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Colorectal cancer (CRC) remains one of the most common malignancies diagnosed

worldwide. The pathogenesis of CRC is complex and involves, among others,

accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations

in gut microbiota, and lack of physical activity. A growing body of evidence suggests

that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic

functions. Immunosuppression observed during cancer development and progression

is a result of the orchestration of many cell types, including myeloid-derived suppressor

cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis,

and formation of metastases. This article focuses on MDSCs in relation to their role in the

initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs

in CRC are also discussed.

Keywords: colorectal cancer (CRC), myeloid-derived suppressor cells (MDSCs), inducible NO synthase (iNOS),
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INTRODUCTION

Colorectal Cancer (CRC): Epidemiology and Immunity
According to the World Cancer Research Foundation, colorectal cancer (CRC) (referring to
malignancy of colon, rectum, or anus) is the third most common malignancy worldwide. In 2018,
more than 1.8 million new cases of CRC were diagnosed (1). About 20–25% of CRC cases are
caused by genetic predispositions, including monogenic mutations in mismatched repairing genes
associated with, e.g., DNA repair, the cell cycle, and apoptosis (2). Alongside inherited genetic
mutations, epigenetic changes also play a significant role in CRC development (3). The remaining
75–80% of cases develop spontaneously and are related to environmental factors such as lack of
physical activity, dietary habits, and smoking or alcohol abuse (4). Currently, alterations in the
composition of the gut microbiome and its metabolites (playing a role in damaging local tolerance)
are also considered as risk factors for CRC (5). An increased risk of CRC is often associated with
chronic inflammation of the mucous membrane, which may lead to cell dysplasia, as was proven
for patients with inflammatory bowel disease (IBD) (6).

The role of inflammation in CRC development was further supported by data showing that
non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of both CRC and colon
polyps, which are considered as a premalignant stage (7, 8). The tumor-infiltrating leukocytes
(TILs), especially lymphocytes, contribute to the immunoscore classification, where the density of
CD3+ and CD8+ T-cell infiltrate is used as a predictor of anti-tumor response and the prognostic
marker in CRC (9, 10). However, further studies have shown that most of the immune cells may
actually have a dual activity—anti- and pro-tumor, depending on the signals received from the
tumor microenvironment. Interestingly, the so-called myeloid-derived suppressor cells (MDSCs)
can switch the polarization of other cells to the status with pro-tumorigenic activity (11).
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MYELOID-DERIVED SUPPRESSOR CELLS
(MDSCs)

Already in the early 1900s, it was shown that cancer development
is often accompanied by extra-medullary hematopoiesis (EMH)
and neutrophilia (12). These “fresh” leukocytes were further
characterized by suppressive activity and were called immature
myeloid cells (ImC) or myeloid suppressor cells (MSC) (13).
Eventually, in 2007, their name was changed to MDSCs
(13). These cells represent a heterogeneous population of
granulocytes and monocytes that rapidly expand during
infection, inflammation, and cancer (14, 15). MDSCs, together
with the tumor-associated neutrophils (TANs), tumor-associated
macrophages (TAMs), and regulatory dendritic cells, compose
the population of myeloid regulatory cells (MRC), strongly
cooperating with each other during cancer development, and
progression (16). Based on mouse data, the MDSC population
has been divided into two subgroups: of monocyte (Mo-MDSCs),
defined as CD11b+Ly6G−Ly6Chigh, and polymorphonuclear
(PMN-MDSCs), CD11b+Ly6G+Ly6Clow, origin (11, 17, 18).
Reflecting MDSC populations already defined in mice, human
MDSCs have been described as Lin− HLA-DR−/low CD11b+

CD14− CD15+ CD33+ for PMN-MDSCs and Lin− HLA-
DR−/low CD11b+ CD14+ CD15− CD33+ for Mo-MDSCs. Very
recently, a population of early-stage MDSCs (e-MDSCs) was
detected and defined as Lin− HLA-DR−/low CD11b+ CD14−

CD15− CD33+ (17, 19). As their name suggests, these cells
possess immunosuppressive function and help cancer to escape
the surveillance of the immune system and support further tumor
development (17). Most studies point out that the suppressive
role of MDSCs in cancer is associated with the activation of
their two enzymes, namely inducible NO synthase (iNOS) and
arginase-1 (ARG1) (20–22). These enzymes are responsible for
metabolism of L-arginine, which is essential for the proliferation
and proper functioning of T cells (23). Moreover, NO and ROS
produced in these reactions are involved in the inactivation of
the T-cell receptor (TCR), causing a decrease in the expression of
CD3ζ chain and inducing T-cell apoptosis (18, 19, 22).

Expansion and Activation of MDSCs in
CRC
It is widely accepted that the level of circulatingMDSCs increases
in the late stage of cancer, correlating with disease progression
and formation of metastases (15, 24–26). However, recently, Ma
et al. showed that the MDSC level in circulation also increases in
premalignant states, such as colon polyposis (27).

The development of MDSCs is caused by various mediators
released under chronic inflammatory conditions, including
the release of chemokines (11, 15, 28, 29). One of them
that is particularly relevant is CCL2, which contributes to
tumor growth, progression, and metastasis development in
many tumors, including breast, ovarian, prostate, and CRC
(30–33). Previous studies in mice showed that CRC growth
could be supported by myeloid cells recruited by the CCL2-
CCR2 signaling pathway (33). CCL2 caused accumulation of
MDSCs and enhanced their immunosuppressive function during

colorectal carcinogenesis (34). It was also shown that the level
of CCL2 increased simultaneously with the progression of CRC
(humans), while the deletion of CCL2 led to the reduction of
the MDSC level (mouse model) (34). Further, RNS produced
by MDSCs may nitrite chemokines, e.g., CCL2 to N-CCL2,
which do not attract CD8+ T cells (like unmodified CCL2 does)
but instead recruit myeloid cells, e.g., monocytes (35). On the
other hand, several studies documented that CXCL1 is elevated
in human CRC (36–38). Further data indicated that CXCR2-
positive MDSCs are recruited through CXCR2 ligands, e.g.,
CXCL1 and CXCl2 are essential for chronic colonic inflammation
and colitis-associated tumorigenesis (39).

In addition to chemokines, an important role in the regulation
of MDSC activity is attributed to other inflammatory mediators
such as histamine and prostaglandins. It has been documented
that histamine induces MDSC proliferation and promotes
ARG1 and iNOS expression in Mo-MDSCs. At the same time,
histamine inhibits the expression of ARG1 and iNOS in PMN-
MDSCs, promoting the production of IL-13 and IL-4 (40).
Thus, histamine may activate Mo-MDSCs and PMN-MDSCs in
different ways (40, 41). Prostaglandin E2 (PGE2), on the other
hand, is a strong proinflammatory mediator produced by COX-2
(42) and may activate MDSCs through STAT3 phosphorylation
(43, 44). In CRC, persistent STAT3 activation is associated
with tumor growth (45, 46) and activation of MDSCs (47,
48). These observations are consistent with the results showing
effectiveness of COX-2 inhibitors in the reduction of the MDSC
level through blocking COX-2 and subsequent inhibition of
the STAT3 pathway (43, 44, 49, 50). Another arachidonic acid
metabolite, leukotriene B4 (LTB4), a product of 5-lipoxygenase
(5LO), acts as a chemoattractant for MDSCs, leading to their
accumulation. Deficiency of 5LO is associated not only with
a lowered circulation level of MDSCs but also with decreased
activity of ARG1 and iNOS (51).

The tumor microenvironment stimulates MDSCs also by
other factors induced by local hypoxia and low pH (52, 53). One
of them is hypoxia-inducible factor (HIF). Over-expression of
HIF-1α and also HIF-2α is associated with poor prognosis in the
majority of cancers, including CRC (54). HIF-1α is associated
with increased activity of ARG1 and iNOS in MDSCs, leading
to stronger inhibition of T-cell functions (55). Moreover, HIF-1α
can also enhance the suppressive nature of MDSCs by inducing
expression of programmed death-ligand 1 (PD-L1) (56), a ligand
for PD-1, leading to inhibition of IL-2 production and decreased
proliferation of cytotoxic T cells (56, 57). Additionally, HIF-1α,
by binding to a conserved hypoxia response element in the V-
domain of Ig suppressor of T-cell activation (VISTA) promoter,
upregulates VISTA expression onMDSCs, thereby inducing their
suppressive activity in the tumor microenvironment (58).

Many studies have shown that not only soluble mediators
but also extracellular vesicles, e.g., exosomes secreted by tumor
cells, may directly induce MDSC development and modulate
their activity (59). This was demonstrated formanymalignancies,
including melanoma, breast, lung, and CRC (60). The role of
cancer exosomes in CRC is complex, based on the type of cargo
material transferred from cancer cells to the cells of the immune
system, including MDSCs. This may occur through the delivery
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of tumor proteins, e.g., FasL (61) and Hsp72 (62), mRNA (63),
and non-coding microRNAs (miRNA) (64). The role of miRNA
in CRC, in particular, has been documented recently, with an
elevated level of miRNA-21 in patients’ sera correlating with poor
prognosis (65, 66).

MDSC Action in CRC
The suppressive function of MDSCs in CRC is mainly associated
with their ability to inhibit T-cell proliferation and to stimulate
Treg development (15). One of the important factors involved
in interactions between T cells and MDSCs is L-arginine,
an amino acid that is essential for T-cell proliferation and
proper functioning. MDSCs highly express ARG1, which uses L-
arginine, causing its depletion from the microenvironment (21,
22), which in turn affects T-cell functionality. Lack of L-arginine
blocks T-cell proliferation and decreases expression of CD3ζ
chain and IFNγ production (67–69). Studies on CRC have shown
that MDSCs impair T-cell activation through O−

2 production and
iNOS activity (70, 71), which can be reversed byMDSC depletion
or the use of iNOS and O−

2 inhibitors (72). The mechanism
of ARG1- and iNOS-dependent T-cell suppression has been
explained by studies showing that, under conditions where the
L-arginine level is reduced due to ARG1 activity, L-arginine is
preferentially used by iNOS for O−

2 and NO production, while
under normal conditions, where the L-arginine level is high, only
NO is produced (73). After mutual reaction of NO with O−

2 ,
a strongly reactive oxidizing agent, peroxynitrite (ONOO−), is
formed. It can cause nitration of proteins (74, 75) as well as
the induction of T-cell apoptosis through the TCR/CD3 complex
tyrosine phosphorylation pathway (22, 76, 77). Recent results
have also shown that MDSC level correlates with reduction in the
adaptive immune response to tumor antigens, e.g., MUC-1, both
by lowering the production of specific antibodies and activation
of tumor-specific T cells (27).

The interactions between MDSCs and Tregs in cancer are
well-documented. Mainly, the activation of Tregs by MDSCs
is caused by cytokines, including IL-10 and TGF-β, where the
latter is also associated with MDSC induction (78). However, the
relationship between MDSCs and Tregs in CRC is questionable.
Some authors indicate that MDSCs in CRC do not induce Tregs
development in vitro (70). On the other hand, mouse MDSCs
were able to induce Tregs in vitro and in vivo through the IL-10-
and IFN-γ-dependent pathway (79).

In addition to the role of MDSCs in immunosuppression that
is observed during tumor progression, they may also directly
stimulate tumor growth andmetastases, inducing, in cooperation
with VEGF, angiogenesis. Furthermore, MDSCs may introduce
high levels of MMP9 and pro-MMP9 into the extracellular
milieu, regulating VEGF bioavailability for colorectal cancer
cells (80, 81). At the initial stage of cancer, MDSCs, through
TGF-β, can also induce the epithelial to mesenchymal cell
transition (EMT) process, which is essential for metastases at
the late stage. These cells participate in extracellular matrix
degradation in order to prepare distant tissue for receiving
metastatic cells (82, 83). The latest findings reveal that PMN-
MDSCs also enhance CRC growth by exosomes and exosomal

protein S100A9 in the tumor microenvironment, especially
under hypoxic conditions (84).

Both populations of MDSCs can effectively inhibit T-cell
activity but using different mechanisms (85, 86). Some authors
suggest that Mo-MDSCs are more suppressive than PMN-
MDSCs (87), while others show the opposite result (88, 89).
PMN-MDSCs are mainly responsible for ROS production, while
Mo-MDSCs have high expression of iNOS, producing large
amounts of NO, which has a longer activity than ROS. Thus,
PMN-MDSCs, in contrast to Mo-MDSCs, need direct cell-to-
cell contact to suppress T cells (85, 90). In this context, it has
been documented that PMN-MDSCs preferentially settle the
peripheral lymphoid organs, while Mo-MDSCs mainly persist in
the tumor bed (85). In addition, MDSCs can also downregulate
innate immune response, e.g., affecting the activity of NK cells
(91). The crosstalk between MDSCs and cells in the CRC
microenvironment is summarized in Figure 1. According to
some authors, in human CRC, a major proportion of the MDSCs
in peripheral blood are PMN-MDSCs (86). However, there are
also studies showing an increased level of both populations (92–
95). Additionally, an e-MDSC population was also detected in
CRC patients (27, 96).

DETECTION OF MDSCs IN CRC

The composition of phenotypemarkers used forMDSC detection
and characterization in CRC quite often differs between studies.
The phenotype markers and functional characteristics of MDSCs
from various studies on human CRC are presented in Table 1.
While the majority of the authors agree that the general
phenotype of MDSCs is CD11b+ HLA-DR− Lin− CD33+

or functional markers, e.g., iNOS+ and ARG1+, there is
no consensus with respect to more specific markers such
as CD14, CD15, PD-L1, or CD124 (IL-4αR). The recent
recommendations of the COST-Mye-EUNITER consortium
provide the minimal phenotype characteristics necessary to
identify cells as MDSCs: CD14−CD11b+CD15+(or CD66b+) for
PMN-MDSCs; CD11b+CD14+HLA-DRlow/− CD15− for Mo-
MDSCs, and Lin−(CD3/14/15/19/56)/HLA-DR−/CD33+ for e-
MDSCs (17).

TARGETING MDSCs IN CRC

Despite the availability of chemo- and immunotherapy, surgery
is still the primary method of CRC treatment. However, in a
mouse model, it was shown that surgical removal of tumor
mass recruits MDSCs to the peritoneal cavity and promotes
tumor progression due to the surgical trauma, downregulating
the CXCL4 expression. CXCL4 inhibits tumor growth and
angiogenesis, which might be due to its inhibitive impact on the
recruitment of MDSCs (97). In this context, it seems that MDSC-
targeted therapy is urgently required for this type of cancer.

There are numerous studies concerning different small-
molecule compounds that are able to inhibit the suppressive
activity of MDSCs. In this section, however, the compounds
with potential for CRC treatment are mainly being discussed.
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FIGURE 1 | Crosstalk between MDSCs and other cells in the cancer microenvironment (created with BioRender.com). Factors like PGE2, IL-6, IL-10, and LTB4 are

involved in the induction of MDSCs, where IL-10 can also be involved in the generation of Mo-MDSCs from circulating blood monocytes. In addition, NO produced by

iNOS is required for the production of N-CCL2 from CCL2, acting as a chemoattractant for monocytes. In a similar manner, CXCL1 and CXCL2 binding to CXCR2

may recruit MDSCs to the tumor bed. Simultaneously, exosomes containing exosomal S100A9 protein are released by PMN-MDSCs, supporting the tumor growth.

On the other hand, EVs generated by the tumor transfer biologically active tumor-related factors, e.g., proteins and miRNAs, which may also be involved in the

induction of MDSCs from infiltrating monocytes. Moreover, hypoxia per se and hypoxia-related factors, including HIF1a, are also responsible for the induction of the

expression of suppressive molecules such as VISTA or PD-L1 on the surface of MDSCs, which act through VISTA receptor and PD-1 on the T cells, respectively. TGFβ

produced by MDSCs has a number of suppressive actions, e.g., MDSCs, through TGFβ, can induce the epithelial to mesenchymal cell transition (EMT) process,

which is essential for metastasis formation, or inhibit NK cells. Moreover, TGFβ has a great influence, together with IL-10, on the induction of Tregs, while Tregs,

producing TGFβ, induce in return MDSCs as a result of a positive feedback loop. In addition, MDSCs may also inhibit the production of antibodies and T cells directed

against tumor-associated antigens (TAA), such as MUC1. Additionally, NO, O2-, and a reduced concentration of L-arginine, which are associated with MDSC activity

in the tumor microenvironment, inhibit T-cell proliferation. Moreover, NO by itself can modify TCR structure and induce T-cell apoptosis.

One such is AT38, an inhibitor of RNS, which was used in
a mouse model of CRC where it proved to effectively reduce
nitration of chemokines, including CCL2. Administration of
AT38 also decreased the level of iNOS and ARG1 (35). Another

example is nitroaspirine, which, in a mouse model, increased
the number of tumor antigen-specific T cells and reduced both
ARG1 and iNOS activity in MDSCs (98). Triterpenoids were also
shown to reduce the suppressive functions of MDSCs through
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TABLE 1 | The phenotype markers and functional characteristics of MDSCs as published in various studies on human CRC.

Orgin/Tumor stage Phenotype Suppressive activity References

Circulating/I-IV Lin− HLA-DR− CD11b+ CD33+ CD13+ CD115low

CD117low CD124low CD14− CD15− CD66b−

CD34− CD39+ CD73− PD-L1low PD-L2− PD-1−

MDSCs correlate with tumor metastasis.

Inhibition of CFSE-labeled autologous CD3+ T cell

proliferation at 2:1 ratios with MDSCs in the absence or

presence of CD3/CD28 antibody stimulation for 3 days.

(26)

CD33+ from PBMC were

co-cultured with

SW480/SW620 cells to

induce tumor MDSCs

CD33+ CD11b+ HLA-DR−, CD14+ CXCR4+

CD39+ ARG-1+ iNOS+ ROS+ PD-L1+ CD73−

CD117+/− CD34+/− CD66b+/− CD15weak

Tumor-induced MDSCs promoted SW480 and SW620 cell

growth in a co-culture system in vitro. Tumor-induced MDSCs

suppressed the proliferation of PBMCs labeled with CFSE

more strongly than CD33+ cells cultured in medium alone.

(70)

Circulating/tumor tissue CD33+ CD11b+ HLA-DR− CD14+ CXCR4+/−

CD39+/− ARG-1+ iNOS+ PD-L1+ ROS+ CD73−

CD117+/− CD34+/− CD66b+/− CD15weak

MDSCs from tumor tissue have higher

PD-L1 expression

Advanced disease stage was associated with an elevated

level of circulating MDSCs; also, tumor resection reduces the

level of circulating MDSCs and Tregs measured 7 days after

surgery.

Circulating/IV CD14+ HLA-DR−/low S100A9high iNOS+ – (71)

Circulating/tumor tissue/III IV CD124+CD14+

CD124+CD15+

tumor tissue CD15+ CD14+

Mixed lymphocyte reactions in which gamma-irradiated

PBMC, CD14+, CD14−, and PMN from CRC patients were

added as stimulator to responder PBMC derived from healthy

donors. These experiments showed two main subpopulations

with suppressive activity present among CD14+ monocytes

in one and among PMN in the other.

(93)

Colorectal tumor/III PMN-MDSCs CD45+ Lin− HLA-DR− CD11b+

CD33+ CD66b+

Mo-MDSCs CD45+ Lin− HLA-DR− CD11b+

CD33+ CD14+

PMN-MDSCs isolated from tumor inhibited the proliferation of

activated autologous CFSE-labeled T cells and IFN-γ

production in medium containing CD3 and CD28.

(94)

Circulating CD33+ HLA-DR− CD11b+ CD15+

CD33+HLA-DR−CD11b+CD15−

CD33+HLA-DR −/lowCD14+

Upregulated plasma levels of IL-6 and IL-10, where IL-6

correlates with 15+ MDSCs and IL-10 with 15− MDSCs.

Also, CD15+ and CD15− MDSCs correlated with reduced

IFN-α responsiveness in CD4+ T cells.

(95)

Circulating/Metastasis PMN-MDSCs CD33+ HLA-DR−/low CD15+

CD124+ PD-L1+ CD73+ CD39+

Mo-MDSCs CD33+ HLA-DR−/low− CD14+ PD-L1+

CD73+ CD39+

Accumulation of PMN-MDSCs was associated with poor

prognosis; also, PMN-MDSCs have higher levels of PD-L1,

CD39, and CD73 expression and a stronger

immunosuppressive function than Mo-MDSCs.

Reduced TNF-α production and Ki67 proliferation marker of

CD3+ T cells, especially by PMN-MDSCs.

(89)

Circulating/I-IV CD33+ CD11b+ HLA-DR−/low CD15−CD14+

ARG-1+

CD33+ CD11b+ HLA-DR−

CD15+ CD14−ARG-1++

– (96)

Tumor tissue/I-IV CD33+ CD11b+ HLA-DR−/low CD15−CD14+

ARG-1+

CD33+ CD11b+ HLA-DR− CD15+ CD14−ARG-1+

CD33+ CD11b+ HLA-DR− CD15− CD14−

–

Circulating PMN-MDSCs CD14−CD33+HLA-DR−CD66b+ Human MDSCs increase fatty acid uptake and expression of

FAO-related enzymes, and, in mice, inhibition of FAO blocked

the tolerogenic function and immunosuppressive

mechanisms of MDSCs.

Inhibition of CFSE-labeled CD3+ T-cell proliferation after

co-culturing with MDSCs from mice in the presence

of anti-CD3.

(86)

Circulating Mo-MDSCs CD14+HLA-DR−/lo

PMN-MDSCs CD33+ CD11b+ CD14− CD15+

SSC hi

Mo-MDSC population was significantly expanded in CRC

patients; the immunosuppressive capacity of these cells was

evaluated in a T-cell suppression assay using a 3-way

allogenic mixed leukocyte reaction (MLR).

(92)

Circulating/cancer and

adenoma

Total MDSCs: CD11b+HLA-DR−/low CD33+

PMN-MDSCs: CD11b+HLA-DR−/low CD33+

CD15+ CD14−

Mo-MDSCs: CD11b+HLA-DR−/low CD33+ CD15−

CD14+

e-MDSCs: CD11b+HLA-DR−/low CD33+

CD14− CD15−

PMN-MDSCs are the main immunosuppressive population,

as depletion of CD15+ cells spares Mo-MDSCs and

eliminates most of the suppression of T-cell proliferation and

interferon production. MDSC levels negatively correlated with

anti-MUC1 IgG levels.

(27)
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downregulation of ROS and inhibition of STAT3. However, they
did not exert any effects on ARG1 activity, on NO production, or
on the frequency of MDSCs (99). In the human CRC, amiloride,
normally used to reduce high blood pressure, can also inhibit
tumor exosome formation, which has been shown to induce
suppressive functions inMDSCs (62). It was also reported that H2

blockers, e.g., cimetidine, appear to induce apoptosis of MDSCs
through a Fas-FasL-dependent pathway (100).

Another therapeutic approach involves the reduction of
MDSC expansion by using COX2 or PGE2 inhibitors, as PGE2
production could be associated with MDSC expansion in cancer
(43). Such inhibitors, e.g., indomethacin, celocoxib, melocoxib,
and acethylosalicylo acid (ASA), were able to reduce tumor
growth in various tumor models, including CRC (101–103). This
treatment could also modulate MDSC functions by inhibiting
ARG1 expression and ROS and NO production (104, 105).
ASA also reduced the level of chemokines, including CCL2, a
potent chemoattractant for MDSCs (106). Another way to block
MDSC accumulation is the inhibition of stem cell factor (SCF),
which causes MDSC recruitment when produced in the tumor
environment (107).

Another option for targeting MDSCs is inducing their
differentiation. For example, curcumin used in a mouse model
of CRC was able to decrease the level of PMN-MDSCs and
to induce differentiation of Mo-MDSCs into cells with M1-like
phenotype (108).

Another strategy for potential MDSC-targeted therapy
was suggested by Condamine et al. who pointed to a
shorter lifespan for MDSCs compared with neutrophils
and monocytes (109). This was associated with their
increased apoptosis rate in the periphery, related to high
expression of TNF-related apoptosis–induced ligand receptors
(TRAIL-Rs) due to the stress in endoplasmic reticulum
(ER) occurring under pathophysiological conditions like
cancer. Thus, targeting TRAIL-Rs by selective agonists can be
considered as a future therapy for reducing MDSC activity and
number (109).

Immunotherapy designed to target the checkpoint inhibitors
of the PD-1–PD-L1 pathway is currently one of the most
promising possibilities for reducing MDSC activity. Currently,
four monoclonal antibodies are already approved by the FDA
for the inhibition of this pathway: anti-PD-1 nivolumab and
pembrolizumab, and anti-PD-L1 atezolizumab and avelumab.
These inhibitors and several other checkpoint modulators
are under clinical investigation for CRC treatment (110). In
the clinical studies, nivolumab and pembrolizumab showed
good response rates of 26 and 57%, respectively (111). Better
results were obtained in the case of nivolumab combined with
ipilimumab (anti-CTLA-4) (111–113). However, in the context of
MDSCs, more satisfactory results were obtained where the PD-
L1 inhibitor was used (56). Recently, several chemotherapeutic
agents, e.g., gemcitabine, 5-fluorouracil, and doxorubicin, which
are used in conventional cancer chemotherapy have been found
to reduce MDSC numbers through the induction of apoptosis
in tumor tissues as well as in the peripheral lymphoid organs

(114–116), and combining these agents with immunotherapy
improved survival of tumor-bearing hosts. In keeping with this,
Limagne et al. in their study, provided a clinical rationale for
combining chemotherapy with anti-PD-1/PD-L1 antibodies for
more effective reduction of the immunosuppression caused by
PMN-MDSCs in metastatic CRC (89). In this context, FOLFOX
(5-fluorouracil + oxaliplatin) chemotherapy was shown to act
synergistically with anti-PD-1 (117).

In the context of immunotherapy, it is worth mentioning the
heterogenic genetic composition of CRC, which has important
therapeutic implications. The effectiveness of immunotherapy,
particularly immune checkpoint inhibition therapy, such as
CTLA-4 and PD-1, has been confirmed in mismatch-repair-
deficient (dMMR) and microsatellite instability-high (MSI-H)
(dMMR-MSI-H) tumors, while it was ineffective in mismatch-
repair-proficient (pMMR) and microsatellite instability-low
(MSI-L) (pMMR-MSI-L) tumors (118). This resistance for
immunotherapy of MMR-MSI-L tumors results from the
inability of immune cells to recognize MSI-L mutated tumor
cells and thereby reduced T-cell infiltration (119). However, it
was noticed that pMMR-MSI-L tumors are more extensively
infiltrated by Tregs and MDSCs than dMMR-MSI-H, which
may also explain the poor immune response (120). Thus,
to use of MDSC-targeted therapy seems to be a beneficial
opportunity to assist the effectiveness of surgery in patients with
pMMR-MSI-L cancer.

CONCLUSIONS

Tumor develops a variety of mechanisms to escape from immune
system surveillance, including the generation of MDSCs. There
is substantial evidence that MDSCs are involved in CRC
development and progression. MDSCs can be detected both
in the peripheral blood and tumor tissue; however, it is not
known if both or one of them are relevant for predicting
the prognosis for patients in the clinic. Therefore, more
in-depth investigation of the mechanisms of MDSC actions
in the tumor bed is still needed. Finally, more advanced
pharmacological data on specific treatments targeting MDSCs
are required. This could significantly improve the effectiveness
of the treatment of CRC patients, and also those with
pMMR-MSI-L tumors, who respond poorly to current forms
of immunotherapy.
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