
Overview of clinical types and the genetics of 
epilepsy
The International League Against Epilepsy defines an 
epileptic seizure as ‘a transient occurrence of signs and/
or symptoms due to abnormal excessive or synchronous 
neuronal activity in the brain’ [1,2]. The condition is 
common, with prevalence around 1% and lifetime inci
dence around 3% [3]. Most epilepsies can be broadly and 
easily classified based on their pattern of electroclinical 
onset as either generalized (‘originating at some point 
from within, and rapidly engaging, bilaterally distributed 
networks’) or focal (‘originating within networks limited 
to one hemisphere’) [1]. Within each of these broad 
classifications are multiple distinct syndromes, more 
than half of which are considered to be ‘genetic epilepsies’. 

In older terminology, genetic epilepsies were referred to 
as ‘idiopathic epilepsies’ [4]. Syndromes, and sometimes 
subsyndromes, are delineated when the seizures are 
defined by easily recognizable electroclinical features and 
similar enough to be regarded as a homogeneous group, 
distinct from other groups in the same classification level 
(Table 1). For example, genetic generalized epilepsies are 
frequently divided into their subsyndromes of childhood 
absence epilepsy, juvenile absence epilepsy, juvenile myo
clonic epilepsy and generalized tonic clonic seizures.

There is a subset of epilepsy syndromes that are clearly 
monogenic, and traditional linkage studies in large families 
have been useful for identifying causative genes [5,6]. 
However, the vast majority of the genetic epilepsies are 
multifactorial, with an underlying genetic contribution 
that is polygenic, where few or usually none of the sus
cep tibility genes have been identified. This multifactorial 
concept dates back to the early works of William Lennox 
[7] and was well established in the modern era with 
additional twin data [8]. It is important to note that 
epilepsy with complex genetics and complex epilepsy are 
distinct concepts. To the geneticist, complex epilepsy is 
epilepsy with complex genetics; that is, multifactorial 
epilepsy that is polygenic and influenced by environ
mental effects, both internal and external. Complex 
epilepsy to the epileptologist, on the other hand, refers to 
the complexity of the seizure pattern. Without an appre
cia tion of the difference, interactions between basic and 
clinical scientists can be, and have been from personal 
experience, confused by ‘complex epilepsy’ meaning 
differ ent things to different people. In the context of this 
article, complex epilepsy will mean that which is multi
factorial in origin, rather than necessarily having complex 
seizure patterns.

Monogenic epilepsies
To date, more than 20 genes have been identified for the 
group of genetic epilepsies that are primarily monogenic 
[5,6,9,10], prompting a recent update of clinically based 
classification [1]. While individual syndromes that com
prise each of these groups are generally diagnosed 
through clinical assessment, molecular testing now facili
tates more accurate definition of clinically similar 
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disorders that are now known to be caused by mutation 
of different genes. While gene identity provides an 
alternative or additional criterion for syndrome classifica
tion, it also has clinical efficacy  providing a rapid 
definitive diagnosis to obviate an otherwise circuitous set 
of invasive or costly investigative procedures. Further
more, in some cases, specific therapeutic intervention 
can be enabled to achieve improved outcomes or more 
accurate prognosis. Genetic testing for the epilepsies has 
high clinical utility in cases that may involve SLC2A1 
(glucose transporter type 1 deficiency), SCN1A (Dravet 
syndrome), PCDH19 (familial epilepsy and mental re
tard ation limited to females, ‘Dravetlike’ PCDH19 syn
drome), ARX (Xlinked infantile spasms and myoclonic 
seizures, dystonia, and Xlinked lissencephaly with 
ambigu ous genitalia) or STK9 (Xlinked infantile spasms) 
mutations. Testing has high analytical sensitivity (ability 
to detect the presence of a causative mutation) and high 
analytical specificity (ability to exclude mutation in a 
candidate gene) for all of the monogenic epilepsies, but 
not necessarily high clinical utility apart from some of the 
syndromes associated with the above genes [9]. It has 
little or no clinical utility at this time when knowledge of 
the gene is not needed for accurate syndrome classi
fication, when knowledge of the gene does not direct or 
affect treatment, or in cases of genetically complex 
epilepsies triggered by the combined effects of multiple 
genes spread across the genome, most likely each having 
only a small effect on phenotype.

Complex epilepsies
Speculation of the genetic architecture for the genetically 
complex epilepsies centers on the common disease
common variant hypothesis [11] and the common disease
rare variant hypothesis [12]. The general failure of linkage 
and association studies applied to the complex epilepsies 
[1316] argues against the common diseasecommon 
variant hypothesis, although the major criticism of such 
studies is that they are underpowered to detect the 
magnitude of odds ratios that are likely associated with 
susceptibility variants in the genetically complex epilepsies 
[17] and indeed other neuropsychiatric brain disorders.

The common diseaserare variant hypothesis, which 
suggests a variable subset of multiple rare genetic vari
ants, has greater appeal for complex epilepsy [18,19], 
especially given the failure of association studies, which 
work on the premise of the common diseasecommon 
variant hypothesis [16], to deliver consistent findings. A 
mixture of the two models is also entirely plausible [19] 
with functional differences in the electrophysiological 
properties of ion channels demonstrated for both rare and 
polymorphic genetic variation detected at the GABRD 
(encoding γaminobutyric acid A receptor, δ), CACNA1H 
(encoding calcium channel, voltagedependent, T type, 
α 1H subunit) and CLCN2 (encoding chloride channel 2) 
genes [2023], for example. Computer simulation supports 
the notion that genetic variations associated with only 
very small functional changes in ion channel properties 
are sufficient to make meaningful contributions to 
increasing susceptibility to epilepsy [24].

Multiple sclerosis is another disorder with complex 
inheritance where extensive study suggests ‘risk variants 
likely to include hundreds of modest effects and possibly 
thousands of very small effects’ [25]. Similar conclusions 
with systematic effects of multiple rare variants across 
the genome have been suggested for schizophrenia and 
bipolar disorder [26]. We predict the same for epilepsy 
with complex inheritance, with seizure susceptibility 
thresh olds determined by combinations of many rare to 
moderately common sequence variants, copy number 
variants (CNVs) and perhaps noncoding DNA sequen
ces with functional effects. Weak effects will only be 
detectable by genomewide association studies using 
massive sample sizes. Kryukov et al. [27] preempted 
out comes from deep resequencing by massively parallel 
sequencing (previously referred to as nextgeneration 
sequencing [28]) by promoting an association study 
approach based on the premise of multiple rare variants 
present in susceptibility genes in higher numbers for a 
given disease group (for example, epilepsy) than in their 
corresponding controls. The statistical tools to support 
that approach are now surfacing [29].

The heritability of genetic generalized epilepsy suggests 
a major genetic component [8] but virtually none has yet 
been identified. This constitutes the ‘dark matter’ [30]. 
The task is to find this missing heritability and charac
terize it in terms of number of loci, effect sizes, allelic 
frequencies of variants and the nature of the variants 
[31]. Areas being investigated include cisacting genome
wide regulatory variants [32], genomewide copy number 
variants [33,34] as discussed below, and, in the future, 
nextgeneration sequencing [28].

Copy number variation in epilepsy
CNVs are deletions, duplications or insertions of DNA in 
the genome that range in size from approximately 1 kb to 

Table 1. Examples of genetic generalized and focal 
epilepsy syndromes

Generalized epilepsy Focal epilepsy

Absence epilepsy ADEAF

Juvenile myoclonic epilepsy ADNFLE

Generalized tonic-clonic seizures BECTS

 Landau-Kleffner syndrome

ADEAF, autosomal dominant epilepsy with auditory features; ADNFLE, 
autosomal dominant nocturnal frontal lobe epilepsy; BECTS, benign epilepsy 
with centrotemporal spikes. See Berg et al. [1] for additional details and 
subsyndromes.
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several megabases. Many CNVs have no apparent clinical 
significance, and numerous studies have now established 
that CNVs are dispersed throughout the genomes of 
healthy individuals and some CNVs are quite common 
[3537]. Importantly, CNVs have also been identified as a 
significant source of mutation. Small CNVs may result in 
the deletion or duplication of one or more exons of a 
known disease gene, and there are now many examples in 
the literature. In patients with intellectual disability (ID) 
or developmental delay, testing for large CNVs is now 
commonplace, as large CNVs underlie 15% to 20% of 
cases of ID [38,39]. CNVs can be detected by targeted 
studies directed to specific known CNVs by techniques 
such as multiplex ligationdependent probe amplification 
(MLPA). In the epilepsies, MLPA is generally targeted to 
exons of known epilepsy genes to detect intragenic 
deletions or duplications [4045], some of which are too 
small to be detected by genomewide approaches.

Genomewide methods to detect CNVs include array
comparative genomic hybridization (arrayCGH) and SNP 
genotyping arrays. These technologies can be targeted to 
specific chromosomal regions [43,4549]. However, their 
real power lies with capability for genomewide 
interrogation, where there is no need for a priori 
knowledge of where a lesion may lie [33,34,46,50]. Using 
that approach, Depienne et al. [46] discovered a Dravet
like syndrome caused by severe PCDH19 mutations on 
chromosome X, and McMahon et al. [50] ‘rediscovered’ 
the 15q13.3 CNV and found a novel 10q21.2 micro
duplication. Mefford et al. [33] and Heinzen et al. [34] 
used genomewide approaches to establish the extent of 
rare CNVs in the genetic epilepsies (see below). For CNVs 
with boundaries extending beyond the target gene, array
CGH is a powerful tool for accurately determining size and 
gene content. Large epilepsyassociated CNVs detectable 
by MLPA, but extending well beyond the one gene of 
special interest (for example, beyond SCN1A), can also be 
reliably detected by array technologies [40,43,45].

The role of CNVs in epilepsy has now been addressed 
by several groups using both targeted and genomewide 
approaches. Helbig and colleagues [51] first directed our 
attention to the role of the 15q13.3 microdeletion in the 
etiology of epilepsy. This microdeletion was first 
described in a series of patients with ID, most of whom 
also suffered from seizures [52], but is much more 
common in epilepsy cohorts [51,53,54]. This is one of the 
most prevalent genetic risk factors identified for the 
genetic generalized epilepsy syndromes. A range of rare 
mutations within SLC2A1 encoding the GLUT1 glucose 
transporter are at least as important within the childhood 
absence epilepsy subsyndrome of genetic generalized 
epilepsy [55,56]. Although estimated confidence intervals 
are broad, the estimated odds risk ratio of 68 (95% 
confidence interval 29 to 181) for the 15q13.3 deletion 

[54] greatly exceeds that of most common susceptibility 
variants detectable by genomewide association studies 
in disorders other than epilepsy. Despite its relative 
‘severity’ in relation to risk, its frequency in epilepsy 
cohorts is relatively high at around 1.3%. Conversely, this 
variant is difficult to find in the general control 
population, despite the screening of large numbers of 
controls, even though family studies following detection 
of an index case disclose frequent transmissions from 
nonpenetrant carrier parents [54,57]. Moreover, the 
position of the original mutation in the pedigree is often 
not too far back into its living ancestry, suggesting a 
relatively high recurrent mutation rate. Of the seven 
genes within the lesion, haploinsufficiency of CHRNA7 
(nicotinic acetylcholine receptor, α7) is considered to be 
the most likely pathogenic element, although it is not the 
only neuronally expressed gene affected by the deletion. 
Interestingly, early genomewide linkage studies impli
cated the CHRNA7 region in juvenile myoclonic epilepsy 
[58], but this could not be replicated [59], and screening 
of CHRNA7 did not detect convincing mutations [60]. 
Could it be that the families studied by Elmslie et al. [58] 
contained enough families segregating the 15q13.3 
microdeletion to give a linkage signal?

Subsequent studies investigated the role of other large 
CNVs that had previously been associated with increased 
risk of ID, autism and schizophrenia [53]. Somewhat 
surprisingly, significant numbers of the same recurrent 
CNVs involved in the disorders listed above were 
implicated as a component of the polygenic pathogenic 
genetic architecture in the clinically and genetically com
plex (idiopathic) epilepsies. Two microdeletions commonly 
associated with epilepsy are at 15q11.2 and 16p13.11 
[33,34,53]. Together with the 15q13.3 microdeletion, 
their combined frequency in test populations of genetic 
generalized epilepsy is approximately 3% [33]. Other 
large recurrent CNVs associated with ID, autism or 
schizophrenia that have also been detected in epilepsy 
are at 1q21.1, 16p12, 22q11 and two regions within 
16p11.2 [33,53]. These CNVs represent clearly defined 
genetic determinants that overlap with a number of 
hitherto regarded distinct disorders comprising part or 
all of their genetic architectures. The three most common 
recurrent CNVs, which together account for up to 3% of 
epilepsies, are shown in Figure 1. Notably, the 15q13.3 
microdeletion has been consistently present in 0.5% to 
1% of all genetic generalized epilepsy cohorts but has not 
been seen in >3,000 patients who presented with focal 
epilepsy syndromes [34], and therefore it may be a risk 
factor specifically for generalized epilepsy syndromes. 
Deletions at 16p13.11 and 15q11.2 have been found in 
both generalized and focal epilepsies [33,34,53].

The large, recurrent CNVs described above occur 
because of specific genomic architecture at each 
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respec tive chromosome region. CNV is mediated by 
naturally occur ring sets of low copy repeats or segmental 
duplications [6163] that facilitate nonallelic homolo
gous recombina tion [64,65], resulting in deletion or 
duplication of the intervening unique sequence. There
fore, each region with such architecture is prone to 
rearrange ment at meiosis, causing recurrence of large 
CNVs with nearly identical breakpoints in unrelated 
individuals. Because CNVs at these rearrangementprone 
regions of the genome occur with an appreciable 
frequency, it has been possible to detect a statistically 
significant difference between cases and controls.

Apart from the recurrent CNVs discussed above, the 
rare nonrecurrent CNVs are also likely to play a 
significant role in the genetic etiology of epilepsy. Two 
recent studies applied genomewide technologies to 
detect CNVs in affected individuals. Heinzen and 
colleagues [34] evaluated 3,812 individuals and found an 
enrichment of large (>1 Mb) deletions in affected individ
uals, the majority of which were seen in one individual 
each. Mefford et al. [33] evaluated 517 individuals with 
various types of epilepsy and found that nearly 10% 
carried one or more rare CNVs that had not been 
previously found at an appreciable frequency in controls. 
Again, the majority of events were seen only once, and 
represent a subset of the rare nonrecurrent CNVs 
involving genes that have been implicated in ID, autism 
or schizophrenia.

Syndrome constellations associated with CNVs
Taken literally, a constellation is a number of stars 
grouped within an outline. Here, we regard the CNV as 
the ‘outline’ encompassing a group of its associated 
syndromes comprising the syndrome constellation. 
Different combinations of syndromes define the constel
lations that are packaged within different CNVs. The 
CNVs can be recurrent in the population, and any 
recurrent CNV located in a given region is virtually 
identical from patient to patient. The syndrome constel
lations include one or more types of ID, dysmorphism, 
autism, schizophrenia and, more recently, genetic 
generalized epilepsy. The various syndromes within the 
constellations are themselves genetically and pheno
typically heterogeneous, and in some cases have defined 
subsyndromes. For example, genetic generalized epilepsy 
consists of the subsyndromes childhood absence epilepsy, 
juvenile absence epilepsy, juvenile myoclonic epilepsy 
and generalized tonic clonic seizures. Recurrent deletions 
at 15q13.3 (1.5 Mb, seven genes), at 16p13.11 (1.2 Mb, 
eight genes) and at 15q11.2 (1.3 Mb, four genes) are 
emerging as the most common genetic determinants for 
various distinct disorders with complex inheritance. 
These generally include intellectual disability with or 
without dysmorphism, autism, schizophrenia or genetic 
generalized or focal epilepsy. Epilepsy was the latest 
addition to the constellations of syndromes associated 
with each of these CNVs, and is now well established 

Figure 1. Three ‘common’ recurrent microdeletions in epilepsy. Microdeletion of 15q13.3 (1.5 Mb) in a patient with absence epilepsy. 
Microdeletion of 16p13.11 (800 kb) in a patient with juvenile myoclonic epilepsy. Microdeletion of 15q11.2 (350 kb) in a patient with infantile 
seizures. Regions depicted for each panel are as follows: 15q13.3 deletion: chr15, 28.0 to 31.0 Mb; 16p13.11 deletion: chr16, 15.0 to 16.7 Mb; 
and 15q11.2 deletion: chr15, 20.2 to 20.8 Mb (National Center for Biotechnology Information Build 36/hg18). Red vertical lines represent array-
comparative genomic hybridization probes that are deleted. Segmental duplications are represented by orange, yellow and gray blocks. Note that 
blocks of segmental duplications flank each deleted region. Genes are represented in blue, with key proposed candidate genes in red.
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[33,34,51,53,54]. A similar picture is emerging for the 
rarer recurrent CNVs at 1q21.1, 16p12 and two regions 
within 16p11.2 [33,53].

Given the comorbidity of ID and epilepsy, autism and 
ID, and autism and epilepsy, for example, perhaps it 
should not be surprising that some CNVs cause over
lapping neuropsychiatric features in affected individuals. 
However, it seems remarkable that the same CNV 
susceptibility lesion can be a genetic determinant for 
apparently disparate conditions (for example, only 
epilepsy in one patient, only schizophrenia in another). 
One possible explanation might be that odds risk ratios 
associated with disorders included within a given constel
lation of syndromes is relatively high in the context of 
disorders with complex inheritance. For example, genetic 
generalized epilepsy has an odds risk ratio of 68 (95% 
confidence interval 29 to 181) for the 15q13.3 deletion 
[54]; this is far higher than for susceptibility variants 
generally detected in complex genetic disorders. 
Certainly another possible explanation is the presence of 
as yet undetected additional genetic or epigenetic 
variants that influence the phenotypic outcome. All of 
the ‘common’ recurrent CNVs in epilepsy (15q13.3, 
16p13.11 and 15q11.2) have probably been identified 
already, given the extent of the arrayCGH genomewide 
searches already completed [33,34]. Some of the less 
common recurrent microdeletions at 1q21.1, 16p12 and 
two regions within 16p11.2 may be associated with their 
own multisyndrome constellations.

Rare or unique nonrecurrent CNVs are collectively 
more common than the combined recurrent ones. These 
lesions provide a wealth of leads to candidate epilepsy 
genes within or closely adjacent to them. The number, 
frequency and distribution of each genebearing CNV 
are consistent with the common diseaserare variant 
model for the genetic architecture for complex epilepsy. 
Overall genetic profiles of susceptibility genes for each 
individual are likely to be unique and fit the polygenic 
heterogeneity concept [18]. Genes within these epilepsy
associated CNVs and genes identified through massively 
parallel sequencing [66] each represent independent 
oppor tunities to break out of the ion channel paradigm 
that might potentially constrain our thinking when the 
genetic architecture of epilepsy might extend beyond ion 
channels. Results of studies performed so far suggest 
that haploinsufficiency (deletions) or overexpression 
(duplica tions) of some of the genes in nonrecurrent 
CNVs may elicit the same syndromes as those in their 
associated constellations.

There are two common threads in these discussions. 
First, the constellations of syndromes associated with each 
recurrent CNV can include a range of diverse pheno types, 
including, in most cases, some combination of ID, autism, 
schizophrenia and epilepsy. Each CNV probably elicits its 

own specific distribution of pheno types and frequency of 
each phenotype, defining the associated constellation. 
Second, the mechanism for genesis of this extreme clinical 
heterogeneity observed within virtually identical lesions is 
not yet known. Several mechanistic possibilities have been 
outlined [34,6769] but none has been proven as a general 
mechanism, or even a mechanism specific to any given 
CNV. The clinical heterogeneity is likely to depend upon 
the nature of the other risk factors or genetic modifiers in 
the rest of the genome that alone or in combination may 
specify the phenotype.

Conclusions and future perspectives
The concept of extensive clinical heterogeneity in 
epilepsy associated with a welldefined genetic lesion is 
not new. Well known examples are genetic generalized 
epilepsy with febrile seizures plus [19], caused by 
mutations in sodium channel genes, and recently, 
genetic generalized epilepsy caused by the 15q13.3 CNV 
[70]. These observations have challenged complete 
reliance on the phenotypefirst approach to diagnosis. 
Investigations will always begin with general clinical 
evaluation to broadly classify cases into disease 
categories. Taking genetic generalized epilepsy as an 
example, is it then necessary to further refine down to 
subsyndromes using clinical criteria alone, and to even 
contemplate endo phenotyping for deeper clinical 
refinement? The answer is clearly no in the context of 
syndromic constellations associated with some CNVs 
and phenotypic spectrums associated with some familial 
missense mutations. The aim of that exercise of making 
phenotypes as clinically homogeneous as possible would 
be to promote genetic homogenization of study 
populations so that associations are easier to detect. But 
for CNVs and missense mutations in some genes, 
collections of the same CNV or same mutation are 
already genetically homogeneous, at least for that 
component of the complex polygenic architecture.

The approach needs to be turned upside down, by 
adoption of a genotypefirst approach where novel 
genomic disorders such as genetic generalized epilepsy 
are classified and defined by detection of a common 
deletion or duplication. The collection of large numbers 
of patients with the same CNV genotype but wide variety 
of phenotypes including epilepsy will facilitate genotype
phenotype studies that might provide insight into the 
mechanisms that influence phenotype diversity in these 
and other disorders. Conversely, the collection of large 
numbers of genetic generalized epilepsy patients (not 
even subtyped into subsyndromes) with significantly 
more multiple rare DNA sequence changes within the 
same putative epilepsy susceptibility gene, as compared 
with unaffected controls, might be an outcome of their 
pursuit through massively parallel sequencing. That 
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would enable us to work backwards, to endophenotype 
just those cases with mutations in a defined susceptibility 
gene to see if they have subtle phenotypic features in 
common. Thus might emerge a subsyndrome classifi
cation that is different to that currently in use, based on 
more relevant components of the phenotype that better 
reflect the underlying molecular genetics.

Finally, we agree that careful clinical phenotyping is a 
vital component of our research, as the constellations 
associated with each of the CNVs need to be accurately 
characterized. Consider cohorts comprising 15q13.3 
deletions, for example. Some of the cases are regarded 
as epilepsy only. Others are regarded as having dual 
pheno types, of epilepsy and ID, for example. Are these 
really dual phenotypes? Consider the hypothetical 
possibility that the haploid content of the 15q13.3 
region lowers the seizure threshold and adversely affects 
intelligence in everyone who carries it. Some carriers 
will not have epilepsy because their susceptibility profile 
contains too few susceptibility variants at other loci 
throughout the genome, in addition to 15q13.3, to take 
them across the seizure threshold. Some carriers will 
not have ID because their baseline intelligence quotient 
will be high enough to begin with that even with some 
depression of intelligence quotient through the effects 
of the 15q13.3 deletion they remain within the normal 
range. Others, toward the lower end of the normal 
range to begin with, unfortunately drop down into the 
ID range. We challenge the clinical researchers to prove 
us wrong or, like us, seriously question the notion of 
dual phenotypes presenting in only a subset of the 
15q13.3 deletion carriers.
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