
Introduction

In each phase, a human being’s lifespan is considered to be ex-

posed to ionizing radiation (IR) because of its various applications. 

They are characterized as ionizing based on the distinct photon’s 

energy; those are X-rays, γ-rays, α-particles, β-particles, and neu-

tron. IR has numerous prospective applications such as medical 

diagnosis, cancer treatment, power generation, etc. It is inevitable 

that a definite amount of radiation exposure to humans while im-

plementing IR for those beneficial applications. Nevertheless, be-

cause of the support of IR and reported side effects, the use of ra-

diation application is decisively controlled, measured and moni-

tored by the regulatory bodies. Those are the International Atomic 

Energy Agency (IAEA), the International Commission on Radiologi-

cal Protection (ICRP), the World Health Organization (WHO) and 

the United Nations Scientific Committee on the Effects of Atomic 

Radiation (UNSCEAR) for assessing radiation risks, provide recom-

Biological dosimetry is the measurement of radiation-induced changes in the human to measure 
short and long-term health risks. Biodosimetry offers an independent means of obtaining dose infor-
mation and also provides diagnostic information on the potential for “partial-body” exposure infor-
mation using biological indicators and otherwise based on computer modeling, dose reconstruction, 
and physical dosimetry. A variety of biodosimetry tools are available and some features make some 
more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods 
occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical 
dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are 
discussing the recent developments and adaptability of currently available cytogenetic biological do-
simetry assays.
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mendations, and promote the safe use of radiation technologies, 

which is developing rapidly and gaining complexity. In addition to 

occupational exposure, accidental, radiological or nuclear expo-

sure can cause serious health effects. More than that, radiological 

or nuclear terrorism constitutes a potential threat to several na-

tions, where several hundred and thousands of people may poten-

tially get exposed to radiation. Many atomic disasters since Cher-

nobyl [1] to Fukushima Daiichi [2] clearly illustrate a critical need 

for suitable biomarkers for personalized radiation dose assessment 

where physical dosimeters are unavailable, which can be useful 

for appropriate medical/clinical management. 

The estimation of the dose received by an individual during acci-

dental exposure, suspected overexposures, and the fraction of body 

exposed and dose to the irradiated fraction using a biological indi-

cator is termed biological dosimetry. It is observed that recording 

various clinical signs such as cell counts in blood, functions of the 

central nervous system, vomiting, diarrhea, and alopecia as acute 
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radiation syndrome using biological dosimetry [3]. These prelimi-

nary assessment results would enlighten the exposure dose range 

and therapeutic management of that incident. Moreover, biological 

dosimetry directs and offers assessment provision for screening, 

therapeutic management, and long-term risk assessment. The radi-

ation-induced changes in biomolecules can be measured using bi-

ological indicators. There are many biological indicators of radia-

tion exposure, such as cytogenetics [4], mutations [5], gene expres-

sion [6], protein modifications, such as γ-H2AX [7], metabolic in-

termediates [8], inflammatory signaling [9], genomics [10], tran-

scriptomics [11], and proteomics [12]. Out of these mentioned bio-

logical indicators, cytogenetic biomarkers (Table 1) are considered 

the most sensitive and reliable among the biological indicators 

used to quantify an absorbed radiation dose during radiation emer-

gencies. After cells getting exposed to radiation, DNA strand breaks 

take place and by the cellular DNA repair systems, which are then 

repaired. Unrepaired and poorly repaired breaks can lead to abnor-

mal changes in chromosome structures and form dicentric chro-

mosomes (DC), containing two centromeres after fusion of two 

damaged chromosomes and broken chromosome rearrangements 

result in translocation. Counting these various abnormal chromo-

somes is dose-related, providing a strong dose-response relation-

ship [13]. The strategy for growing the throughput of biological 

dosimetry is developing networks among biodosimetry laboratory 

available globally. Several networks have been recognized to im-

prove dose estimation throughput, such as the Latin American Bio-

logical Dosimetry Network [14], the National Biological Dosimetry 

Response Plan (NBDRP) in Canada [15], the Chromosome Network 

in Japan [16], BioDoseNet [17], the European Network, Realizing 

the European Network of Biodosimetry (RENEB) [18], NATO biodo-

simetry group [19], EURADOS (European Radiation Dosimetry 

Group) [20], China [21] and in South Korea [22] for the cytogenetic 

assays. 

Cytogenetic Biodosimetry Assays

1. DC assay
It is essential to quantify aberrations in first-division cycle meta-

phase spreads for cytogenetic biological dosimetry using human 

peripheral blood lymphocytes. Structural changes are observed in 

their entirety without the confounding effects of elimination and 

dilution of aberrations associated with cell division. The most com-

monly occurring radiation-induced abnormality is DC. The DC is an 

aberrant chromosome with two centromeres formed by the fusion 

of two different chromosome segments, each with a centromere, 

which accompanies an acentric fragment. The DC assay, which has 

to be performed after 2 days of whole blood culture with phyto-

hemagglutinin, followed by a 24-hour incubation with colchicine, 

Table 1. Comparison of cytogenetic biodosimetry assays

Dicentric CBMN Translocations PCC
Detection limit (Gy) 0.1 0.25 0.30 0.05
Culture time (hr) 48 72 72 2 (fusion time)
Inter-laboratory comparison ✓ ✓ ✓ ✓
Automation ✓ ✓ ✓ ✓
Advantages Gold standard

Specific to ionizing radiation
Low baseline frequency
Accepted world-wide

Less time required
Non-technical person can be 

scored

Retrospective analysis Does not require culture time
Can be detected >5 Gy

Disadvantages Time consuming Non-specific to radiation More expensive (mFISH/SKY) Time consuming
Technical expertise required Baseline variation Highly expertise dependent Technical expertise required

Need quality fluorescent mi-
croscope

Developments
  Networking ✓ ✓ ✓ ✓
  Web based scoring ✓ ✓ ✓ ✓
Dose assessment for triage ✓ ✓ × ✓
Triage scoring (50 cells) ✓ × × ✓
RABiT ✓ ✓ × ×
Partial-body exposures ✓ × × ✓

CBMN, cytokinesis blocked micronucleus; PCC, premature chromosome condensation; RABiT, Rapid Automated Biodosimetry Tool; mFISH/SKY, multi-
ple fluorescence in situ hybridization/spectral karyotyping.
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a mitosis-blocking agent. After fixation, metaphase chromosomes 

are generally stained with Giemsa, representing the conventional 

method and centromeric staining allows better detection of chro-

mosomal aberrations [23]. DCs are sensitive for agents that induce 

double-stranded DNA breaks, such as IR. They can be used to esti-

mate the unknown absorbed dose during a radiological emergency 

by counting their frequency. Furthermore, DC’s are unstable aberra-

tions, and during mitotic division, it can induce cell death, limiting 

the use of this biomarker to a post-exposure after few months. The 

background frequency is 1 in 1,000 cells irrespective of ages, and 

the sensitivity of the DC test is 0.1 Gy, making it the gold standard 

for biodosimetry applications [24]. The DC assay has been widely 

used in numerous accidental events, such as Chernobyl [25], Istan-

bul [26], Goiania [27], Bangkok [28], Marshall Islands [29], Taiwan 

[30], and Xinzhou, China [31]. However, the analysis is long and la-

borious. It requires qualified personnel to identify chromosomal 

aberrations in the course of large scale radiological incidents, 

where rapid segregation is vital for triage and needs to be segre-

gated by no exposure, moderately or severely exposed humans to 

obtain suitable therapeutic countermeasures. In this view, to speed 

up the scoring and confirm clinical triaging can typically be 

achieved by scoring 20 metaphases per subject. If there is disagree-

ment, scoring should be increased to 50 cells [32]. The evidence 

from published data [33] shows that the automated DC scoring 

positively improves the rapidity of radiation absorbed dose assess-

ment. And also, a single lab cannot handle the enormous number 

of samples and it is essential to join hands with other labs in and 

around their region. For this, an exercise was initiated, such as in-

ter-lab comparison, which gives knowledge on harmonization in 

the protocol, sharing the workload, scoring criteria. The investiga-

tion on chromosome preparations or analysis by microscopic anal-

ysis and/or image galleries made by other laboratories is vastly im-

proved via inter-lab comparison exercises worldwide [14-16,23,34]. 

While some aspects of the assay have been successfully stream-

lined, the overall throughput remains limited by the labor-intensive 

identification of DCs in many cells. This affects the timely estima-

tion of radiation exposure, especially for testing multiple affected 

individuals in a large accident or a mass casualty nuclear event 

[35]. Conventional DC assay remains the “gold standard” biodosim-

etric technique in estimating the radiation absorbed dose because 

of its specificity, sensitivity and low background frequency. In the 

case of mass casualty radiology or nuclear events, several thou-

sands of people may get exposed. In such situations, the DC analy-

sis for such a large population will take a considerable amount of 

time. Its long assay time (>50 hours) makes it impractical for its 

application during mass casualty incidents. During triage, to reduce 

the scoring burden, to improve the time efficiency and without los-

ing accuracy, a scoring technique called “DCA QuickScan” [36] has 

been introduced dose estimation.

2. Cytokinesis blocked micronucleus assay
Micronuclei (MN) are formed from lagging chromosome fragments 

or whole chromosomes at anaphase that are not included in the 

daughter cell’s nuclei. Therefore, they are seen as distinctly sepa-

rate small spherical objects with the same morphology and staining 

properties of nuclei within the daughter cell’s cytoplasm [37]. MN 

reflects chromosomal damage and is a useful index for monitoring 

environmental effects on human cell’s genetic material [38]. Due 

to the simplicity and rapidity of scoring, this assay has shown 

promising potential in triage medical management. However, due 

to the background frequency of spontaneous MN frequency (0.002 

to 0.036/cells), the sensitivity is 0.25 Gy [24]. The assay was adopt-

ed in Chernobyl [39] and Istanbul [40] radiation accident. MN re-

flects chromosomal damage and is a useful indicator for monitor-

ing environmental effects [39]. Even though these MN are not ra-

diation specific, an increase with dose has been observed and vali-

dated as a technique for estimating radiation exposure [41]. Cyto-

kinesis blocked micronucleus (CBMN) assay’s advantage over the 

DC assay is that the analysis manually is considerably faster. Only 

200 binucleated cells are required to provide a sensitivity of 1 Gy 

[42], and the method requires less technical expertise. In the case 

of large-scale accidents involving thousands of victims, a single bi-

ological dosimetry laboratory’s capacity would be insufficient. A 

biodosimetry laboratory network’s availability would be an essen-

tial element to ensure adequate emergency response strategies 

[17]. Thus, an effort has been made to establish a network that can 

provide a harmonized performance of biological dosimetry assays 

[43]. However, this approach involves sample shipment and track-

ing, which is often problematic. It is necessary to setting-up for 

high throughput to handle multiple samples in a large-scale situa-

tion. A biodosimetry laboratory engaging operational automation 

could take countless samples [44]. At present, several studies have 

confirmed the reliability of the automated CBMN assay for high 

throughput population triage [45-47]. 

The absence of cellular visualization using conventional flow cy-

tometry makes it impossible to quantify mono-, bi-, and poly-nu-

cleated cells with and without MN. To overcome this, imaging flow 

cytometry has been proposed, which combines high-resolution mi-

croscopy with flow cytometry. Cells in suspension can be captured, 

removing the need for microscope slides and allowing visualization 

of intact cytoplasmic membranes and DNA content. Thus, mono-, 

bi-, and poly-nucleated cells with and without MN can be rapidly 

and automatically identified and quantified [46]. Rapid Automated 

Biodosimetry Tool II (RABiT-II), a fully automated with a signifi-
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cantly reduced time to obtain the result for a fast high-throughput 

biodosimetric estimation, has been proposed. By using this ap-

proach, the radiation doses for irradiated samples from two donors 

were estimated within 20% of the correct dose (±0.5 Gy below 2 

Gy) in 97% of the samples, with the doses in some 5 Gy irradiated 

samples being underestimated by up to 25% [47]. Recently, a quick 

CBMN harvest protocol has been proposed for isolated peripheral 

blood mononuclear cells and it is a viable alternative to cytocen-

trifugation, as many scorable binucleated cells were obtained with 

routine biodosimetry [48].  

3. Translocation Assay
IR induced chromosomal exchanges like DC and MN are eliminated 

from the circulating blood within 1–3 years depending on the expo-

sure. As a result, there is considerable uncertainty in dosimetry for 

past exposures [49]. Scoring stable chromosomal exchanges such as 

translocations is an alternative approach to overcome this problem. 

Translocations result from a minimum of two DNA DSBs and a 

union of at least two altered chromosomes. The method used for 

stable aberrations is currently the analysis of chromosomal translo-

cations. Many laboratories initially explored G-banding’s use to 

identify translocations for biodosimetry purposes [50]. The bands are 

formed on chromosomes when metaphase chromosomes are treat-

ed with a proteolytic enzyme, the trypsin. Banding allows identify-

ing individual chromosomes and chromosomal regions within it and 

specific chromosome alterations like translocations, inversion, etc. 

This technique was employed to estimate the dose received by 

atomic bomb survivors [50] and long-term occupationally exposed 

radiation technologists [51]. It is possible to estimate the absorbed 

dose more than 20 years after exposure using in situ hybridization 

combined with various chromosome-staining strategies [52]. Fluo-

rescence in situ Hybridization (FISH) allows detecting DNA sequenc-

es in chromosome preparations, including stable aberrations like 

translocations. A FISH assay-based translocation measurements are 

fast and straightforward compared to G-banding and superior to 

conventional DC analysis for retrospective biological dosimetry [24]. 

FISH’s utility with whole-chromosome probes is a potential utility 

for translocation frequency analysis in assessing the level of acute 

radiation exposure independent of the time between analysis and 

exposure [53]. Guerrero-Carbajal et al. [54] reported the persistence 

of translocations through three cell cycles in irradiated cultures of 

lymphocytes. This assay has been used in follow-up study among 

Chernobyl accident victims from 1991 to 1994 [55]. The frequencies 

of translocations recorded in atomic bomb survivors and estimated 

doses were closer to the expected dose derived by calculation ob-

tained with an in vitro dose-response curve [56]. FISH-based trans-

location analysis's main advantage is that the aberrations are dis-

tinct and easy to discriminate between dicentrics and transloca-

tions. The yield of stable chromosomal aberrations was high, cor-

relating with the severity of acute radiation sickness (ARS) in the 

blood cells of 17 radiation accident victims who had suffered ARS 

ranging from severity grades I to IV [57]. However, it is robust and 

seems to be less sensitive than the others, with a detection limit of 

approximately 0.30 Gy, according to several studies [52]. The evalu-

ation of this lack of sensitivity in low doses clarified that it is due to 

spontaneous translocations rate in individual variability, assessed in 

large-scale inter-laboratory exercises [58].

4. Premature Chromosome Condensation Assay
Usually, to study chromosomal aberrations, like DC assay in lym-

phocytes, it has to be stimulated to divide and then arrested at the 

metaphase stage. This procedure involves a turn-around time of 

>50 hours after blood withdrawal. In a radiation emergency, ex-

posed individuals cannot wait until the results to start the medical 

treatment. Hence, the premature chromosome condensation (PCC) 

technique was first developed by Johnson and Rao [59]. The mitotic 

phase cells induce the condensation of chromatin filaments at in-

terphase cells upon fusion with a fusogen. Conventionally, PCC is 

induced by fusing peripheral blood lymphocytes (PBL) with mitotic 

Chinese hamster ovary (CHO) cells using polyethylene glycol or 

Sendai virus [59]. In peripheral blood, most of the cells will be in 

the resting stage (G0) during collection, so it is useful to estimate 

the dose using PCC. This technique helps to study the radiation-in-

duced damages without stimulation of the cells. The aberrations 

can be studied within 2 hours; therefore, chances for the loss of in-

formation due to interphase cell death are reduced [60]. Another 

advantage of this assay is that it can be used at high dose (>5 Gy) 

estimation because conventional cytogenetic dosimetry using 

chromosomal aberrations becomes difficult due to mitotic delay 

and disappearance of lymphocytes from peripheral blood circula-

tion [61]. It is proven that some accidents need to estimate expo-

sures for high doses and whole or partial body exposures [62]. Re-

cently, studies have shown that using this technique dose-effect 

curve can be generated for higher doses for gamma rays (25 Gy) 

and neutrons (10 Gy) [63-65]. In addition to using non-mitogen 

stimulated culture for the PCC assay, many researchers use mito-

gen-stimulated cultures (48 hours) for the PCC assay and selected 

G2PCC spreads to score structural chromosomal aberrations [66]. 

Many studies have investigated exposure biomarkers for high dose 

radiation. The dose-response of multiple biological endpoints, in-

cluding G2/A-PCC (G2/M and M/A-PCC) index, PCC ring (PCC-R), a 

ratio of the longest/shortest length (L/L ratio), and length and 

width ratio of the longest chromosome (L/B ratio) has been report-

ed [67]. However, skilled personnel must do the scoring as the 
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metaphases contain chromosomes of both lymphocytes and mitot-

ic cells. The minimum dose detection limit of using this technique 

is 0.05 Gy [68]. The PCC assay with PBL is recommended as a rapid 

biodosimetry method [69]. Biological dosimetry was performed on 

three seriously exposed victims of the Tokaimura criticality accident 

in Japan [70]. The use of fluorescent staining to detect centromeres 

and telomeres on PCC fragments has made it possible to count the 

anomalies typically identified (dicentrics, rings, acentric) [71]. Man-

ual scoring following telomere and centromere staining revealed a 

significantly higher frequency of dicentrics (up to 30%) compared 

to Giemsa staining due to improved detection of dicentrics with 

centromeres. This enhancement allowed improved software, TC-

Score, that detected 95% of manually scored dicentrics compared 

to 50% for the best currently available software (DCScore) [71]. 

Blind dose assessments were executed for triage biodosimetry in-

vestigating G0-lymphocyte PCC for standardization, harmonization, 

and validating the PCC assay [72]. It is also possible for automation 

[73], in addition, and new approaches have been introduced [74]. 

The combination of automatic image acquisition and automated 

image analysis of PCC allows calculating the length ratio of the 

longest and the shortest chromosome pieces that can be used for 

dose estimation [66].

Conclusion

The point-of-care response plans need to be optimized for the 

medical management of mass casualty radiological events for tri-

age management to integrate biodosimetry cytogenetic assays, 

validate these technologies through field testing and optimization 

of reach back diagnostic laboratory networks. However, DC assay 

remains the gold standard among all other cytogenetic assays em-

ployed for biological dosimetry. Whereas underestimation of dose 

would lead to analyzing unstable chromosome aberrations for ret-

rospective dose estimation, stable aberrations like translocations 

would give accurate dose estimation of late exposure. Some other 

dose assessment modes using genomics, proteomics, and electron 

paramagnetic resonance (EPR) methods are in development. In fu-

ture perspective, to avoid underestimating the dose due to varia-

tions in individual radiosensitivity, the best approach is probably to 

combine a cytogenetic test with physical dosimetry or even a tar-

geted genomic approach, especially in the case of disease. Targeted 

genomics is booming, particularly in the field of cancer.
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