potential 
therapeutic application for many types of systemic infections. 
Pefloxacin has been shown to be generally well tolerated dur-
ing short- and long-term oral administration. The pefloxacin 
metabolism is extensive (85–90%). The piperazinyl ring is the 
main site of metabolism. The ring is hydroxylated, N-oxidized, 
demethylated, formylated, and acetylated. Six metabolites of 
pefloxacin have been identified (Figure 1); the major metabolites 
are N-demethyl pefloxacin (norfloxacin) and pefloxacin N-oxide; 
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the latter has low antibacterial activity (7). In poultry medicine, 
the potential usefulness of pefloxacin for treatment of common 
infections in chickens for fattening requires detailed information 
on pharmacokinetics properties to establish the orally adminis-
tered dose necessary for maintaining bactericidal drug concen-
trations in the body. Although studies on the kinetic behavior 
of pefloxacin in many species including man (8–10), calves (11), 
rabbits (12), goats (13, 14), pigs (15), and sheep (16) are available; 
pharmacokinetic investigations on pefloxacin in poultry are lim-
ited (17, 18). Results of a preliminary study in our laboratory in 
chickens were presented as a poster at 9th International EAVPT 
Congress (19). The objective of this study was to determine the 
pharmacokinetics of pefloxacin after IV and oral administration 
in broiler chickens.

MaTerials anD MeThODs

chemicals and reagents
Pefloxacin mesylate dihydrate (P0106 Sigma) (≥97% purity) and 
its metabolite N-demethyl pefloxacin (norfloxacin) (Y0001301 
Sigma-Aldrich) analytical standard (≥98% purity) were provided 
by Sigma-Aldrich, Spain. All other chemicals used were obtained 
from usual commercial sources and were of the highest grade 
available.

animals
All experimental procedures involving animals were reviewed 
in accordance with ethics requirements and authorized by the 
official ethical committee of the Universidad Complutense de 
Madrid. Eighteen healthy Ross male chickens for fattening that 
were 40-days old and that each weighed 2.5 kg were used. The 
chickens, purchased at a poultry breeding farm (Nutreco, S.A., 
Sada Division, Cazalegas, Toledo, Spain) were placed individually 
in cages in the animal house of our university 1 week before the 
start of the study. Clinical signs of disease were not apparent. The 
animal house was maintained at 25 ± 2°C and 45–65% relative 
humidity as previously described (20). Antibiotic free commer-
cial feed and water were available ad libitum.

experimental Design
Eighteen birds were allotted to three groups. Chickens in groups 
A and B (eight broiler chickens/group) were given single IV or 
oral doses of pefloxacin (10  mg/kg BW). Chickens of group C 
(n = 2) did not receive any treatment and were used to determine 
the validation criteria of the analytical method. For IV adminis-
tration, 500 mg of pefloxacin was dissolved in 10 mL water (steri-
lized 0.9% saline solution) to give a stock solution of 50 mg/mL  
(0.5 mL of stock solution is given IV for each animal of 2.5 kg BW,  
equivalent to 10  mg/kg BW). For oral gavage administration, 
100  mg of pefloxacin was dissolved in 10  mL water (sterilized 
0.9% saline solution) to give a stock solution of 10 mg/mL (2.5 mL 
of stock solution is given orally for each animal of 2.5  kg BW, 
equivalent to 10 mg/kg BW). Pefloxacin was administered IV into 
the right brachial vein of chickens in group A or orally directly 
into the crop using a thin plastic tube attached to a syringe. Food 
but not water was withheld for 12 h before oral dosing.

Blood samples (1  mL) were drawn from all chickens via 
cannula from the left brachial vein into heparinized syringes at 
0.16, 0.33, 0.5, 1, 2, 4, 6, 8, 12, and 24 h after drug administration. 
Plasma was separated after centrifugation (1,500 g for 10 min) 
and was stored frozen at −45°C until assayed for pefloxacin and 
N-demethyl pefloxacin (norfloxacin) concentrations; experimen-
tal design previously described (21).

analytical Method and Validation
Pefloxacin and N-demethyl pefloxacin (norfloxacin) concentra-
tions in plasma were measured using an HPLC technique (22) 
with modifications.

Plasma Extraction
Plasma samples were separately extracted in methylene chloride 
as described (23, 24). The plasma sample was added to 8  mL 
of methylene chloride and 0.5 mL of 0.5 M sodium phosphate 
buffer pH 7.5. The tube was mechanically shaken and centri-
fuged at 2,500  g for 10  min. The organic phase (lower layer) 
was transferred into other disposable tube. This extraction was 
repeated three times, and all organic phases were pooled. Sodium 
hydroxide (0.5 M, 0.5 mL) was then added to the plasma extract, 
and the tube was shaken at 1,500 g for 10 min. The aqueous phase 
(upper layer) was collected and frozen (−45°C) until HPLC assay. 
A 20 µL aliquot was injected into the HPLC column for assay of 
pefloxacin and N-demethyl pefloxacin (norfloxacin).

HPLC Analysis
Plasma concentrations of pefloxacin and N-demethyl pefloxacin 
(norfloxacin) were determined using a Shimadzu liquid chroma-
tographic system equipped with a system controller CBM-20A/
CBM-20 Alite, two solvent delivery modules LC-20AD, a spec-
trofluorimetric detector RF-10AXL, and LC solution software. All 
samples were analyzed using a 5 µm particle size Nucleosil C18 
column (12.5 cm × 0.4 cm) preceded by a C18 guard column. The 
mobile phase (pH 4.8) was acetonitrile (150 mL), sodium acetate 
trihydrate (2 g), citric acid monohydrate (2 g), trimethylamine 
(1 mL), and water (850 mL), and a flow rate of 2 mL/min was 
used. The excitation and emission wavelengths of the detector 
were 330 and 440  nm, respectively. Peak areas in the sample 
chromatograms were quantitated by external standard technique 
using solutions of pefloxacin and norfloxacin reference standards.

The analytical method was fully validated according to EU 
requirements for the compounds pefloxacin and N-demethyl 
pefloxacin (norfloxacin) norfloxacin [linearity, recovery rate, 
accuracy, precision, trueness, quantification limit (LOQ), detec-
tion limit (LOD) and specificity] (25). Drug concentrations were 
determined from peak areas and the use of calibration curves 
obtained by running plasma samples from broiler chickens not 
administered pefloxacin (i.e., chickens of group C) that were forti-
fied with pefloxacin as well as with N-demethyl pefloxacin (nor-
floxacin). For plasma samples as determined by use of the linear 
least squares regression procedure, a linear relationship existed in 
the calibration curve of pefloxacin and N-demethyl pefloxacin over 
the range of 0.01–20 µg/mL, which always yielded a correlation 
coefficient exceeding 0.9998. Overall mean recovery of pefloxacin 
and N-demethyl pefloxacin (norfloxacin) from plasma was greater 
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than 96%. Within-day and day-to-day precision were <5.5%. The 
LOQ was 0.02 µg/mL for pefloxacin and 0.03 µg/mL for N-demethyl 
pefloxacin (norfloxacin) in the plasma. Interference of endogenous 
compounds was verified on blank plasma from untreated chickens, 
which provided the specificity of the method. This method differs 
from those reported by Pant et al. (17) and Dimitrova et al. (18) 
who used, respectively, chloroform-isopentanol, acetonitrile or 
only protein precipitation with perchloric acid, instead of meth-
ylene chloride for the extraction of pefloxacin and N-demethyl 
pefloxacin (norfloxacin) from plasma.

Data Analysis
Plasma concentration versus time data was sequentially fitted to 
1-, 2- and multiple-compartment models, using the computer 
program Phoenix (Version 7.0; Pharsight Corporation, Mountain 
View, CA, USA). The model was determined for best fit on the 
basis of a smaller value for the Akaike information criterion (26). 
The two-compartment model was the best fit for all broiler chick-
ens. This model was used to establish pharmacokinetic param-
eters as described for other drugs (20, 21, 27). Plasma curves of 
pefloxacin after a single IV and oral administration and those 
of N-demethyl pefloxacin (norfloxacin) (the main metabolite in 
plasma) after a single IV and oral administration of pefloxacin 
were obtained for each chicken and were fitted to the following 
exponential equations (20, 21, 27):

 C A e A et t= + ( )− −
1 2   IVα β

 

 C A e A e A et t K t= + − ( )− − −
1 2    oral3

aα β
 

where C is the plasma concentration of drug; A1, A2, and A3 
are mathematical coefficients (i.e., A1 and A2 are the plasma 
concentrations extrapolated to time 0 of the first and second 
elimination phases of drug and A3 for the absorption phase); α is 
the hybrid rate constant for the distribution phase; β is the hybrid 
rate constant for the elimination terminal phase (i.e., α and β are 
the slopes of the first and second elimination phases of the drug 
disposition); and Ka the first-order absorption rate constant and 
t is the time. Absorption half-life (t½a), half-life of α phase (t½α), 
half-life of β phase (t½β), distribution rate constants for transfer 
of the drug from the central to the peripheral compartment (K12) 
and from the peripheral to the central compartment (K21), and 
the elimination rate constant (K10) were calculated using standard 
equations as described (28, 29). After IV and oral administra-
tion, the area under the concentration–time curves (AUC) was 
calculated as follows:

 

AUC  or
AUC   ( )a
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= + −
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Total plasma clearance (CL) was calculated, using the follow-
ing formula:

 CL dose/kg /AUC  or CL dose/kg /AUC= =( ) ; ( ) ( )F  

Oral bioavailability (F) was determined as follows:

 F = ( ) / ( )AUC AUCoral IV  

Oral bioavailability (F) was calculated from the ratio 
between the value of AUCoral for each chicken and the mean 
value of AUCIV for the eight chickens used in the IV admin-
istration study. Complete absorption was determined on 
the basis of AUCIV, which represents the mean AUC for the 
eight broiler chickens to which pefloxacin was administered. 
Because of the small individual variation in AUCIV and the fact 
that the same eight chickens were not available for oral and IV 
studies, the mean AUCIV rather than AUCIV for each chicken 
was used to estimate bioavailability after oral administration 
of pefloxacin.

Mean residence time (MRT) was calculated as follows:

 MRT   ( AUC)= + ×( )/ / /A A1
2

2
2 1α β  

Apparent volume of distribution [Vd(area)] was determined as 
follows:

 V V Fd area d area( )dose/kg /AUC  or dose/kg /AUC( ) ( ) ; ( )( )= ⋅ = ⋅β β 

Volume of distribution at steady state (Vss) was determined 
as follows:

 Vss =MRT CL×  

Maximum drug plasma concentration (CMAX) after oral 
administration and the time at which CMAX was achieved (TMAX) 
was determined directly from the concentration versus time 
curve.

Mean pharmacokinetic variables were obtained by averaging 
the variables calculated for drug disposition after each pefloxacin 
administration in each broiler chicken.

Differences in pharmacokinetic data between dosing routes 
were analyzed for statistical significance by the Mann–Whitney  
U test. Differences of P < 0.05 were considered significant. All 
data were tabulated as mean ± SD.

resUlTs

Plasma Pefloxacin Disposition after single 
iV and Oral administration
Mean plasma concentrations (in micrograms per milliliter, ±SD)  
of pefloxacin and its metabolite N-demetil pefloxacin (nor-
floxacin) obtained after single oral and IV dose of pefloxacin 
are presented in Figure  2. The plasma concentration–time 
profile of pefloxacin and N-demetil pefloxacin after oral and IV 
administration of pefloxacin for each chicken were similar to the 
overall means. Values of the parameters that described absorp-
tion and disposition kinetics of pefloxacin in broiler chickens are 
presented in Table 1. The kinetic parameters of the metabolite 
N-demetil pefloxacin (norfloxacin) after oral administration of 
pefloxacin are summarized in Table 2.

After IV administration of pefloxacin, a rapid distribution 
phase (t½α  =  1.00  ±  0.09  h) and a slower elimination phase 
(t½β  =  8.44  ±  0.48  h) were observed (Table  1). The apparent 
volume of distribution [Vd(area)] and at steady state (Vss) and 
clearance (CL) values were 2.36 ± 0.46 L/kg, 1.54 ± 0.33 L/kg,  
and 0.19 ± 0.04 L/h/kg, respectively (Table 1). Pefloxacin was 
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FigUre 2 | Plasma concentrations of pefloxacin (■) and N-demethyl pefloxacin (norfloxacin) (▲) after single iV administration (a) and after single 
oral administration (B) of 10 mg pefloxacin/kg BW. Data are expressed as mean ± SD values for eight broiler chickens. Symbols without bars indicate that the 
SD is within the symbols.
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rapidly and widely absorbed after oral administration (10  mg/
kg BW). Pefloxacin concentrations in plasma 10 and 20  min 
were 0.24  ±  0.02 and 0.84  ±  0.02  µg/mL, and plasma drug 
concentrations were 1.15  ±  0.03 and 0.81  ±  0.02  µg/mL for 
8 and 12  h, respectively. The half-life of oral absorption (t½a) 
was 0.87  ±  0.07  h. Bioavailability (F) of pefloxacin after oral 
administration was 70  ±  2%. Maximal plasma concentra-
tion of pefloxacin (CMAX: 4.02  ±  0.31  µg/mL) was detected at 
2.01 ± 0.12 h after oral administration.

A fraction of pefloxacin was biotransformed to N-demethyl 
pefloxacin (norfloxacin) after oral and IV administration of 
pefloxacin. This metabolite represented 5% of the parent drug 
plasma concentrations, as calculated by the ratio between 
the mean AUC for N-demetil pefloxacin and mean AUC for 
pefloxacin after oral and IV administration of pefloxacin. Plasma 
concentration of N-demethyl pefloxacin (0.19  ±  0.01  µg/mL) 

peaked at 1.51 ± 0.12 h after oral administration of pefloxacin. 
The t½β of N-demethyl pefloxacin after oral pefloxacin adminis-
tration was 10.93 ± 0.80 h (Table 2).

efficacy Predictors
Table  3 shows the estimated values for AUC24/MIC and CMAX/
MIC for the MIC90 (upper value) and MIC50 (lower value) 
(1, 30–33). The applied CMAX and AUC24 values for single oral 
administration were 4.02 µg/mL and 37.71 mg/h/L, respectively.

DiscUssiOn

The present paper is the first to describe the kinetic parameters for 
pefloxacin and its metabolite N-demethyl pefloxacin (norfloxa-
cin) in chickens for fattening. The other major metabolite N-oxide 
pefloxacin was not investigated because it is practically inactive (7).  
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TaBle 3 | efficacy predictors (CMaX/Mic and aUc24/Mic) estimated for 
pefloxacin against susceptible bacteria in broiler chickens after a single 
oral dose of 10 mg/kg BW.

Bacteria CMaX/Mic aUc24/Mic (h)

Escherichia coli—MIC 0.25–0.06 (μg/mL) 16.08–67 150.84–628.5
Salmonella spp.—MIC 0.25–0.03 (μg/mL) 16.08–134 150.84–1,257
Pseudomonas aeruginosa—MIC 2–0.06 (μg/mL) 2.01–67 18.85–628.5
Haemophilus influenza—MIC 0.06–0.03 (μg/mL) 67–134 628.5–1,257
Shigella spp.—MIC 0.2–0.06 (μg/mL) 20.1–67 188.55–628.5
Staphylococcus aureus—MIC 0.50–0.25 (μg/mL) 8.04–16.08 75.42–150.84
Mycoplasma gallisepticum—MIC 0.1 (μg/mL) 40.2 377.1

For calculations, the MIC applied values were MIC90 upper and MIC50 lower (26–30).

TaBle 2 | N-demethyl pefloxacin (norfloxacin) kinetic parameters for 
broiler chickens after a single iV and oral administration of the parent 
drug, pefloxacin (10 mg/kg BW).

Parameter iV Oral

T½α (h) 0.60 ± 0.20 1.25 ± 0.13
t½β (h) 8.02 ± 0.47 10.93 ± 0.80
K12 (h−1) 0.61 ± 0.19 0.24 ± 0.05
K21 (h−1) 0.21 ± 0.03 0.21 ± 0.02
K10 (h−1) 0.51 ± 0.07 0.17 ± 0.01
AUC (mg/h/L) 2.70 ± 0.33 1.93 ± 0.18
MRT (h) 7.54 ± 0.47 13.77 ± 0.86
CMAX (μg/mL) – 0.19 ± 0.01
TMAX (h) – 1.51 ± 0.12

Values are the mean ± SD, n = 8.
See Table 1 for abbreviations.

TaBle 1 | Pefloxacin kinetic parameters for broiler chickens after a 
single iV and oral administration of pefloxacin (10 mg/kg BW).

Parameter iV Oral

A1 (μg/mL) 14.77 ± 3.50 16.33 ± 5.13
A2 (μg/mL) 2.69 ± 0.63 1.27 ± 0.16
A3 (μg/mL) – 18.40 ± 5.33
α (h−1) 0.70 ± 0.06 0.43 ± 0.07
β (h−1) 0.082 ± 0.005 0.054 ± 0.004
Ka (h−1) – 0.80 ± 0.07
t½α (h) 1.00 ± 0.09 1.68 ± 0.36
t½β (h) 8.44 ± 0.48 13.18 ± 0.82***
t½a (h) – 0.87 ± 0.07
Vd(area) (L/kg) 2.36 ± 0.46 3.55 ± 0.21
Vss (L/kg) 1.54 ± 0.33 –
K12 (h−1) 0.28 ± 0.03 0.16 ± 0.04
K21 (h−1) 0.18 ± 0.02 0.10 ± 0.01
K10 (h−1) 0.32 ± 0.04 0.21 ± 0.03
AUC (mg/h/L) 53.56 ± 10.09 37.71 ± 0.96
F (%) – 70 ± 2
MRT (h) 7.94 ± 0.50 13.57 ± 0.72
CL (L/h/kg) 0.19 ± 0.04 0.19 ± 0.004
CMAX (μg/mL) – 4.02 ± 0.31
TMAX (h) – 2.01 ± 0.12

Values are the mean ± SD, n = 8. Significantly different ***P < 0.001.
A1, A2, and A3, mathematical coefficients; α, hybrid rate constant for distribution 
phase; β, hybrid rate constant for terminal elimination phase. Ka, first-order absorption 
rate constant; t½a, absorption half-life; t½α, half-life at α phase; t½β, half-life at β phase; 
Vd(area), apparent volume of distribution; Vss, volume of distribution at steady state; K12, 
distribution rate constant for transferring the drug from the central to the peripheral 
compartment; K21, distribution rate for transfer from peripheral to central compartment; 
K10, elimination rate constant; AUC, area under the concentration–time curve; MRT, 
mean residence time; CL, total plasma clearance; CMAX, maximal concentration in 
plasma after oral administration; TMAX, time needed to reach CMAX.
–, Not applicable.
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In this study, the kinetics of pefloxacin and N-demethyl pefloxa-
cin (norfloxacin) after a single IV and oral administration of 
pefloxacin (10  mg/kg BW) were determined. Disposition of 
pefloxacin and N-demethyl pefloxacin (norfloxacin) after IV and 
oral administration of pefloxacin in chickens was best described 
by use of a two-compartment model, in accordance with most of 
the results reported for humans (8, 10), calves (11), goats (13, 14), 
pigs (15), and sheep (16), but not for ducks and chickens (17, 18).

The kinetic variables obtained after IV administration showed 
for pefloxacin a rapid distribution (t½α = 1.00 ± 0.09 h) and a slow 

elimination phase (t½β = 8.44 ± 0.48 h). Pefloxacin is well distrib-
uted to the tissues [Vd(area) = 2.36 ± L/kg and Vss = 1.54 ± 0.33 L/kg,  
respectively]. The elimination half-life of pefloxacin after IV 
administration (t½β  =  8.44  ±  0.48  h) was much longer than 
those previously reported in other studies: 2.21 h in calves (10), 
1.12–1.6  h in goats (12, 13), and 2.84–3.25 in ducks (18) but 
comparable to that reported in sheep (t½β = 6.88 h) (16).

Pefloxacin was rapidly (t½a = 0.87 ± 0.07 h) and extensively 
absorbed after oral administration with a comparable maximal 
plasma concentration (CMAX = 4.02 ± 0.31 µg/mL) but a shorter 
TMAX (2.01  ±  0.12  h) to those values previously reported in 
the literature for broiler chickens (CMAX  =  3.78  ±  0.23  µg/mL 
at a TMAX  =  3.33  ±  0.21  h) (17). However, the CMAX and TMAX 
detected in our study for pefloxacin were both much higher 
than those reported for ducks (CMAX = 1.42 ± 0.20 µg/mL at a 
TMAX = 1.35 ± 0.23 h) (18). Oral bioavailability of pefloxacin was 
70  ±  2% in our study, which was comparable to that reported 
in ducks (60–68%) (18). In the present study, plasma concentra-
tions (0.84  ±  0.02  µg/mL) were achieved in a relatively short 
time (20 min) and maintained up to 12 h (1.15 and 0.81 µg/mL),  
equivalent values previously observed (18). In our study,  
t½β (13.18 ± 0.82 h) after oral dose of pefloxacin was statistically 
higher than the t½β (8.44 ± 0.48 h) after IV administration. This 
difference may be the result of continued absorption of pefloxacin 
probably by an enterohepatic circulation with reabsorption of the 
drug from the gastrointestinal tract.

Pefloxacin was poorly metabolized in chickens by 
N-demethylation. In the present study, in broiler chickens the 
metabolite N-demethyl pefloxacin (norfloxacin) only represented 
5% of the parent drug plasma concentrations, showing that this 
metabolite with a lower potency of activity than parent compound 
(7) should not be taken into account to calculate antimicrobial dos-
ing regimen of pefloxacin for broiler chickens. The maximal plasma 
concentration (CMAX) of N-demethyl pefloxacin (norfloxacin) was 
calculated as 0.19 ± 0.01 mg/mL, value much lower than that pre-
viously reported in broiler chickens (CMAX: 0.80 ± 0.07 mg/mL)  
(17). The small value of CMAX also indicates that in chickens the 
antibiotic action can mostly be attributed to the parental drug 
pefloxacin rather than its metabolite of N-demethyl pefloxacin 
(norfloxacin). These results of the present study are comparable 
to those previously reported in dog, monkey, and humans after 
oral doses of pefloxacin (8). The antimicrobial activity in dog, 
monkey, and human plasma was largely due to the parent drug 
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which, respectively, accounted for 64, 94, and 84% of the total 
activity (8).

In the present study, the rate of elimination of N-demethyl 
pefloxacin (norfloxacin) (t½β: 10.93 ± 0.80 h) after oral pefloxa-
cin administration was more rapid than that of pefloxacin (t½β: 
13.18 ±  0.82 h) (P <  0.01) but not after IV pefloxacin admin-
istration (t½β of N-demethyl pefloxacin: 8.02  ±  0.47  h and t½β 
of pefloxacin: 8.44 ± 0.48). In a previous study in chickens, the 
elimination half-life of N-demethyl pefloxacin (norfloxacin) 
after oral dose of 10 mg pefloxacin/kg BW was 5.66 h (17). This 
difference is probably the result of the different kinetic profile 
(two-compartment open model) applied in our study for the 
metabolite norfloxacin.

The integration of pharmacokinetic–pharmacodynamic  
(PK–PD) data represents the most approach to determining dos-
ing regimens of antimicrobial drugs for subsequent evaluation in 
disease models and clinical trials (34, 35). As fluoroquinolones, 
against most if not all susceptible pathogens, kill bacteria by a 
concentration-dependent killing action, the PK–PD variables 
widely used to predict effective doses are the ratio of the AUC 
at 24 h to the MIC (AUC24h/MIC) and the ratio of the maximal 
drug concentration to the MIC (CMAX/MIC) (36). The AUC24h/
MIC ratio is the most important variable in predicting such 
effects, with the rate of clinical cure being greater than 80% when 
this ratio is higher that 100–125 h (37–39). The second predictor 
of efficacy for concentration-dependent antibiotic is the ratio 
CMAX/MIC, considering that values above 8–10 would lead to 
better clinical results, as well as, to prevent resistant bacterial 
mutants surviving treatment (38, 40, 41). Nevertheless, it must 
be emphasized that these values provide general guidance, and 

lower or higher numerical values may apply against organisms 
of all classes (36). In the present study, considering the AUC24h/
MIC and CMAX/MIC ratios obtained (Table 3), it can be concluded 
that pefloxacin administered orally at a dose rate of 10 mg/kg BW 
in broiler chickens might be effective against bacteria with MIC 
values ≤0.50 µg/mL but not sufficient for treating infections of 
bacteria with MIC over 0.8 µg/mL. Nevertheless, further investi-
gation on pefloxacin plasma disposition in broiler chickens after 
multiple oral doses (10 mg pefloxacin/kg BW, daily for 5 days) 
should be carried out to recommend that oral dose rates of 10 mg/
kg p.c. once daily produce blood concentrations that should be 
effective against susceptible bacteria in broiler chickens.
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